Provided by: grass-doc_7.4.0-1_all
NAME
r.slope.aspect - Generates raster maps of slope, aspect, curvatures and partial derivatives from an elevation raster map. Aspect is calculated counterclockwise from east.
KEYWORDS
raster, terrain, aspect, slope, curvature
SYNOPSIS
r.slope.aspect r.slope.aspect --help r.slope.aspect [-a] elevation=name [slope=name] [aspect=name] [format=string] [precision=string] [pcurvature=name] [tcurvature=name] [dx=name] [dy=name] [dxx=name] [dyy=name] [dxy=name] [zscale=float] [min_slope=float] [--overwrite] [--help] [--verbose] [--quiet] [--ui] Flags: -a Do not align the current region to the raster elevation map --overwrite Allow output files to overwrite existing files --help Print usage summary --verbose Verbose module output --quiet Quiet module output --ui Force launching GUI dialog Parameters: elevation=name [required] Name of input elevation raster map slope=name Name for output slope raster map aspect=name Name for output aspect raster map format=string Format for reporting the slope Options: degrees, percent Default: degrees precision=string Type of output aspect and slope maps Storage type for resultant raster map Options: CELL, FCELL, DCELL Default: FCELL CELL: Integer FCELL: Single precision floating point DCELL: Double precision floating point pcurvature=name Name for output profile curvature raster map tcurvature=name Name for output tangential curvature raster map dx=name Name for output first order partial derivative dx (E-W slope) raster map dy=name Name for output first order partial derivative dy (N-S slope) raster map dxx=name Name for output second order partial derivative dxx raster map dyy=name Name for output second order partial derivative dyy raster map dxy=name Name for output second order partial derivative dxy raster map zscale=float Multiplicative factor to convert elevation units to horizontal units Default: 1.0 min_slope=float Minimum slope value (in percent) for which aspect is computed Default: 0.0
DESCRIPTION
r.slope.aspect generates raster maps of slope, aspect, curvatures and first and second order partial derivatives from a raster map of true elevation values. The user must specify the input elevation raster map and at least one output raster maps. The user can also specify the format for slope (degrees, percent; default=degrees), and the zscale: multiplicative factor to convert elevation units to horizontal units; (default 1.0). The elevation input raster map specified by the user must contain true elevation values, not rescaled or categorized data. If the elevation values are in other units than in the horizontal units, they must be converted to horizontal units using the parameter zscale. In GRASS GIS 7, vertical units are not assumed to be meters any more. For example, if both your vertical and horizontal units are feet, parameter zscale must not be used. The aspect output raster map indicates the direction that slopes are facing. The aspect categories represent the number degrees of east. Category and color table files are also generated for the aspect raster map. The aspect categories represent the number degrees of east and they increase counterclockwise: 90 degrees is North, 180 is West, 270 is South 360 is East. Note: These values can be transformed to azimuth (0 is North, 90 is East, etc) values using r.mapcalc: # convert angles from CCW to north up r.mapcalc "azimuth_aspect = (450 - ccw_aspect) % 360" The aspect is not defined for slope equal to zero. Thus, most cells with a very small slope end up having category 0, 45, ..., 360 in aspect output. It is possible to reduce the bias in these directions by filtering out the aspect in areas where the terrain is almost flat. A option min_slope can be used to specify the minimum slope for which aspect is computed. The aspect for all cells with slope < min_slope is set to null (no-data). The slope output raster map contains slope values, stated in degrees of inclination from the horizontal if format=degrees option (the default) is chosen, and in percent rise if format=percent option is chosen. Category and color table files are generated. Profile and tangential curvatures are the curvatures in the direction of steepest slope and in the direction of the contour tangent respectively. The curvatures are expressed as 1/metres, e.g. a curvature of 0.05 corresponds to a radius of curvature of 20m. Convex form values are positive and concave form values are negative. Example DEM Slope (degree) from example DEM Aspect (degree) from example DEM Tangential curvature (m-1) from example DEM Profile curvature (m-1) from example DEM For some applications, the user will wish to use a reclassified raster map of slope that groups slope values into ranges of slope. This can be done using r.reclass. An example of a useful reclassification is given below: category range category labels (in degrees) (in percent) 1 0- 1 0- 2% 2 2- 3 3- 5% 3 4- 5 6- 10% 4 6- 8 11- 15% 5 9- 11 16- 20% 6 12- 14 21- 25% 7 15- 90 26% and higher The following color table works well with the above reclassification. category red green blue 0 179 179 179 1 0 102 0 2 0 153 0 3 128 153 0 4 204 179 0 5 128 51 51 6 255 0 0 7 0 0 0
NOTES
To ensure that the raster elevation map is not inappropriately resampled, the settings for the current region are modified slightly (for the execution of the program only): the resolution is set to match the resolution of the elevation raster map and the edges of the region (i.e. the north, south, east and west) are shifted, if necessary, to line up along edges of the nearest cells in the elevation map. If the user really wants the raster elevation map resampled to the current region resolution, the -a flag should be specified. The current mask is ignored. The algorithm used to determine slope and aspect uses a 3x3 neighborhood around each cell in the raster elevation map. Thus, it is not possible to determine slope and aspect for the cells adjacent to the edges in the elevation map layer. These cells are assigned a "zero slope" value (category 0) in both the slope and aspect raster maps. Horn’s formula is used to find the first order derivatives in x and y directions. Only when using integer elevation models, the aspect is biased in 0, 45, 90, 180, 225, 270, 315, and 360 directions; i.e., the distribution of aspect categories is very uneven, with peaks at 0, 45,..., 360 categories. When working with floating point elevation models, no such aspect bias occurs.
EXAMPLES
Calculation of slope, aspect, profile and tangential curvature In this example a slope, aspect, profile and tangential curvature map are computed from an elevation raster map (North Carolina sample dataset): g.region raster=elevation r.slope.aspect elevation=elevation slope=slope aspect=aspect pcurvature=pcurv tcurvature=tcurv # set nice color tables for output raster maps r.colors -n map=slope color=sepia r.colors map=aspect color=aspectcolr r.colors map=pcurv color=curvature r.colors map=tcurv color=curvature Figure: Slope, aspect, profile and tangential curvature raster map (North Carolina dataset) Classification of major aspect directions in compass orientation In the following example (based on the North Carolina sample dataset) we first generate the standard aspect map (oriented CCW from East), then convert it to compass orientation, and finally classify four major aspect directions (N, E, S, W): g.region raster=elevation -p # generate aspect map with CCW orientation r.slope.aspect elevation=elevation aspect=myaspect # generate compass orientation and classify four major directions (N, E, S, W) r.mapcalc "aspect_4_directions = eval( \\ compass=(450 - myaspect ) % 360, \\ if(compass >=0. && compass < 45., 1) \\ + if(compass >=45. && compass < 135., 2) \\ + if(compass >=135. && compass < 225., 3) \\ + if(compass >=225. && compass < 315., 4) \\ + if(compass >=315., 1) \\ )" # assign text labels r.category aspect_4_directions separator=comma rules=- << EOF 1,north 2,east 3,south 4,west EOF # assign color table r.colors aspect_4_directions rules=- << EOF 1 253,184,99 2 178,171,210 3 230,97,1 4 94,60,153 EOF Aspect map classified to four major compass directions (zoomed subset shown)
REFERENCES
• Horn, B. K. P. (1981). Hill Shading and the Reflectance Map, Proceedings of the IEEE, 69(1):14-47. • Mitasova, H. (1985). Cartographic aspects of computer surface modeling. PhD thesis. Slovak Technical University , Bratislava • Hofierka, J., Mitasova, H., Neteler, M., 2009. Geomorphometry in GRASS GIS. In: Hengl, T. and Reuter, H.I. (Eds), Geomorphometry: Concepts, Software, Applications. Developments in Soil Science, vol. 33, Elsevier, 387-410 pp, http://www.geomorphometry.org
SEE ALSO
r.mapcalc, r.neighbors, r.reclass, r.rescale
AUTHORS
Michael Shapiro, U.S.Army Construction Engineering Research Laboratory Olga Waupotitsch, U.S.Army Construction Engineering Research Laboratory Last changed: $Date: 2015-08-12 11:45:29 +0200 (Wed, 12 Aug 2015) $
SOURCE CODE
Available at: r.slope.aspect source code (history) Main index | Raster index | Topics index | Keywords index | Graphical index | Full index © 2003-2018 GRASS Development Team, GRASS GIS 7.4.0 Reference Manual