Provided by: vowpal-wabbit_8.5.0.dfsg1-1_amd64 bug

NAME

       vw - Vowpal Wabbit -- fast online learning tool

DESCRIPTION

   VW options:
       --random_seed arg
              seed random number generator

       --ring_size arg
              size of example ring

   Update options:
       -l [ --learning_rate ] arg
              Set learning rate

       --power_t arg
              t power value

       --decay_learning_rate arg
              Set Decay factor for learning_rate between passes

       --initial_t arg
              initial t value

       --feature_mask arg
              Use  existing  regressor  to  determine  which  parameters  may  be updated.  If no
              initial_regressor given, also used for initial weights.

   Weight options:
       -i [ --initial_regressor ] arg
              Initial regressor(s)

       --initial_weight arg
              Set all weights to an initial value of arg.

       --random_weights arg
              make initial weights random

       --normal_weights arg
              make initial weights normal

       --truncated_normal_weights arg
              make initial weights truncated normal

       --sparse_weights
              Use a sparse datastructure for weights

       --input_feature_regularizer arg
              Per feature regularization input file

   Parallelization options:
       --span_server arg
              Location of server for setting up spanning tree

       --threads
              Enable multi-threading

       --unique_id arg (=0)
              unique id used for cluster parallel jobs

       --total arg (=1)
              total number of nodes used in cluster parallel job

       --node arg (=0)
              node number in cluster parallel job

   Diagnostic options:
       --version
              Version information

       -a [ --audit ]
              print weights of features

       -P [ --progress ] arg
              Progress update frequency. int: additive, float: multiplicative

       --quiet
              Don't output disgnostics and progress updates

       -h [ --help ]
              Look here: http://hunch.net/~vw/ and click on Tutorial.

   Feature options:
       --hash arg
              how to hash the features. Available options: strings, all

       --ignore arg
              ignore namespaces beginning with character <arg>

       --ignore_linear arg
              ignore namespaces beginning with character <arg> for linear terms only

       --keep arg
              keep namespaces beginning with character <arg>

       --redefine arg
              redefine namespaces beginning with characters of string S as  namespace  N.   <arg>
              shall  be  in form 'N:=S' where := is operator. Empty N or S are treated as default
              namespace. Use ':' as a wildcard in S.

       -b [ --bit_precision ] arg
              number of bits in the feature table

       --noconstant
              Don't add a constant feature

       -C [ --constant ] arg
              Set initial value of constant

       --ngram arg
              Generate N grams. To generate N grams for a single namespace 'foo', arg  should  be
              fN.

       --skips arg
              Generate  skips  in  N grams. This in conjunction with the ngram tag can be used to
              generate generalized n-skip-k-gram. To generate  n-skips  for  a  single  namespace
              'foo', arg should be fN.

       --feature_limit arg
              limit to N features. To apply to a single namespace 'foo', arg should be fN

       --affix arg
              generate prefixes/suffixes of features; argument '+2a,-3b,+1' means generate 2-char
              prefixes for namespace a, 3-char suffixes for b and 1  char  prefixes  for  default
              namespace

       --spelling arg
              compute spelling features for a give namespace (use '_' for default namespace)

       --dictionary arg
              read a dictionary for additional features (arg either 'x:file' or just 'file')

       --dictionary_path arg
              look in this directory for dictionaries; defaults to current directory or env{PATH}

       --interactions arg
              Create feature interactions of any level between namespaces.

       --permutations
              Use   permutations  instead  of  combinations  for  feature  interactions  of  same
              namespace.

       --leave_duplicate_interactions
              Don't remove interactions with duplicate combinations of namespaces.  For ex.  this
              is a duplicate: '-q ab -q ba' and a lot more in '-q ::'.

       -q [ --quadratic ] arg
              Create and use quadratic features

       --q: arg
              : corresponds to a wildcard for all printable characters

       --cubic arg
              Create and use cubic features

   Example options:
       -t [ --testonly ]
              Ignore label information and just test

       --holdout_off
              no holdout data in multiple passes

       --holdout_period arg
              holdout period for test only, default 10

       --holdout_after arg
              holdout after n training examples, default off (disables holdout_period)

       --early_terminate arg
              Specify  the  number  of passes tolerated when holdout loss doesn't decrease before
              early termination, default is 3

       --passes arg
              Number of Training Passes

       --initial_pass_length arg
              initial number of examples per pass

       --examples arg
              number of examples to parse

       --min_prediction arg
              Smallest prediction to output

       --max_prediction arg
              Largest prediction to output

       --sort_features
              turn this on to disregard order in which features have been defined. This will lead
              to smaller cache sizes

       --loss_function arg (=squared)
              Specify  the loss function to be used, uses squared by default. Currently available
              ones are squared, classic, hinge, logistic, quantile and poisson.

       --quantile_tau arg (=0.5)
              Parameter \tau associated with Quantile loss. Defaults to 0.5

       --l1 arg
              l_1 lambda

       --l2 arg
              l_2 lambda

       --no_bias_regularization arg
              no bias in regularization

       --named_labels arg
              use names for labels (multiclass, etc.)  rather than integers,  argument  specified
              all possible labels, comma-sep, eg "--named_labels Noun,Verb,Adj,Punc"

   Output model:
       -f [ --final_regressor ] arg
              Final regressor

       --readable_model arg
              Output human-readable final regressor with numeric features

       --invert_hash arg
              Output   human-readable   final  regressor  with  feature  names.   Computationally
              expensive.

       --save_resume
              save extra state so learning can be resumed later with new data

       --preserve_performance_counters
              reset performance counters when warmstarting

       --save_per_pass
              Save the model after every pass over data

       --output_feature_regularizer_binary arg
              Per feature regularization output file

       --output_feature_regularizer_text arg Per feature regularization output file,
              in text

       --id arg
              User supplied ID embedded into the final regressor

   Output options:
       -p [ --predictions ] arg
              File to output predictions to

       -r [ --raw_predictions ] arg
              File to output unnormalized predictions to

       Reduction options, use [option] --help for more info:

       --audit_regressor arg
              stores feature names and their regressor values. Same dataset must be used for both
              regressor training and this mode.

       --search arg
              Use learning to search, argument=maximum action id or 0 for LDF

       --replay_c arg
              use   experience   replay   at   a  specified  level  [b=classification/regression,
              m=multiclass, c=cost sensitive] with specified buffer size

       --explore_eval
              Evaluate explore_eval adf policies

       --cbify arg
              Convert multiclass on <k> classes into a contextual bandit problem

       --cb_explore_adf
              Online explore-exploit for  a  contextual  bandit  problem  with  multiline  action
              dependent features

       --cb_explore arg
              Online explore-exploit for a <k> action contextual bandit problem

       --multiworld_test arg
              Evaluate features as a policies

       --cb_adf
              Do Contextual Bandit learning with multiline action dependent features.

       --cb arg
              Use contextual bandit learning with <k> costs

       --csoaa_ldf arg
              Use  one-against-all  multiclass  learning  with label dependent features.  Specify
              singleline or multiline.

       --wap_ldf arg
              Use weighted all-pairs multiclass learning with label dependent features.

              Specify singleline or multiline.

       --interact arg
              Put weights on feature products from namespaces <n1> and <n2>

       --csoaa arg
              One-against-all multiclass with <k> costs

       --cs_active arg
              Cost-sensitive active learning with <k> costs

       --multilabel_oaa arg
              One-against-all multilabel with <k> labels

       --classweight arg
              importance weight multiplier for class

       --recall_tree arg
              Use online tree for multiclass

       --log_multi arg
              Use online tree for multiclass

       --ect arg
              Error correcting tournament with <k> labels

       --boosting arg
              Online boosting with <N> weak learners

       --oaa arg
              One-against-all multiclass with <k> labels

       --top arg
              top k recommendation

       --replay_m arg
              use  experience  replay  at   a   specified   level   [b=classification/regression,
              m=multiclass, c=cost sensitive] with specified buffer size

       --binary
              report loss as binary classification on -1,1

       --bootstrap arg
              k-way bootstrap by online importance resampling

       --link arg (=identity)
              Specify the link function: identity, logistic, glf1 or poisson

       --stage_poly
              use stagewise polynomial feature learning

       --lrqfa arg
              use low rank quadratic features with field aware weights

       --lrq arg
              use low rank quadratic features

       --autolink arg
              create link function with polynomial d

       --marginal arg
              substitute marginal label estimates for ids

       --new_mf arg
              rank for reduction-based matrix factorization

       --nn arg
              Sigmoidal feedforward network with <k> hidden units

   confidence options:
       --confidence_after_training
              Confidence after training

       --confidence
              Get confidence for binary predictions

       --active_cover
              enable active learning with cover

       --active
              enable active learning

       --replay_b arg
              use   experience   replay   at   a  specified  level  [b=classification/regression,
              m=multiclass, c=cost sensitive] with specified buffer size

       --baseline
              Learn an additive baseline (from constant features) and a  residual  separately  in
              regression.

       --OjaNewton
              Online Newton with Oja's Sketch

       --bfgs use bfgs optimization

       --conjugate_gradient
              use conjugate gradient based optimization

       --lda arg
              Run lda with <int> topics

       --noop do no learning

       --print
              print examples

       --rank arg
              rank for matrix factorization.

       --sendto arg
              send examples to <host>

       --svrg Streaming Stochastic Variance Reduced Gradient

       --ftrl FTRL: Follow the Proximal Regularized Leader

       --pistol
              FTRL: Parameter-free Stochastic Learning

       --ksvm kernel svm

   Gradient Descent options:
       --sgd  use regular stochastic gradient descent update.

       --adaptive
              use adaptive, individual learning rates.

       --adax use adaptive learning rates with x^2 instead of g^2x^2

       --invariant
              use safe/importance aware updates.

       --normalized
              use per feature normalized updates

       --sparse_l2 arg (=0)
              use per feature normalized updates

   Input options:
       -d [ --data ] arg
              Example Set

       --daemon
              persistent daemon mode on port 26542

       --foreground
              in persistent daemon mode, do not run in the background

       --port arg
              port to listen on; use 0 to pick unused port

       --num_children arg
              number of children for persistent daemon mode

       --pid_file arg
              Write pid file in persistent daemon mode

       --port_file arg
              Write port used in persistent daemon mode

       -c [ --cache ]
              Use a cache.  The default is <data>.cache

       --cache_file arg
              The location(s) of cache_file.

       --json Enable JSON parsing.

       --dsjson
              Enable Decision Service JSON parsing.

       -k [ --kill_cache ]
              do not reuse existing cache: create a new one always

       --compressed
              use  gzip  format  whenever possible. If a cache file is being created, this option
              creates a compressed cache file.  A mixture of raw-text  &  compressed  inputs  are
              supported with autodetection.

       --no_stdin
              do not default to reading from stdin