Provided by: vowpal-wabbit_8.5.0.dfsg1-1_amd64
NAME
vw - Vowpal Wabbit -- fast online learning tool
DESCRIPTION
VW options: --random_seed arg seed random number generator --ring_size arg size of example ring Update options: -l [ --learning_rate ] arg Set learning rate --power_t arg t power value --decay_learning_rate arg Set Decay factor for learning_rate between passes --initial_t arg initial t value --feature_mask arg Use existing regressor to determine which parameters may be updated. If no initial_regressor given, also used for initial weights. Weight options: -i [ --initial_regressor ] arg Initial regressor(s) --initial_weight arg Set all weights to an initial value of arg. --random_weights arg make initial weights random --normal_weights arg make initial weights normal --truncated_normal_weights arg make initial weights truncated normal --sparse_weights Use a sparse datastructure for weights --input_feature_regularizer arg Per feature regularization input file Parallelization options: --span_server arg Location of server for setting up spanning tree --threads Enable multi-threading --unique_id arg (=0) unique id used for cluster parallel jobs --total arg (=1) total number of nodes used in cluster parallel job --node arg (=0) node number in cluster parallel job Diagnostic options: --version Version information -a [ --audit ] print weights of features -P [ --progress ] arg Progress update frequency. int: additive, float: multiplicative --quiet Don't output disgnostics and progress updates -h [ --help ] Look here: http://hunch.net/~vw/ and click on Tutorial. Feature options: --hash arg how to hash the features. Available options: strings, all --ignore arg ignore namespaces beginning with character <arg> --ignore_linear arg ignore namespaces beginning with character <arg> for linear terms only --keep arg keep namespaces beginning with character <arg> --redefine arg redefine namespaces beginning with characters of string S as namespace N. <arg> shall be in form 'N:=S' where := is operator. Empty N or S are treated as default namespace. Use ':' as a wildcard in S. -b [ --bit_precision ] arg number of bits in the feature table --noconstant Don't add a constant feature -C [ --constant ] arg Set initial value of constant --ngram arg Generate N grams. To generate N grams for a single namespace 'foo', arg should be fN. --skips arg Generate skips in N grams. This in conjunction with the ngram tag can be used to generate generalized n-skip-k-gram. To generate n-skips for a single namespace 'foo', arg should be fN. --feature_limit arg limit to N features. To apply to a single namespace 'foo', arg should be fN --affix arg generate prefixes/suffixes of features; argument '+2a,-3b,+1' means generate 2-char prefixes for namespace a, 3-char suffixes for b and 1 char prefixes for default namespace --spelling arg compute spelling features for a give namespace (use '_' for default namespace) --dictionary arg read a dictionary for additional features (arg either 'x:file' or just 'file') --dictionary_path arg look in this directory for dictionaries; defaults to current directory or env{PATH} --interactions arg Create feature interactions of any level between namespaces. --permutations Use permutations instead of combinations for feature interactions of same namespace. --leave_duplicate_interactions Don't remove interactions with duplicate combinations of namespaces. For ex. this is a duplicate: '-q ab -q ba' and a lot more in '-q ::'. -q [ --quadratic ] arg Create and use quadratic features --q: arg : corresponds to a wildcard for all printable characters --cubic arg Create and use cubic features Example options: -t [ --testonly ] Ignore label information and just test --holdout_off no holdout data in multiple passes --holdout_period arg holdout period for test only, default 10 --holdout_after arg holdout after n training examples, default off (disables holdout_period) --early_terminate arg Specify the number of passes tolerated when holdout loss doesn't decrease before early termination, default is 3 --passes arg Number of Training Passes --initial_pass_length arg initial number of examples per pass --examples arg number of examples to parse --min_prediction arg Smallest prediction to output --max_prediction arg Largest prediction to output --sort_features turn this on to disregard order in which features have been defined. This will lead to smaller cache sizes --loss_function arg (=squared) Specify the loss function to be used, uses squared by default. Currently available ones are squared, classic, hinge, logistic, quantile and poisson. --quantile_tau arg (=0.5) Parameter \tau associated with Quantile loss. Defaults to 0.5 --l1 arg l_1 lambda --l2 arg l_2 lambda --no_bias_regularization arg no bias in regularization --named_labels arg use names for labels (multiclass, etc.) rather than integers, argument specified all possible labels, comma-sep, eg "--named_labels Noun,Verb,Adj,Punc" Output model: -f [ --final_regressor ] arg Final regressor --readable_model arg Output human-readable final regressor with numeric features --invert_hash arg Output human-readable final regressor with feature names. Computationally expensive. --save_resume save extra state so learning can be resumed later with new data --preserve_performance_counters reset performance counters when warmstarting --save_per_pass Save the model after every pass over data --output_feature_regularizer_binary arg Per feature regularization output file --output_feature_regularizer_text arg Per feature regularization output file, in text --id arg User supplied ID embedded into the final regressor Output options: -p [ --predictions ] arg File to output predictions to -r [ --raw_predictions ] arg File to output unnormalized predictions to Reduction options, use [option] --help for more info: --audit_regressor arg stores feature names and their regressor values. Same dataset must be used for both regressor training and this mode. --search arg Use learning to search, argument=maximum action id or 0 for LDF --replay_c arg use experience replay at a specified level [b=classification/regression, m=multiclass, c=cost sensitive] with specified buffer size --explore_eval Evaluate explore_eval adf policies --cbify arg Convert multiclass on <k> classes into a contextual bandit problem --cb_explore_adf Online explore-exploit for a contextual bandit problem with multiline action dependent features --cb_explore arg Online explore-exploit for a <k> action contextual bandit problem --multiworld_test arg Evaluate features as a policies --cb_adf Do Contextual Bandit learning with multiline action dependent features. --cb arg Use contextual bandit learning with <k> costs --csoaa_ldf arg Use one-against-all multiclass learning with label dependent features. Specify singleline or multiline. --wap_ldf arg Use weighted all-pairs multiclass learning with label dependent features. Specify singleline or multiline. --interact arg Put weights on feature products from namespaces <n1> and <n2> --csoaa arg One-against-all multiclass with <k> costs --cs_active arg Cost-sensitive active learning with <k> costs --multilabel_oaa arg One-against-all multilabel with <k> labels --classweight arg importance weight multiplier for class --recall_tree arg Use online tree for multiclass --log_multi arg Use online tree for multiclass --ect arg Error correcting tournament with <k> labels --boosting arg Online boosting with <N> weak learners --oaa arg One-against-all multiclass with <k> labels --top arg top k recommendation --replay_m arg use experience replay at a specified level [b=classification/regression, m=multiclass, c=cost sensitive] with specified buffer size --binary report loss as binary classification on -1,1 --bootstrap arg k-way bootstrap by online importance resampling --link arg (=identity) Specify the link function: identity, logistic, glf1 or poisson --stage_poly use stagewise polynomial feature learning --lrqfa arg use low rank quadratic features with field aware weights --lrq arg use low rank quadratic features --autolink arg create link function with polynomial d --marginal arg substitute marginal label estimates for ids --new_mf arg rank for reduction-based matrix factorization --nn arg Sigmoidal feedforward network with <k> hidden units confidence options: --confidence_after_training Confidence after training --confidence Get confidence for binary predictions --active_cover enable active learning with cover --active enable active learning --replay_b arg use experience replay at a specified level [b=classification/regression, m=multiclass, c=cost sensitive] with specified buffer size --baseline Learn an additive baseline (from constant features) and a residual separately in regression. --OjaNewton Online Newton with Oja's Sketch --bfgs use bfgs optimization --conjugate_gradient use conjugate gradient based optimization --lda arg Run lda with <int> topics --noop do no learning --print print examples --rank arg rank for matrix factorization. --sendto arg send examples to <host> --svrg Streaming Stochastic Variance Reduced Gradient --ftrl FTRL: Follow the Proximal Regularized Leader --pistol FTRL: Parameter-free Stochastic Learning --ksvm kernel svm Gradient Descent options: --sgd use regular stochastic gradient descent update. --adaptive use adaptive, individual learning rates. --adax use adaptive learning rates with x^2 instead of g^2x^2 --invariant use safe/importance aware updates. --normalized use per feature normalized updates --sparse_l2 arg (=0) use per feature normalized updates Input options: -d [ --data ] arg Example Set --daemon persistent daemon mode on port 26542 --foreground in persistent daemon mode, do not run in the background --port arg port to listen on; use 0 to pick unused port --num_children arg number of children for persistent daemon mode --pid_file arg Write pid file in persistent daemon mode --port_file arg Write port used in persistent daemon mode -c [ --cache ] Use a cache. The default is <data>.cache --cache_file arg The location(s) of cache_file. --json Enable JSON parsing. --dsjson Enable Decision Service JSON parsing. -k [ --kill_cache ] do not reuse existing cache: create a new one always --compressed use gzip format whenever possible. If a cache file is being created, this option creates a compressed cache file. A mixture of raw-text & compressed inputs are supported with autodetection. --no_stdin do not default to reading from stdin