Provided by: librheolef-dev_6.7-6_amd64
NAME
space -- piecewise polynomial finite element space
DESCRIPTION
The space class contains some numbering for unknowns and blocked degrees of freedoms related to a given mesh and polynomial approximation.
SYNOPSIS
space Q (omega, "P1"); space V (omega, "P2", "vector"); space T (omega, "P1d", "tensor");
PRODUCT
space X = T*V*Q; space Q2 = pow(Q,2);
IMPLEMENTATION
template <class T> class space_basic<T,sequential> : public smart_pointer<space_rep<T,sequential> > { public: // typedefs: typedef space_rep<T,sequential> rep; typedef smart_pointer<rep> base; typedef typename rep::size_type size_type; typedef typename rep::valued_type valued_type; // allocators: space_basic (const geo_basic<T,sequential>& omega = (geo_basic<T,sequential>()), std::string approx = "", std::string valued = "scalar"); space_basic (const space_mult_list<T,sequential>& expr); space_basic (const space_constitution<T,sequential>& constit); // accessors: void block (std::string dom_name); void unblock(std::string dom_name); void block (const domain_indirect_basic<sequential>& dom); void unblock(const domain_indirect_basic<sequential>& dom); const distributor& ownership() const; const communicator& comm() const; size_type ndof() const; size_type dis_ndof() const; const geo_basic<T,sequential>& get_geo() const; const numbering<T,sequential>& get_numbering() const; size_type size() const; valued_type valued_tag() const; const std::string& valued() const; space_component<T,sequential> operator[] (size_type i_comp); space_component_const<T,sequential> operator[] (size_type i_comp) const; const space_constitution<T,sequential>& get_constitution() const; size_type degree() const; std::string get_approx() const; std::string stamp() const; void dis_idof (const geo_element& K, std::vector<size_type>& dis_idof) const; const distributor& iu_ownership() const; const distributor& ib_ownership() const; bool is_blocked (size_type idof) const; size_type iub (size_type idof) const; bool dis_is_blocked (size_type dis_idof) const; size_type dis_iub (size_type dis_idof) const; const distributor& ios_ownership() const; size_type idof2ios_dis_idof (size_type idof) const; size_type ios_idof2dis_idof (size_type ios_idof) const; const point_basic<T>& xdof (size_type idof) const; const disarray<point_basic<T>,sequential>& get_xdofs() const; template <class Function> T momentum (const Function& f, size_type idof) const; template <class Function> point_basic<T> vector_momentum (const Function& f, size_type idof) const; template <class Function> tensor_basic<T> tensor_momentum (const Function& f, size_type idof) const; disarray<size_type, sequential> build_indirect_array ( const space_basic<T,sequential>& Wh, const std::string& dom_name) const; disarray<size_type, sequential> build_indirect_array ( const space_basic<T,sequential>& Wh, const geo_basic<T,sequential>& bgd_gamma) const; const std::set<size_type>& ext_iu_set() const { return base::data().ext_iu_set(); } const std::set<size_type>& ext_ib_set() const { return base::data().ext_ib_set(); } // comparator: bool operator== (const space_basic<T,sequential>& V2) const { return base::data().operator==(V2.data()); } bool operator!= (const space_basic<T,sequential>& V2) const { return ! operator== (V2); } friend bool are_compatible (const space_basic<T,sequential>& V1, const space_basic<T,sequential>& V2) { return are_compatible (V1.data(), V2.data()); } };
IMPLEMENTATION
template <class T> class space_basic<T,distributed> : public smart_pointer<space_rep<T,distributed> > { public: // typedefs: typedef space_rep<T,distributed> rep; typedef smart_pointer<rep> base; typedef typename rep::size_type size_type; typedef typename rep::valued_type valued_type; // allocators: space_basic (const geo_basic<T,distributed>& omega = (geo_basic<T,distributed>()), std::string approx = "", std::string valued = "scalar"); space_basic (const space_mult_list<T,distributed>&); space_basic (const space_constitution<T,distributed>& constit); // accessors: void block (std::string dom_name); void unblock(std::string dom_name); void block (const domain_indirect_basic<distributed>& dom); void unblock(const domain_indirect_basic<distributed>& dom); const distributor& ownership() const; const communicator& comm() const; size_type ndof() const; size_type dis_ndof() const; const geo_basic<T,distributed>& get_geo() const; const numbering<T,distributed>& get_numbering() const; size_type size() const; valued_type valued_tag() const; const std::string& valued() const; space_component<T,distributed> operator[] (size_type i_comp); space_component_const<T,distributed> operator[] (size_type i_comp) const; const space_constitution<T,distributed>& get_constitution() const; size_type degree() const; std::string get_approx() const; std::string stamp() const; void dis_idof (const geo_element& K, std::vector<size_type>& dis_idof) const; const distributor& iu_ownership() const; const distributor& ib_ownership() const; bool is_blocked (size_type idof) const; size_type iub (size_type idof) const; bool dis_is_blocked (size_type dis_idof) const; size_type dis_iub (size_type dis_idof) const; const distributor& ios_ownership() const; size_type idof2ios_dis_idof (size_type idof) const; size_type ios_idof2dis_idof (size_type ios_idof) const; const point_basic<T>& xdof (size_type idof) const; const disarray<point_basic<T>,distributed>& get_xdofs() const; template <class Function> T momentum (const Function& f, size_type idof) const; template <class Function> point_basic<T> vector_momentum (const Function& f, size_type idof) const; template <class Function> tensor_basic<T> tensor_momentum (const Function& f, size_type idof) const; disarray<size_type, distributed> build_indirect_array ( const space_basic<T,distributed>& Wh, const std::string& dom_name) const; disarray<size_type, distributed> build_indirect_array ( const space_basic<T,distributed>& Wh, const geo_basic<T,distributed>& bgd_gamma) const; const std::set<size_type>& ext_iu_set() const { return base::data().ext_iu_set(); } const std::set<size_type>& ext_ib_set() const { return base::data().ext_ib_set(); } // comparator: bool operator== (const space_basic<T,distributed>& V2) const { return base::data().operator==(V2.data()); } bool operator!= (const space_basic<T,distributed>& V2) const { return ! operator== (V2); } friend bool are_compatible (const space_basic<T,distributed>& V1, const space_basic<T,distributed>& V2) { return are_compatible (V1.data(), V2.data()); } };