Provided by: librheolef-dev_6.7-6_amd64 bug

NAME

       tensor - a N*N tensor, N=1,2,3

SYNOPSYS

       The  tensor  class  defines  a 3*3 tensor, as the value of a tensorial valued field. Basic
       algebra with scalars, vectors of R^3  (i.e.  the  point  class)  and  tensor  objects  are
       supported.

IMPLEMENTATION

       template<class T>
       class tensor_basic {
           public:

               typedef size_t size_type;
               typedef T      element_type;
               typedef T      float_type;

       // allocators:

               tensor_basic (const T& init_val = 0);
               tensor_basic (T x[3][3]);
               tensor_basic (const tensor_basic<T>& a);
               static tensor_basic<T> eye (size_type d = 3);

       #ifdef _RHEOLEF_HAVE_STD_INITIALIZER_LIST
               tensor_basic (const std::initializer_list<std::initializer_list<T> >& il);
       #endif // _RHEOLEF_HAVE_STD_INITIALIZER_LIST

       // affectation:

               tensor_basic<T>& operator= (const tensor_basic<T>& a);
               tensor_basic<T>& operator= (const T& val);

       // modifiers:

               void fill (const T& init_val);
               void reset ();
               void set_row    (const point_basic<T>& r, size_t i, size_t d = 3);
               void set_column (const point_basic<T>& c, size_t j, size_t d = 3);

       // accessors:

               T& operator()(size_type i, size_type j);
               const T& operator()(size_type i, size_type j) const;
               point_basic<T>  row(size_type i) const;
               point_basic<T>  col(size_type i) const;
               size_t nrow() const; // = 3, for template matrix compatibility
               size_t ncol() const;

       // inputs/outputs:

               std::ostream& put (std::ostream& s, size_type d = 3) const;
               std::istream& get (std::istream&);

       // algebra:

               bool operator== (const tensor_basic<T>&) const;
               bool operator!= (const tensor_basic<T>& b) const { return ! operator== (b); }
               const tensor_basic<T>& operator+ () const { return *this; }
               tensor_basic<T> operator- () const;
               tensor_basic<T> operator+ (const tensor_basic<T>& b) const;
               tensor_basic<T> operator- (const tensor_basic<T>& b) const;
               tensor_basic<T> operator* (const tensor_basic<T>& b) const;
               tensor_basic<T> operator* (const T& k) const;
               tensor_basic<T> operator/ (const T& k) const;
               point_basic<T>  operator* (const point_basic<T>&) const;
               point_basic<T>  trans_mult (const point_basic<T>& x) const;

       // metric and geometric transformations:

               T determinant (size_type d = 3) const;

       // spectral:
               // eigenvalues & eigenvectors:
               // a = q*d*q^T
               // a may be symmetric
               // where q=(q1,q2,q3) are eigenvectors in rows (othonormal matrix)
               // and   d=(d1,d2,d3) are eigenvalues, sorted in decreasing order d1 >= d2 >= d3
               // return d
               point_basic<T> eig (tensor_basic<T>& q, size_t dim = 3) const;
               point_basic<T> eig (size_t dim = 3) const;

               // singular value decomposition:
               // a = u*s*v^T
               // a can be unsymmetric
               // where u=(u1,u2,u3) are left pseudo-eigenvectors in rows (othonormal matrix)
               //       v=(v1,v2,v3) are right pseudo-eigenvectors in rows (othonormal matrix)
               // and   s=(s1,s2,s3) are eigenvalues, sorted in decreasing order s1 >= s2 >= s3
               // return s
               point_basic<T> svd (tensor_basic<T>& u, tensor_basic<T>& v, size_t dim = 3) const;

       // data:
               T _x[3][3];
       };
       typedef tensor_basic<Float> tensor;

       // algebra (cont.)

       template <class U>
       point_basic<U>  operator* (const point_basic<U>& yt, const tensor_basic<U>& a);
       template <class U>
       tensor_basic<U> trans (const tensor_basic<U>& a, size_t d = 3);
       template <class U>
       void prod (const tensor_basic<U>& a, const tensor_basic<U>& b, tensor_basic<U>& result,
               size_t di=3, size_t dj=3, size_t dk=3);
       // tr(a) = a00 + a11 + a22
       template <class U>
       U tr (const tensor_basic<U>& a, size_t d=3);
       template <class U>
       U ddot (const tensor_basic<U>&, const tensor_basic<U>&);
       // a = u otimes v <==> aij = ui*vj
       template <class U>
       tensor_basic<U> otimes (const point_basic<U>& u, const point_basic<U>& v, size_t d=3);
       template <class U>
       tensor_basic<U> inv  (const tensor_basic<U>& a, size_t d = 3);
       template <class U>
       tensor_basic<U> diag (const point_basic<U>& d);
       template <class U>
       point_basic<U> diag (const tensor_basic<U>& a);
       template <class U>
       U determinant (const tensor_basic<U>& A, size_t d = 3);
       template <class U>
       bool invert_3x3 (const tensor_basic<U>& A, tensor_basic<U>& result);

       // nonlinear algebra:
       template<class T>
       tensor_basic<T> exp (const tensor_basic<T>& a, size_t d = 3);

       // inputs/outputs:
       template<class T>
       inline
       std::istream& operator>> (std::istream& in, tensor_basic<T>& a)
       {
           return a.get (in);
       }
       template<class T>
       inline
       std::ostream& operator<< (std::ostream& out, const tensor_basic<T>& a)
       {
           return a.put (out);
       }
       // t += a otimes b
       template<class T>
       void cumul_otimes (tensor_basic<T>& t, const point_basic<T>& a, const point_basic<T>& b, size_t na = 3);
       template<class T>
       void cumul_otimes (tensor_basic<T>& t, const point_basic<T>& a, const point_basic<T>& b, size_t na, size_t nb);