bionic (3) do_tracepoint.3.gz

Provided by: liblttng-ust-dev_2.10.1-1_amd64 bug

NAME

       lttng-ust - LTTng user space tracing

SYNOPSIS

       #include <lttng/tracepoint.h>

       #define TRACEPOINT_ENUM(prov_name, enum_name, mappings)
       #define TRACEPOINT_EVENT(prov_name, t_name, args, fields)
       #define TRACEPOINT_EVENT_CLASS(prov_name, class_name, args, fields)
       #define TRACEPOINT_EVENT_INSTANCE(prov_name, class_name, t_name, args)
       #define TRACEPOINT_LOGLEVEL(prov_name, t_name, level)
       #define ctf_array(int_type, field_name, expr, count)
       #define ctf_array_nowrite(int_type, field_name, expr, count)
       #define ctf_array_hex(int_type, field_name, expr, count)
       #define ctf_array_nowrite_hex(int_type, field_name, expr, count)
       #define ctf_array_network(int_type, field_name, expr, count)
       #define ctf_array_network_nowrite(int_type, field_name, expr, count)
       #define ctf_array_network_hex(int_type, field_name, expr, count)
       #define ctf_array_network_nowrite_hex(int_type, field_name, expr, count)
       #define ctf_array_text(char, field_name, expr, count)
       #define ctf_array_text_nowrite(char, field_name, expr, count)
       #define ctf_enum(prov_name, enum_name, int_type, field_name, expr)
       #define ctf_enum_nowrite(prov_name, enum_name, int_type, field_name,
                                expr)
       #define ctf_enum_value(label, value)
       #define ctf_enum_range(label, start, end)
       #define ctf_float(float_type, field_name, expr)
       #define ctf_float_nowrite(float_type, field_name, expr)
       #define ctf_integer(int_type, field_name, expr)
       #define ctf_integer_hex(int_type, field_name, expr)
       #define ctf_integer_network(int_type, field_name, expr)
       #define ctf_integer_network_hex(int_type, field_name, expr)
       #define ctf_integer_nowrite(int_type, field_name, expr)
       #define ctf_sequence(int_type, field_name, expr, len_type, len_expr)
       #define ctf_sequence_nowrite(int_type, field_name, expr, len_type,
                                    len_expr)
       #define ctf_sequence_hex(int_type, field_name, expr, len_type,
                                len_expr)
       #define ctf_sequence_nowrite_hex(int_type, field_name, expr, len_type,
                                        len_expr)
       #define ctf_sequence_network(int_type, field_name, expr, len_type,
                                    len_expr)
       #define ctf_sequence_network_nowrite(int_type, field_name, expr,
                                            len_type, len_expr)
       #define ctf_sequence_network_hex(int_type, field_name, expr, len_type,
                                        len_expr)
       #define ctf_sequence_network_nowrite_hex(int_type, field_name, expr,
                                                len_type, len_expr)
       #define ctf_sequence_text(char, field_name, expr, len_type, len_expr)
       #define ctf_sequence_text_nowrite(char, field_name, expr, len_type,
                                         len_expr)
       #define ctf_string(field_name, expr)
       #define ctf_string_nowrite(field_name, expr)
       #define do_tracepoint(prov_name, t_name, ...)
       #define tracepoint(prov_name, t_name, ...)
       #define tracepoint_enabled(prov_name, t_name)

       Link with -llttng-ust -ldl, following this man page.

DESCRIPTION

       The Linux Trace Toolkit: next generation <http://lttng.org/> is an open source software package used for
       correlated tracing of the Linux kernel, user applications, and user libraries.

       LTTng-UST is the user space tracing component of the LTTng project. It is a port to user space of the
       low-overhead tracing capabilities of the LTTng Linux kernel tracer. The liblttng-ust library is used to
       trace user applications and libraries.

           Note
           This man page is about the liblttng-ust library. The LTTng-UST project also provides Java and Python
           packages to trace applications written in those languages. How to instrument and trace Java and
           Python applications is documented in the online LTTng documentation <http://lttng.org/docs/>.

       There are three ways to use liblttng-ust:

       •   Using the tracef(3) API, which is similar to printf(3).

       •   Using the tracelog(3) API, which is tracef(3) with a log level parameter.

       •   Defining your own tracepoints. See the Creating a tracepoint provider section below.

   Creating a tracepoint provider
       Creating a tracepoint provider is the first step of using liblttng-ust. The next steps are:

       •   Instrumenting your application with tracepoint() calls

       •   Building your application with LTTng-UST support, either statically or dynamically.

       A tracepoint provider is a compiled object containing the event probes corresponding to your custom
       tracepoint definitions. A tracepoint provider contains the code to get the size of an event and to
       serialize it, amongst other things.

       To create a tracepoint provider, start with the following tracepoint provider header template:

           #undef TRACEPOINT_PROVIDER
           #define TRACEPOINT_PROVIDER my_provider

           #undef TRACEPOINT_INCLUDE
           #define TRACEPOINT_INCLUDE "./tp.h"

           #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
           #define _TP_H

           #include <lttng/tracepoint.h>

           /*
            * TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
            * TRACEPOINT_EVENT_INSTANCE(), TRACEPOINT_LOGLEVEL(),
            * and `TRACEPOINT_ENUM()` are used here.
            */

           #endif /* _TP_H */

           #include <lttng/tracepoint-event.h>

       In this template, the tracepoint provider is named my_provider (TRACEPOINT_PROVIDER definition). The file
       needs to bear the name of the TRACEPOINT_INCLUDE definition (tp.h in this case). Between #include
       <lttng/tracepoint.h> and #endif go the invocations of the TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
       TRACEPOINT_EVENT_INSTANCE(), TRACEPOINT_LOGLEVEL(), and TRACEPOINT_ENUM() macros.

           Note
           You can avoid writing the prologue and epilogue boilerplate in the template file above by using the
           lttng-gen-tp(1) tool shipped with LTTng-UST.

       The tracepoint provider header file needs to be included in a source file which looks like this:

           #define TRACEPOINT_CREATE_PROBES

           #include "tp.h"

       Together, those two files (let’s call them tp.h and tp.c) form the tracepoint provider sources, ready to
       be compiled.

       You can create multiple tracepoint providers to be used in a single application, but each one must have
       its own header file.

       The TRACEPOINT_EVENT() usage section below shows how to use the TRACEPOINT_EVENT() macro to define the
       actual tracepoints in the tracepoint provider header file.

       See the EXAMPLE section below for a complete example.

   TRACEPOINT_EVENT() usage
       The TRACEPOINT_EVENT() macro is used in a template provider header file (see the Creating a tracepoint
       provider section above) to define LTTng-UST tracepoints.

       The TRACEPOINT_EVENT() usage template is as follows:

           TRACEPOINT_EVENT(
               /* Tracepoint provider name */
               my_provider,

               /* Tracepoint/event name */
               my_tracepoint,

               /* List of tracepoint arguments (input) */
               TP_ARGS(
                   ...
               ),

               /* List of fields of eventual event (output) */
               TP_FIELDS(
                   ...
               )
           )

       The TP_ARGS() macro contains the input arguments of the tracepoint. Those arguments can be used in the
       argument expressions of the output fields defined in TP_FIELDS().

       The format of the TP_ARGS() parameters is: C type, then argument name; repeat as needed, up to ten times.
       For example:

           TP_ARGS(
               int, my_int,
               const char *, my_string,
               FILE *, my_file,
               double, my_float,
               struct my_data *, my_data
           )

       The TP_FIELDS() macro contains the output fields of the tracepoint, that is, the actual data that can be
       recorded in the payload of an event emitted by this tracepoint.

       The TP_FIELDS() macro contains a list of ctf_*() macros NOT separated by commas. The available macros are
       documented in the Available ctf_*() field type macros section below.

   Available ctf_*() field type macros
       This section documents the available ctf_*() macros that can be inserted in the TP_FIELDS() macro of the
       TRACEPOINT_EVENT() macro.

       Standard integer, displayed in base 10:

           ctf_integer(int_type, field_name, expr)
           ctf_integer_nowrite(int_type, field_name, expr)

       Standard integer, displayed in base 16:

           ctf_integer_hex(int_type, field_name, expr)

       Integer in network byte order (big endian), displayed in base 10:

           ctf_integer_network(int_type, field_name, expr)

       Integer in network byte order, displayed in base 16:

           ctf_integer_network_hex(int_type, field_name, expr)

       Floating point number:

           ctf_float(float_type, field_name, expr)
           ctf_float_nowrite(float_type, field_name, expr)

       Null-terminated string:

           ctf_string(field_name, expr)
           ctf_string_nowrite(field_name, expr)

       Statically-sized array of integers (_hex versions displayed in hexadecimal, _network versions in network
       byte order):

           ctf_array(int_type, field_name, expr, count)
           ctf_array_nowrite(int_type, field_name, expr, count)
           ctf_array_hex(int_type, field_name, expr, count)
           ctf_array_nowrite_hex(int_type, field_name, expr, count)
           ctf_array_network(int_type, field_name, expr, count)
           ctf_array_network_nowrite(int_type, field_name, expr, count)
           ctf_array_network_hex(int_type, field_name, expr, count)
           ctf_array_network_nowrite_hex(int_type, field_name, expr, count)

       Statically-sized array, printed as text; no need to be null-terminated:

           ctf_array_text(char, field_name, expr, count)
           ctf_array_text_nowrite(char, field_name, expr, count)

       Dynamically-sized array of integers (_hex versions displayed in hexadecimal, _network versions in network
       byte order):

           ctf_sequence(int_type, field_name, expr, len_type, len_expr)
           ctf_sequence_nowrite(int_type, field_name, expr, len_type, len_expr)
           ctf_sequence_hex(int_type, field_name, expr, len_type, len_expr)
           ctf_sequence_nowrite_hex(int_type, field_name, expr, len_type,
                                    len_expr)
           ctf_sequence_network(int_type, field_name, expr, len_type, len_expr)
           ctf_sequence_network_nowrite(int_type, field_name, expr, len_type,
                                        len_expr)
           ctf_sequence_network_hex(int_type, field_name, expr, len_type,
                                    len_expr)
           ctf_sequence_network_nowrite_hex(int_type, field_name, expr,
                                            len_type, len_expr)

       Dynamically-sized array, displayed as text; no need to be null-terminated:

           ctf_sequence_text(char, field_name, expr, len_type, len_expr)
           ctf_sequence_text_nowrite(char, field_name, expr, len_type, len_expr)

       Enumeration. The enumeration field must be defined before using this macro with the TRACEPOINT_ENUM()
       macro. See the TRACEPOINT_ENUM() usage section for more information.

           ctf_enum(prov_name, enum_name, int_type, field_name, expr)
           ctf_enum_nowrite(prov_name, enum_name, int_type, field_name, expr)

       The parameters are:

       count
           Number of elements in array/sequence. This must be known at compile time.

       enum_name
           Name of an enumeration field previously defined with the TRACEPOINT_ENUM() macro. See the
           TRACEPOINT_ENUM() usage section for more information.

       expr
           C expression resulting in the field’s value. This expression can use one or more arguments passed to
           the tracepoint. The arguments of a given tracepoint are defined in the TP_ARGS() macro (see the
           Creating a tracepoint provider section above).

       field_name
           Event field name (C identifier syntax, NOT a literal string).

       float_type
           Float C type (float or double). The size of this type determines the size of the floating point
           number field.

       int_type
           Integer C type. The size of this type determines the size of the integer/enumeration field.

       len_expr
           C expression resulting in the sequence’s length. This expression can use one or more arguments passed
           to the tracepoint.

       len_type
           Unsigned integer C type of sequence’s length.

       prov_name
           Tracepoint provider name. This must be the same as the tracepoint provider name used in a previous
           field definition.

       The _nowrite versions omit themselves from the recorded trace, but are otherwise identical. Their primary
       purpose is to make some of the event context available to the event filters without having to commit the
       data to sub-buffers. See lttng-enable-event(1) to learn more about dynamic event filtering.

       See the EXAMPLE section below for a complete example.

   TRACEPOINT_ENUM() usage
       An enumeration field is a list of mappings between an integers, or a range of integers, and strings
       (sometimes called labels or enumerators). Enumeration fields can be used to have a more compact trace
       when the possible values for a field are limited.

       An enumeration field is defined with the TRACEPOINT_ENUM() macro:

           TRACEPOINT_ENUM(
               /* Tracepoint provider name */
               my_provider,

               /* Enumeration name (unique in the whole tracepoint provider) */
               my_enum,

               /* Enumeration mappings */
               TP_ENUM_VALUES(
                   ...
               )
           )

       TP_ENUM_VALUES() contains a list of enumeration mappings, NOT separated by commas. Two macros can be used
       in the TP_ENUM_VALUES(): ctf_enum_value() and ctf_enum_range().

       ctf_enum_value() is a single value mapping:

           ctf_enum_value(label, value)

       This macro maps the given label string to the value value.

       ctf_enum_range() is a range mapping:

           ctf_enum_range(label, start, end)

       This macro maps the given label string to the range of integers from start to end, inclusively. Range
       mappings may overlap, but the behaviour is implementation-defined: each trace reader handles overlapping
       ranges as it wishes.

       See the EXAMPLE section below for a complete example.

   TRACEPOINT_EVENT_CLASS() usage
       A tracepoint class is a class of tracepoints sharing the same field types and names. A tracepoint
       instance is one instance of such a declared tracepoint class, with its own event name.

       LTTng-UST creates one event serialization function per tracepoint class. Using TRACEPOINT_EVENT() creates
       one tracepoint class per tracepoint definition, whereas using TRACEPOINT_EVENT_CLASS() and
       TRACEPOINT_EVENT_INSTANCE() creates one tracepoint class, and one or more tracepoint instances of this
       class. In other words, many tracepoints can reuse the same serialization code. Reusing the same code,
       when possible, can reduce cache pollution, thus improve performance.

       The TRACEPOINT_EVENT_CLASS() macro accepts the same parameters as the TRACEPOINT_EVENT() macro, except
       that instead of an event name, its second parameter is the tracepoint class name:

           TRACEPOINT_EVENT_CLASS(
               /* Tracepoint provider name */
               my_provider,

               /* Tracepoint class name */
               my_tracepoint_class,

               /* List of tracepoint arguments (input) */
               TP_ARGS(
                   ...
               ),

               /* List of fields of eventual event (output) */
               TP_FIELDS(
                   ...
               )
           )

       Once the tracepoint class is defined, you can create as many tracepoint instances as needed:

           TRACEPOINT_EVENT_INSTANCE(
               /* Tracepoint provider name */
               my_provider,

               /* Tracepoint class name */
               my_tracepoint_class,

               /* Tracepoint/event name */
               my_tracepoint,

               /* List of tracepoint arguments (input) */
               TP_ARGS(
                   ...
               )
           )

       As you can see, the TRACEPOINT_EVENT_INSTANCE() does not contain the TP_FIELDS() macro, because they are
       defined at the TRACEPOINT_EVENT_CLASS() level.

       See the EXAMPLE section below for a complete example.

   TRACEPOINT_LOGLEVEL() usage
       Optionally, a log level can be assigned to a defined tracepoint. Assigning different levels of severity
       to tracepoints can be useful: when controlling tracing sessions, you can choose to only enable events
       falling into a specific log level range using the --loglevel and --loglevel-only options of the lttng-
       enable-event(1) command.

       Log levels are assigned to tracepoints that are already defined using the TRACEPOINT_LOGLEVEL() macro.
       The latter must be used after having used TRACEPOINT_EVENT() or TRACEPOINT_EVENT_INSTANCE() for a given
       tracepoint. The TRACEPOINT_LOGLEVEL() macro is used as follows:

           TRACEPOINT_LOGLEVEL(
               /* Tracepoint provider name */
               my_provider,

               /* Tracepoint/event name */
               my_tracepoint,

               /* Log level */
               TRACE_INFO
           )

       The available log level definitions are:

       TRACE_EMERG
           System is unusable.

       TRACE_ALERT
           Action must be taken immediately.

       TRACE_CRIT
           Critical conditions.

       TRACE_ERR
           Error conditions.

       TRACE_WARNING
           Warning conditions.

       TRACE_NOTICE
           Normal, but significant, condition.

       TRACE_INFO
           Informational message.

       TRACE_DEBUG_SYSTEM
           Debug information with system-level scope (set of programs).

       TRACE_DEBUG_PROGRAM
           Debug information with program-level scope (set of processes).

       TRACE_DEBUG_PROCESS
           Debug information with process-level scope (set of modules).

       TRACE_DEBUG_MODULE
           Debug information with module (executable/library) scope (set of units).

       TRACE_DEBUG_UNIT
           Debug information with compilation unit scope (set of functions).

       TRACE_DEBUG_FUNCTION
           Debug information with function-level scope.

       TRACE_DEBUG_LINE
           Debug information with line-level scope (default log level).

       TRACE_DEBUG
           Debug-level message.

       See the EXAMPLE section below for a complete example.

   Instrumenting your application
       Once the tracepoint provider is created (see the Creating a tracepoint provider section above), you can
       instrument your application with the defined tracepoints thanks to the tracepoint() macro:

           #define tracepoint(prov_name, t_name, ...)

       With:

       prov_name
           Tracepoint provider name.

       t_name
           Tracepoint/event name.

       ...
           Tracepoint arguments, if any.

       Make sure to include the tracepoint provider header file anywhere you use tracepoint() for this provider.

           Note
           Even though LTTng-UST supports tracepoint() call site duplicates having the same provider and
           tracepoint names, it is recommended to use a provider/tracepoint name pair only once within the
           application source code to help map events back to their call sites when analyzing the trace.

       Sometimes, arguments to the tracepoint are expensive to compute (take call stack, for example). To avoid
       the computation when the tracepoint is disabled, you can use the tracepoint_enabled() and do_tracepoint()
       macros:

           #define tracepoint_enabled(prov_name, t_name)
           #define do_tracepoint(prov_name, t_name, ...)

       tracepoint_enabled() returns a non-zero value if the tracepoint named t_name from the provider named
       prov_name is enabled at run time.

       do_tracepoint() is like tracepoint(), except that it doesn’t check if the tracepoint is enabled. Using
       tracepoint() with tracepoint_enabled() is dangerous since tracepoint() also contains the
       tracepoint_enabled() check, thus a race condition is possible in this situation:

           if (tracepoint_enabled(my_provider, my_tracepoint)) {
               stuff = prepare_stuff();
           }

           tracepoint(my_provider, my_tracepoint, stuff);

       If the tracepoint is enabled after the condition, then stuff is not prepared: the emitted event will
       either contain wrong data, or the whole application could crash (segmentation fault, for example).

           Note
           Neither tracepoint_enabled() nor do_tracepoint() have a STAP_PROBEV() call, so if you need it, you
           should emit this call yourself.

   Statically linking the tracepoint provider
       With the static linking method, compiled tracepoint providers are copied into the target application.

       Define TRACEPOINT_DEFINE definition below the TRACEPOINT_CREATE_PROBES definition in the tracepoint
       provider source:

           #define TRACEPOINT_CREATE_PROBES
           #define TRACEPOINT_DEFINE

           #include "tp.h"

       Create the tracepoint provider object file:

           $ cc -c -I. tp.c

           Note
           Although an application instrumented with LTTng-UST tracepoints can be compiled with a C++ compiler,
           tracepoint probes should be compiled with a C compiler.

       At this point, you can archive this tracepoint provider object file, possibly with other object files of
       your application or with other tracepoint provider object files, as a static library:

           $ ar rc tp.a tp.o

       Using a static library does have the advantage of centralising the tracepoint providers objects so they
       can be shared between multiple applications. This way, when the tracepoint provider is modified, the
       source code changes don’t have to be patched into each application’s source code tree. The applications
       need to be relinked after each change, but need not to be otherwise recompiled (unless the tracepoint
       provider’s API changes).

       Then, link your application with this object file (or with the static library containing it) and with
       liblttng-ust and libdl (libc on a BSD system):

           $ cc -o app tp.o app.o -llttng-ust -ldl

   Dynamically loading the tracepoint provider
       The second approach to package the tracepoint provider is to use the dynamic loader: the library and its
       member functions are explicitly sought, loaded at run time.

       In this scenario, the tracepoint provider is compiled as a shared object.

       The process to create the tracepoint provider shared object is pretty much the same as the static linking
       method, except that:

       •   Since the tracepoint provider is not part of the application, TRACEPOINT_DEFINE must be defined, for
           each tracepoint provider, in exactly one source file of the applicationTRACEPOINT_PROBE_DYNAMIC_LINKAGE must be defined next to TRACEPOINT_DEFINE

       Regarding TRACEPOINT_DEFINE and TRACEPOINT_PROBE_DYNAMIC_LINKAGE, the recommended practice is to use a
       separate C source file in your application to define them, then include the tracepoint provider header
       files afterwards. For example, as tp-define.c:

           #define TRACEPOINT_DEFINE
           #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE

           #include "tp.h"

       The tracepoint provider object file used to create the shared library is built like it is using the
       static linking method, but with the -fpic option:

           $ cc -c -fpic -I. tp.c

       It is then linked as a shared library like this:

           $ cc -shared -Wl,--no-as-needed -o tp.so tp.o -llttng-ust

       This tracepoint provider shared object isn’t linked with the user application: it must be loaded
       manually. This is why the application is built with no mention of this tracepoint provider, but still
       needs libdl:

           $ cc -o app app.o tp-define.o -ldl

       There are two ways to dynamically load the tracepoint provider shared object:

       •   Load it manually from the application using dlopen(3)

       •   Make the dynamic loader load it with the LD_PRELOAD environment variable (see ld.so(8))

       If the application does not dynamically load the tracepoint provider shared object using one of the
       methods above, tracing is disabled for this application, and the events are not listed in the output of
       lttng-list(1).

       Note that it is not safe to use dlclose(3) on a tracepoint provider shared object that is being actively
       used for tracing, due to a lack of reference counting from LTTng-UST to the shared object.

       For example, statically linking a tracepoint provider to a shared object which is to be dynamically
       loaded by an application (a plugin, for example) is not safe: the shared object, which contains the
       tracepoint provider, could be dynamically closed (dlclose(3)) at any time by the application.

       To instrument a shared object, either:

       •   Statically link the tracepoint provider to the application, or

       •   Build the tracepoint provider as a shared object (following the procedure shown in this section), and
           preload it when tracing is needed using the LD_PRELOAD environment variable.

   Using LTTng-UST with daemons
       Some extra care is needed when using liblttng-ust with daemon applications that call fork(2), clone(2),
       or BSD’s rfork(2) without a following exec(3) family system call. The library liblttng-ust-fork.so needs
       to be preloaded before starting the application with the LD_PRELOAD environment variable (see ld.so(8)).

       To use liblttng-ust with a daemon application which closes file descriptors that were not opened by it,
       preload the liblttng-ust-fd.so library before you start the application. Typical use cases include
       daemons closing all file descriptors after fork(2), and buggy applications doing “double-closes”.

   Context information
       Context information can be prepended by the LTTng-UST tracer before each event, or before specific
       events.

       Context fields can be added to specific channels using lttng-add-context(1).

       The following context fields are supported by LTTng-UST:

       cpu_id
           CPU ID.

               Note
               This context field is always enabled, and it cannot be added with lttng-add-context(1). Its main
               purpose is to be used for dynamic event filtering. See lttng-enable-event(1) for more information
               about event filtering.

       ip
           Instruction pointer: enables recording the exact address from which an event was emitted. This
           context field can be used to reverse-lookup the source location that caused the event to be emitted.

       perf:thread:COUNTER
           perf counter named COUNTER. Use lttng add-context --list to list the available perf counters.

           Only available on IA-32 and x86-64 architectures.

       perf:thread:raw:rN:NAME
           perf counter with raw ID N and custom name NAME. See lttng-add-context(1) for more details.

       pthread_id
           POSIX thread identifier. Can be used on architectures where pthread_t maps nicely to an unsigned long
           type.

       procname
           Thread name, as set by exec(3) or prctl(2). It is recommended that programs set their thread name
           with prctl(2) before hitting the first tracepoint for that thread.

       vpid
           Virtual process ID: process ID as seen from the point of view of the process namespace.

       vtid
           Virtual thread ID: thread ID as seen from the point of view of the process namespace.

   LTTng-UST state dump
       If an application that uses liblttng-ust becomes part of a tracing session, information about its
       currently loaded shared objects, their build IDs, and their debug link information are emitted as events
       by the tracer.

       The following LTTng-UST state dump events exist and must be enabled to record application state dumps.
       Note that, during the state dump phase, LTTng-UST can also emit shared library load/unload events (see
       Shared library load/unload tracking below).

       lttng_ust_statedump:start
           Emitted when the state dump begins.

           This event has no fields.

       lttng_ust_statedump:end
           Emitted when the state dump ends. Once this event is emitted, it is guaranteed that, for a given
           process, the state dump is complete.

           This event has no fields.

       lttng_ust_statedump:bin_info
           Emitted when information about a currently loaded executable or shared object is found.

           Fields:

           ┌───────────────┬───────────────────────────────────────┐
           │Field nameDescription                           │
           ├───────────────┼───────────────────────────────────────┤
           │baddr          │ Base address of loaded executable.    │
           ├───────────────┼───────────────────────────────────────┤
           │memsz          │ Size of loaded executable in memory.  │
           ├───────────────┼───────────────────────────────────────┤
           │path           │ Path to loaded executable file.       │
           ├───────────────┼───────────────────────────────────────┤
           │is_pic         │ Whether or not the executable is      │
           │               │ position-independent code.            │
           ├───────────────┼───────────────────────────────────────┤
           │has_build_id   │ Whether or not the executable has a   │
           │               │ build ID. If this field is 1, you can │
           │               │ expect that an                        │
           │               │ lttng_ust_statedump:build_id event    │
           │               │ record follows this one (not          │
           │               │ necessarily immediately after).       │
           ├───────────────┼───────────────────────────────────────┤
           │has_debug_link │ Whether or not the executable has     │
           │               │ debug link information. If this field │
           │               │ is 1, you can expect that an          │
           │               │ lttng_ust_statedump:debug_link event  │
           │               │ record follows this one (not          │
           │               │ necessarily immediately after).       │
           └───────────────┴───────────────────────────────────────┘

       lttng_ust_statedump:build_id
           Emitted when a build ID is found in a currently loaded shared library. See Debugging Information in
           Separate Files <https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html> for more
           information about build IDs.

           Fields:

           ┌───────────┬─────────────────────────────────┐
           │Field nameDescription                     │
           ├───────────┼─────────────────────────────────┤
           │baddr      │ Base address of loaded library. │
           ├───────────┼─────────────────────────────────┤
           │build_id   │ Build ID.                       │
           └───────────┴─────────────────────────────────┘

       lttng_ust_statedump:debug_link
           Emitted when debug link information is found in a currently loaded shared library. See Debugging
           Information in Separate Files <https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html>
           for more information about debug links.

           Fields:

           ┌───────────┬─────────────────────────────────┐
           │Field nameDescription                     │
           ├───────────┼─────────────────────────────────┤
           │baddr      │ Base address of loaded library. │
           ├───────────┼─────────────────────────────────┤
           │crc        │ Debug link file’s CRC.          │
           ├───────────┼─────────────────────────────────┤
           │filename   │ Debug link file name.           │
           └───────────┴─────────────────────────────────┘

   Shared library load/unload tracking
       The LTTng-UST state dump and the LTTng-UST helper library to instrument the dynamic linker (see liblttng-
       ust-dl(3)) can emit shared library load/unload tracking events.

       The following shared library load/unload tracking events exist and must be enabled to track the loading
       and unloading of shared libraries:

       lttng_ust_lib:load
           Emitted when a shared library (shared object) is loaded.

           Fields:

           ┌───────────────┬───────────────────────────────────────┐
           │Field nameDescription                           │
           ├───────────────┼───────────────────────────────────────┤
           │baddr          │ Base address of loaded library.       │
           ├───────────────┼───────────────────────────────────────┤
           │memsz          │ Size of loaded library in memory.     │
           ├───────────────┼───────────────────────────────────────┤
           │path           │ Path to loaded library file.          │
           ├───────────────┼───────────────────────────────────────┤
           │has_build_id   │ Whether or not the library has a      │
           │               │ build ID. If this field is 1, you can │
           │               │ expect that an lttng_ust_lib:build_id │
           │               │ event record follows this one (not    │
           │               │ necessarily immediately after).       │
           ├───────────────┼───────────────────────────────────────┤
           │has_debug_link │ Whether or not the library has debug  │
           │               │ link information. If this field is 1, │
           │               │ you can expect that an                │
           │               │ lttng_ust_lib:debug_link event record │
           │               │ follows this one (not necessarily     │
           │               │ immediately after).                   │
           └───────────────┴───────────────────────────────────────┘

       lttng_ust_lib:unload
           Emitted when a shared library (shared object) is unloaded.

           Fields:

           ┌───────────┬───────────────────────────────────┐
           │Field nameDescription                       │
           ├───────────┼───────────────────────────────────┤
           │baddr      │ Base address of unloaded library. │
           └───────────┴───────────────────────────────────┘

       lttng_ust_lib:build_id
           Emitted when a build ID is found in a loaded shared library (shared object). See Debugging
           Information in Separate Files <https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html>
           for more information about build IDs.

           Fields:

           ┌───────────┬─────────────────────────────────┐
           │Field nameDescription                     │
           ├───────────┼─────────────────────────────────┤
           │baddr      │ Base address of loaded library. │
           ├───────────┼─────────────────────────────────┤
           │build_id   │ Build ID.                       │
           └───────────┴─────────────────────────────────┘

       lttng_ust_lib:debug_link
           Emitted when debug link information is found in a loaded shared library (shared object). See
           Debugging Information in Separate Files <https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-
           Files.html> for more information about debug links.

           Fields:

           ┌───────────┬─────────────────────────────────┐
           │Field nameDescription                     │
           ├───────────┼─────────────────────────────────┤
           │baddr      │ Base address of loaded library. │
           ├───────────┼─────────────────────────────────┤
           │crc        │ Debug link file’s CRC.          │
           ├───────────┼─────────────────────────────────┤
           │filename   │ Debug link file name.           │
           └───────────┴─────────────────────────────────┘

   Detect if LTTng-UST is loaded
       To detect if liblttng-ust is loaded from an application:

        1. Define the lttng_ust_loaded weak symbol globally:

               int lttng_ust_loaded __attribute__((weak));

           This weak symbol is set by the constructor of liblttng-ust.

        2. Test lttng_ust_loaded where needed:

               /* ... */

               if (lttng_ust_loaded) {
                   /* LTTng-UST is loaded */
               } else {
                   /* LTTng-UST is NOT loaded */
               }

               /* ... */

EXAMPLE

           Note
           A few examples are available in the doc/examples <https://github.com/lttng/lttng-
           ust/tree/master/doc/examples> directory of LTTng-UST’s source tree.

       This example shows all the features documented in the previous sections. The static linking method is
       chosen here to link the application with the tracepoint provider.

       You can compile the source files and link them together statically like this:

           $ cc -c -I. tp.c
           $ cc -c app.c
           $ cc -o app tp.o app.o -llttng-ust -ldl

       Using the lttng(1) tool, create an LTTng tracing session, enable all the events of this tracepoint
       provider, and start tracing:

           $ lttng create my-session
           $ lttng enable-event --userspace 'my_provider:*'
           $ lttng start

       You may also enable specific events:

           $ lttng enable-event --userspace my_provider:big_event
           $ lttng enable-event --userspace my_provider:event_instance2

       Run the application:

           $ ./app some arguments

       Stop the current tracing session and inspect the recorded events:

           $ lttng stop
           $ lttng view

   Tracepoint provider header file
       tp.h:

           #undef TRACEPOINT_PROVIDER
           #define TRACEPOINT_PROVIDER my_provider

           #undef TRACEPOINT_INCLUDE
           #define TRACEPOINT_INCLUDE "./tp.h"

           #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
           #define _TP_H

           #include <lttng/tracepoint.h>
           #include <stdio.h>

           #include "app.h"

           TRACEPOINT_EVENT(
               my_provider,
               simple_event,
               TP_ARGS(
                   int, my_integer_arg,
                   const char *, my_string_arg
               ),
               TP_FIELDS(
                   ctf_string(argc, my_string_arg)
                   ctf_integer(int, argv, my_integer_arg)
               )
           )

           TRACEPOINT_ENUM(
               my_provider,
               my_enum,
               TP_ENUM_VALUES(
                   ctf_enum_value("ZERO", 0)
                   ctf_enum_value("ONE", 1)
                   ctf_enum_value("TWO", 2)
                   ctf_enum_range("A RANGE", 52, 125)
                   ctf_enum_value("ONE THOUSAND", 1000)
               )
           )

           TRACEPOINT_EVENT(
               my_provider,
               big_event,
               TP_ARGS(
                   int, my_integer_arg,
                   const char *, my_string_arg,
                   FILE *, stream,
                   double, flt_arg,
                   int *, array_arg
               ),
               TP_FIELDS(
                   ctf_integer(int, int_field1, my_integer_arg * 2)
                   ctf_integer_hex(long int, stream_pos, ftell(stream))
                   ctf_float(double, float_field, flt_arg)
                   ctf_string(string_field, my_string_arg)
                   ctf_array(int, array_field, array_arg, 7)
                   ctf_array_text(char, array_text_field, array_arg, 5)
                   ctf_sequence(int, seq_field, array_arg, int,
                                my_integer_arg / 10)
                   ctf_sequence_text(char, seq_text_field, array_arg,
                                     int, my_integer_arg / 5)
                   ctf_enum(my_provider, my_enum, int,
                            enum_field, array_arg[1])
               )
           )

           TRACEPOINT_LOGLEVEL(my_provider, big_event, TRACE_WARNING)

           TRACEPOINT_EVENT_CLASS(
               my_provider,
               my_tracepoint_class,
               TP_ARGS(
                   int, my_integer_arg,
                   struct app_struct *, app_struct_arg
               ),
               TP_FIELDS(
                   ctf_integer(int, a, my_integer_arg)
                   ctf_integer(unsigned long, b, app_struct_arg->b)
                   ctf_string(c, app_struct_arg->c)
               )
           )

           TRACEPOINT_EVENT_INSTANCE(
               my_provider,
               my_tracepoint_class,
               event_instance1,
               TP_ARGS(
                   int, my_integer_arg,
                   struct app_struct *, app_struct_arg
               )
           )

           TRACEPOINT_EVENT_INSTANCE(
               my_provider,
               my_tracepoint_class,
               event_instance2,
               TP_ARGS(
                   int, my_integer_arg,
                   struct app_struct *, app_struct_arg
               )
           )

           TRACEPOINT_LOGLEVEL(my_provider, event_instance2, TRACE_INFO)

           TRACEPOINT_EVENT_INSTANCE(
               my_provider,
               my_tracepoint_class,
               event_instance3,
               TP_ARGS(
                   int, my_integer_arg,
                   struct app_struct *, app_struct_arg
               )
           )

           #endif /* _TP_H */

           #include <lttng/tracepoint-event.h>

   Tracepoint provider source file
       tp.c:

           #define TRACEPOINT_CREATE_PROBES
           #define TRACEPOINT_DEFINE

           #include "tp.h"

   Application header file
       app.h:

           #ifndef _APP_H
           #define _APP_H

           struct app_struct {
               unsigned long b;
               const char *c;
               double d;
           };

           #endif /* _APP_H */

   Application source file
       app.c:

           #include <stdlib.h>
           #include <stdio.h>

           #include "tp.h"
           #include "app.h"

           static int array_of_ints[] = {
               100, -35, 1, 23, 14, -6, 28, 1001, -3000,
           };

           int main(int argc, char* argv[])
           {
               FILE *stream;
               struct app_struct app_struct;

               tracepoint(my_provider, simple_event, argc, argv[0]);
               stream = fopen("/tmp/app.txt", "w");

               if (!stream) {
                   fprintf(stderr,
                           "Error: Cannot open /tmp/app.txt for writing\n");
                   return EXIT_FAILURE;
               }

               if (fprintf(stream, "0123456789") != 10) {
                   fclose(stream);
                   fprintf(stderr, "Error: Cannot write to /tmp/app.txt\n");
                   return EXIT_FAILURE;
               }

               tracepoint(my_provider, big_event, 35, "hello tracepoint",
                          stream, -3.14, array_of_ints);
               fclose(stream);
               app_struct.b = argc;
               app_struct.c = "[the string]";
               tracepoint(my_provider, event_instance1, 23, &app_struct);
               app_struct.b = argc * 5;
               app_struct.c = "[other string]";
               tracepoint(my_provider, event_instance2, 17, &app_struct);
               app_struct.b = 23;
               app_struct.c = "nothing";
               tracepoint(my_provider, event_instance3, -52, &app_struct);

               return EXIT_SUCCESS;
           }

ENVIRONMENT VARIABLES

       LTTNG_HOME
           Alternative user’s home directory. This variable is useful when the user running the instrumented
           application has a non-writable home directory.

           Unix sockets used for the communication between liblttng-ust and the LTTng session and consumer
           daemons (part of the LTTng-tools project) are located in a specific directory under $LTTNG_HOME (or
           $HOME if $LTTNG_HOME is not set).

       LTTNG_UST_ALLOW_BLOCKING
           If set, allow the application to retry event tracing when there’s no space left for the event record
           in the sub-buffer, therefore effectively blocking the application until space is made available or
           the configured timeout is reached.

           To allow an application to block during tracing, you also need to specify a blocking timeout when you
           create a channel with the --blocking-timeout option of the lttng-enable-channel(1) command.

           This option can be useful in workloads generating very large trace data throughput, where blocking
           the application is an acceptable trade-off to prevent discarding event records.

               Warning
               Setting this environment variable may significantly affect application timings.

       LTTNG_UST_CLOCK_PLUGIN
           Path to the shared object which acts as the clock override plugin. An example of such a plugin can be
           found in the LTTng-UST documentation under examples/clock-override <https://github.com/lttng/lttng-
           ust/tree/master/doc/examples/clock-override>.

       LTTNG_UST_DEBUG
           If set, enable liblttng-ust's debug and error output.

       LTTNG_UST_GETCPU_PLUGIN
           Path to the shared object which acts as the getcpu() override plugin. An example of such a plugin can
           be found in the LTTng-UST documentation under examples/getcpu-override
           <https://github.com/lttng/lttng-ust/tree/master/doc/examples/getcpu-override>.

       LTTNG_UST_REGISTER_TIMEOUT
           Waiting time for the registration done session daemon command before proceeding to execute the main
           program (milliseconds).

           The value 0 means do not wait. The value -1 means wait forever. Setting this environment variable to
           0 is recommended for applications with time constraints on the process startup time.

           Default: 3000.

       LTTNG_UST_WITHOUT_BADDR_STATEDUMP
           If set, prevents liblttng-ust from performing a base address state dump (see the LTTng-UST state dump
           section above).

BUGS

       If you encounter any issue or usability problem, please report it on the LTTng bug tracker
       <https://bugs.lttng.org/projects/lttng-ust>.

RESOURCES

       •   LTTng project website <http://lttng.org>

       •   LTTng documentation <http://lttng.org/docs>

       •   Git repositories <http://git.lttng.org>

       •   GitHub organization <http://github.com/lttng>

       •   Continuous integration <http://ci.lttng.org/>

       •   Mailing list <http://lists.lttng.org> for support and development: lttng-dev@lists.lttng.org

       •   IRC channel <irc://irc.oftc.net/lttng>: #lttng on irc.oftc.net

COPYRIGHTS

       This library is part of the LTTng-UST project.

       This library is distributed under the GNU Lesser General Public License, version 2.1
       <http://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html>. See the COPYING
       <https://github.com/lttng/lttng-ust/blob/master/COPYING> file for more details.

THANKS

       Thanks to Ericsson for funding this work, providing real-life use cases, and testing.

       Special thanks to Michel Dagenais and the DORSAL laboratory <http://www.dorsal.polymtl.ca/> at École
       Polytechnique de Montréal for the LTTng journey.

AUTHORS

       LTTng-UST was originally written by Mathieu Desnoyers, with additional contributions from various other
       people. It is currently maintained by Mathieu Desnoyers <mailto:mathieu.desnoyers@efficios.com>.

SEE ALSO

       tracef(3), tracelog(3), lttng-gen-tp(1), lttng-ust-dl(3), lttng-ust-cyg-profile(3), lttng(1), lttng-
       enable-event(1), lttng-list(1), lttng-add-context(1), babeltrace(1), dlopen(3), ld.so(8)