Provided by: librheolef-dev_6.7-6_amd64 bug

NAME

       pminres -- conjugate gradient algorithm.

SYNOPSIS

           template <class Matrix, class Vector, class Preconditioner, class Real>
           int pminres (const Matrix &A, Vector &x, const Vector &b, const Preconditioner &M,
             int &max_iter, Real &tol, odiststream *p_derr=0);

EXAMPLE

       The simplest call to 'pminres' has the folling form:

           size_t max_iter = 100;
           double tol = 1e-7;
           int status = pminres(a, x, b, EYE, max_iter, tol, &derr);

DESCRIPTION

       pminres  solves  the  symmetric  positive  definite linear system Ax=b using the Conjugate
       Gradient method.

       The return value indicates convergence within  max_iter  (input)  iterations  (0),  or  no
       convergence within max_iter iterations (1).  Upon successful return, output arguments have
       the following values:

       x      approximate solution to Ax = b

       max_iter
              the number of iterations performed before the tolerance was reached

       tol    the residual after the final iteration

NOTE

       pminres follows the algorithm described in  "Solution  of  sparse  indefinite  systems  of
       linear equations", C. C. Paige and M. A. Saunders, SIAM J. Numer. Anal., 12(4), 1975.  For
       more, see http://www.stanford.edu/group/SOL/software.html  and  also  the  PhD  "Iterative
       methods for singular linear equations and least-squares problems", S.-C. T. Choi, Stanford
       University,     2006,      http://www.stanford.edu/group/SOL/dissertations/sou-cheng-choi-
       thesis.pdf  at  page  60.   The  present  implementation  style is inspired from IML++ 1.2
       iterative method library, http://math.nist.gov/iml++.

IMPLEMENTATION

       template <class Matrix, class Vector, class Preconditioner, class Real, class Size>
       int pminres(const Matrix &A, Vector &x, const Vector &Mb, const Preconditioner &M,
         Size &max_iter, Real &tol, odiststream *p_derr = 0, std::string label = "minres")
       {
         Vector b = M.solve(Mb);
         Real norm_b = sqrt(fabs(dot(Mb,b)));
         if (norm_b == Real(0.)) norm_b = 1;

         Vector Mr = Mb - A*x;
         Vector z = M.solve(Mr);
         Real beta2 = dot(Mr, z);
         Real norm_r = sqrt(fabs(beta2));
         if (p_derr) (*p_derr) << "[" << label << "] # norm_b=" <<norm_b<< std::endl;
         if (p_derr) (*p_derr) << "[" << label << "] #iteration residue/norm_b" << std::endl;
         if (p_derr) (*p_derr) << "[" << label << "] 0 " << norm_r/norm_b << std::endl;
         if (beta2 < 0 || norm_r <= tol*norm_b) {
           tol = norm_r/norm_b;
           max_iter = 0;
           dis_warning_macro ("beta2 = " << beta2 << " < 0: stop");
           return 0;
         }
         Real beta = sqrt(beta2);
         Real eta = beta;
         Vector Mv = Mr/beta;
         Vector  u =  z/beta;
         Real c_old = 1.;
         Real s_old = 0.;
         Real c = 1.;
         Real s = 0.;
         Vector u_old  (x.ownership(), 0.);
         Vector Mv_old (x.ownership(), 0.);
         Vector w      (x.ownership(), 0.);
         Vector w_old  (x.ownership(), 0.);
         Vector w_old2 (x.ownership(), 0.);
         for (Size n = 1; n <= max_iter; n++) {
           // Lanczos
           Mr = A*u;
           z = M.solve(Mr);
           Real alpha = dot(Mr, u);
           Mr = Mr - alpha*Mv - beta*Mv_old;
           z  =  z - alpha*u  - beta*u_old;
           beta2 = dot(Mr, z);
           if (beta2 < 0) {
               dis_warning_macro ("pminres: machine precision problem");
               tol = norm_r/norm_b;
               max_iter = n;
               return 2;
           }
           Real beta_old = beta;
           beta = sqrt(beta2);
           // QR factorisation
           Real c_old2 = c_old;
           Real s_old2 = s_old;
           c_old = c;
           s_old = s;
           Real rho0 = c_old*alpha - c_old2*s_old*beta_old;
           Real rho2 = s_old*alpha + c_old2*c_old*beta_old;
           Real rho1 = sqrt(sqr(rho0) + sqr(beta));
           Real rho3 = s_old2 * beta_old;
           // Givens rotation
           c = rho0 / rho1;
           s = beta / rho1;
           // update
           w_old2 = w_old;
           w_old  = w;
           w = (u - rho2*w_old - rho3*w_old2)/rho1;
           x += c*eta*w;
           eta = -s*eta;
           Mv_old = Mv;
            u_old = u;
           Mv = Mr/beta;
            u =  z/beta;
           // check residue
           norm_r *= s;
           if (p_derr) (*p_derr) << "[" << label << "] " << n << " " << norm_r/norm_b << std::endl;
           if (norm_r <= tol*max(1.0,norm_b)) {
             tol = norm_r/norm_b;
             max_iter = n;
             return 0;
           }
         }
         tol = norm_r/norm_b;
         return 1;
       }