bionic (1) mlpack_pca.1.gz

Provided by: mlpack-bin_2.2.5-1build1_amd64 bug

NAME

       mlpack_pca - principal components analysis

SYNOPSIS

        mlpack_pca [-h] [-v]

DESCRIPTION

       This  program  performs principal components analysis on the given dataset using the exact, randomized or
       QUIC SVD method. It will  transform  the  data  onto  its  principal  components,  optionally  performing
       dimensionality reduction by ignoring the principal components with the smallest eigenvalues.

REQUIRED INPUT OPTIONS

       --input_file (-i) [string]
              Input dataset to perform PCA on.

OPTIONAL INPUT OPTIONS

       --decomposition_method   (-c)  [string]  Method  used  for  the  principalcomponents  analysis:  'exact',
       'randomized', 'quic'.  Default value 'exact'.

       --help (-h)
              Default help info.

       --info [string]
              Get help on a specific module or option.   Default  value  ''.   --new_dimensionality  (-d)  [int]
              Desired dimensionality of output dataset. If 0, no dimensionality reduction is performed.  Default
              value 0.

       --scale (-s)
              If set, the data will be scaled before running PCA, such that the variance of each feature is

              1.

                  --var_to_retain (-r) [double] Amount of variance to retain; should be between 0 and 1.  If  1,
                  all variance is retained.  Overrides -d. Default value 0.

       --verbose (-v)
              Display informational messages and the full list of parameters and timers at the end of execution.

       --version (-V)
              Display the version of mlpack.

OPTIONAL OUTPUT OPTIONS

       --output_file (-o) [string]
              File to save modified dataset to. Default value ’'.

ADDITIONAL INFORMATION

ADDITIONAL INFORMATION

       For  further  information,  including  relevant  papers,  citations, and theory, For further information,
       including   relevant   papers,   citations,   and   theory,   consult   the   documentation   found    at
       http://www.mlpack.org  or  included with your consult the documentation found at http://www.mlpack.org or
       included with your DISTRIBUTION OF MLPACK.  DISTRIBUTION OF MLPACK.

                                                                                    mlpack_pca(16 November 2017)