Provided by: slurm-client_17.11.2-1build1_amd64 bug

NAME

       salloc  -  Obtain  a  Slurm  job  allocation  (a  set  of nodes), execute a command, and then release the
       allocation when the command is finished.

SYNOPSIS

       salloc [OPTIONS(0)...] [ : [OPTIONS(n)...]] script(0) [args(0)...]

       Option(s) define multiple jobs in a co-scheduled heterogeneous job.  For more details about heterogeneous
       jobs see the document
       http://slurm.schedmd.com/heterogeneous_jobs.html

DESCRIPTION

       salloc  is  used  to  allocate a Slurm job allocation, which is a set of resources (nodes), possibly with
       some set of constraints (e.g. number of processors per  node).   When  salloc  successfully  obtains  the
       requested  allocation,  it then runs the command specified by the user.  Finally, when the user specified
       command is complete, salloc relinquishes the job allocation.

       The command may be any program the user  wishes.   Some  typical  commands  are  xterm,  a  shell  script
       containing srun commands, and srun (see the EXAMPLES section). If no command is specified, then the value
       of SallocDefaultCommand in slurm.conf is used. If SallocDefaultCommand is not set, then salloc  runs  the
       user's default shell.

       The  following  document describes the influence of various options on the allocation of cpus to jobs and
       tasks.
       https://slurm.schedmd.com/cpu_management.html

       NOTE: The salloc logic includes support to save and restore the terminal line settings and is designed to
       be executed in the foreground. If you need to execute salloc in the background, set its standard input to
       some file, for example: "salloc -n16 a.out </dev/null &"

OPTIONS

       -A, --account=<account>
              Charge resources used by this job to specified account.  The account is an arbitrary  string.  The
              account name may be changed after job submission using the scontrol command.

       --acctg-freq
              Define  the  job  accounting  and  profiling sampling intervals.  This can be used to override the
              JobAcctGatherFrequency parameter in Slurm's configuration file, slurm.conf.  The supported  format
              is as follows:

              --acctg-freq=<datatype>=<interval>
                          where   <datatype>=<interval>   specifies   the   task   sampling   interval  for  the
                          jobacct_gather  plugin  or  a  sampling  interval  for  a  profiling   type   by   the
                          acct_gather_profile  plugin. Multiple, comma-separated <datatype>=<interval> intervals
                          may be specified. Supported datatypes are as follows:

                          task=<interval>
                                 where  <interval>  is  the  task  sampling  interval   in   seconds   for   the
                                 jobacct_gather  plugins  and  for  task  profiling  by  the acct_gather_profile
                                 plugin.  NOTE: This frequency is used to monitor memory usage. If memory limits
                                 are  enforced the highest frequency a user can request is what is configured in
                                 the slurm.conf file.  They can not turn it off (=0) either.

                          energy=<interval>
                                 where <interval> is the sampling interval in seconds for energy profiling using
                                 the acct_gather_energy plugin

                          network=<interval>
                                 where  <interval>  is the sampling interval in seconds for infiniband profiling
                                 using the acct_gather_infiniband plugin.

                          filesystem=<interval>
                                 where <interval> is the sampling interval in seconds for  filesystem  profiling
                                 using the acct_gather_filesystem plugin.

              The default value for the task sampling interval
              is  30. The default value for all other intervals is 0.  An interval of 0 disables sampling of the
              specified type.  If the task sampling interval is 0, accounting information is collected  only  at
              job termination (reducing Slurm interference with the job).
              Smaller (non-zero) values have a greater impact upon job performance, but a value of 30 seconds is
              not likely to be noticeable for applications having less than 10,000 tasks.

       -B --extra-node-info=<sockets[:cores[:threads]]>
              Restrict node selection to nodes with at least the specified number of sockets, cores  per  socket
              and/or  threads  per core.  NOTE: These options do not specify the resource allocation size.  Each
              value specified is considered a minimum.  An asterisk (*) can be used as a placeholder  indicating
              that all available resources of that type are to be utilized. Values can also be specified as min-
              max. The individual levels can also be specified in separate options if desired:
                  --sockets-per-node=<sockets>
                  --cores-per-socket=<cores>
                  --threads-per-core=<threads>
              If task/affinity plugin is enabled, then specifying an allocation in this manner also  results  in
              subsequently  launched  tasks  being  bound  to threads if the -B option specifies a thread count,
              otherwise an option of cores if a core count is specified, otherwise an  option  of  sockets.   If
              SelectType  is configured to select/cons_res, it must have a parameter of CR_Core, CR_Core_Memory,
              CR_Socket, or CR_Socket_Memory for this option to be honored.  This option  is  not  supported  on
              BlueGene  systems (select/bluegene plugin is configured).  If not specified, the scontrol show job
              will display 'ReqS:C:T=*:*:*'. This option applies to job allocations.

       --bb=<spec>
              Burst buffer specification. The form of the specification is system  dependent.   Note  the  burst
              buffer  may  not  be accessible from a login node, but require that salloc spawn a shell on one of
              it's allocated compute nodes. See the description of SallocDefaultCommand in  the  slurm.conf  man
              page for more information about how to spawn a remote shell.

       --bbf=<file_name>
              Path  of  file  containing  burst  buffer  specification.  The form of the specification is system
              dependent.  Also see --bb.  Note the burst buffer may not be accessible from  a  login  node,  but
              require  that  salloc spawn a shell on one of it's allocated compute nodes. See the description of
              SallocDefaultCommand in the slurm.conf man page for more information about how to spawn  a  remote
              shell.

       --begin=<time>
              Submit  the batch script to the Slurm controller immediately, like normal, but tell the controller
              to defer the allocation of the job until the specified time.

              Time may be of the form HH:MM:SS to run a job at a specific time of day  (seconds  are  optional).
              (If  that  time  is  already past, the next day is assumed.)  You may also specify midnight, noon,
              fika (3 PM) or teatime (4 PM) and you can have a time-of-day suffixed with AM or PM for running in
              the  morning  or the evening.  You can also say what day the job will be run, by specifying a date
              of the form MMDDYY or MM/DD/YY YYYY-MM-DD. Combine  date  and  time  using  the  following  format
              YYYY-MM-DD[THH:MM[:SS]]. You can also give times like now + count time-units, where the time-units
              can be seconds (default), minutes, hours, days, or weeks and you can tell Slurm  to  run  the  job
              today with the keyword today and to run the job tomorrow with the keyword tomorrow.  The value may
              be changed after job submission using the scontrol command.  For example:
                 --begin=16:00
                 --begin=now+1hour
                 --begin=now+60           (seconds by default)
                 --begin=2010-01-20T12:34:00

              Notes on date/time specifications:
               - Although the 'seconds' field of the HH:MM:SS time specification is allowed by  the  code,  note
              that  the  poll time of the Slurm scheduler is not precise enough to guarantee dispatch of the job
              on the exact second.  The job will be eligible to start on the next poll following  the  specified
              time.  The  exact  poll interval depends on the Slurm scheduler (e.g., 60 seconds with the default
              sched/builtin).
               - If no time (HH:MM:SS) is specified, the default is (00:00:00).
               - If a date is specified without a year (e.g., MM/DD) then the current year  is  assumed,  unless
              the  combination  of  MM/DD  and HH:MM:SS has already passed for that year, in which case the next
              year is used.

       --bell Force salloc to ring the terminal bell when the job allocation is granted (and only if stdout is a
              tty).   By  default,  salloc  only  rings  the bell if the allocation is pending for more than ten
              seconds (and only if stdout is a tty). Also see the option --no-bell.

       --cluster-constraint=<list>
              Specifies features that a federated cluster must have to have a sibling job submitted to it. Slurm
              will  attempt  to  submit  a  sibling  job  to  a  cluster if it has at least one of the specified
              features.

       --comment=<string>
              An arbitrary comment.

       -C, --constraint=<list>
              Nodes can have features assigned to them by the Slurm administrator.  Users can specify  which  of
              these  features are required by their job using the constraint option.  Only nodes having features
              matching the job constraints will be used to satisfy the request.   Multiple  constraints  may  be
              specified  with  AND,  OR, matching OR, resource counts, etc. (some operators are not supported on
              all system types).  Supported constraint options include:

              Single Name
                     Only  nodes  which   have   the   specified   feature   will   be   used.    For   example,
                     --constraint="intel"

              Node Count
                     A request can specify the number of nodes needed with some feature by appending an asterisk
                     and count after the feature name.  For  example  "--nodes=16  --constraint=graphics*4  ..."
                     indicates  that  the  job requires 16 nodes and that at least four of those nodes must have
                     the feature "graphics."

              AND    If only nodes with all of specified features will be used.  The ampersand is  used  for  an
                     AND operator.  For example, --constraint="intel&gpu"

              OR     If  only  nodes  with at least one of specified features will be used.  The vertical bar is
                     used for an OR operator.  For example, --constraint="intel|amd"

              Matching OR
                     If only one of a set of possible options should be used for all allocated nodes,  then  use
                     the   OR   operator   and  enclose  the  options  within  square  brackets.   For  example:
                     "--constraint=[rack1|rack2|rack3|rack4]" might be used to specify that all  nodes  must  be
                     allocated on a single rack of the cluster, but any of those four racks can be used.

              Multiple Counts
                     Specific  counts  of  multiple  resources  may  be  specified by using the AND operator and
                     enclosing     the     options     within      square      brackets.       For      example:
                     "--constraint=[rack1*2&rack2*4]"  might be used to specify that two nodes must be allocated
                     from nodes with the feature of "rack1" and four nodes must be allocated from nodes with the
                     feature "rack2".

       --contiguous
              If  set,  then the allocated nodes must form a contiguous set.  Not honored with the topology/tree
              or topology/3d_torus plugins, both of which can modify the node ordering.

       --cores-per-socket=<cores>
              Restrict node selection to nodes with at least the specified number  of  cores  per  socket.   See
              additional information under -B option above when task/affinity plugin is enabled.

       --cpu-freq =<p1[-p2[:p3]]>

              Request  that job steps initiated by srun commands inside this allocation be run at some requested
              frequency if possible, on the CPUs selected for the step on the compute node(s).

              p1 can be  [#### | low | medium | high | highm1] which will set the frequency scaling_speed to the
              corresponding value, and set the frequency scaling_governor to UserSpace. See below for definition
              of the values.

              p1 can be [Conservative | OnDemand | Performance | PowerSave] which will set the  scaling_governor
              to  the  corresponding  value.  The  governor  has  to be in the list set by the slurm.conf option
              CpuFreqGovernors.

              When p2 is present, p1 will be the minimum scaling frequency and p2 will be  the  maximum  scaling
              frequency.

              p2 can be  [#### | medium | high | highm1] p2 must be greater than p1.

              p3  can  be  [Conservative  |  OnDemand  | Performance | PowerSave | UserSpace] which will set the
              governor to the corresponding value.

              If p3 is UserSpace, the frequency scaling_speed will be set by a power or energy aware  scheduling
              strategy  to a value between p1 and p2 that lets the job run within the site's power goal. The job
              may be delayed if p1 is higher than a frequency that allows the job to run within the goal.

              If the current frequency is < min, it will be set to min. Likewise, if the current frequency is  >
              max, it will be set to max.

              Acceptable values at present include:

              ####          frequency in kilohertz

              Low           the lowest available frequency

              High          the highest available frequency

              HighM1        (high minus one) will select the next highest available frequency

              Medium        attempts to set a frequency in the middle of the available range

              Conservative  attempts to use the Conservative CPU governor

              OnDemand      attempts to use the OnDemand CPU governor (the default value)

              Performance   attempts to use the Performance CPU governor

              PowerSave     attempts to use the PowerSave CPU governor

              UserSpace     attempts to use the UserSpace CPU governor

              The following informational environment variable is set in the job
              step when --cpu-freq option is requested.
                      SLURM_CPU_FREQ_REQ

              This environment variable can also be used to supply the value for the CPU frequency request if it
              is set when the 'srun' command is issued.  The --cpu-freq on the command line  will  override  the
              environment variable value.  The form on the environment variable is the same as the command line.
              See the ENVIRONMENT VARIABLES section for a description of the SLURM_CPU_FREQ_REQ variable.

              NOTE: This parameter is treated as a request, not a requirement.  If the job step's node does  not
              support  setting  the  CPU  frequency,  or  the requested value is outside the bounds of the legal
              frequencies, an error is logged, but the job step is allowed to continue.

              NOTE: Setting the frequency for just the CPUs of the job step implies that the tasks are  confined
              to those CPUs.  If task confinement (i.e., TaskPlugin=task/affinity or TaskPlugin=task/cgroup with
              the "ConstrainCores" option) is not configured, this parameter is ignored.

              NOTE: When the step completes, the frequency and governor of each selected CPU  is  reset  to  the
              previous values.

              NOTE:  When  submitting  jobs  with  the --cpu-freq option with linuxproc as the ProctrackType can
              cause jobs to run too quickly before Accounting is able to poll for job information. As  a  result
              not all of accounting information will be present.

       -c, --cpus-per-task=<ncpus>
              Advise  the  Slurm  controller  that ensuing job steps will require ncpus number of processors per
              task.  Without this option, the controller will just try to allocate one processor per task.

              For instance, consider an application that has 4 tasks,  each  requiring  3  processors.   If  our
              cluster  is comprised of quad-processors nodes and we simply ask for 12 processors, the controller
              might give us only 3 nodes.  However, by using the --cpus-per-task=3 options, the controller knows
              that each task requires 3 processors on the same node, and the controller will grant an allocation
              of 4 nodes, one for each of the 4 tasks.

       --deadline=<OPT>
              remove the job if no ending is possible before this deadline (start >  (deadline  -  time[-min])).
              Default is no deadline.  Valid time formats are:
              HH:MM[:SS] [AM|PM]
              MMDD[YY] or MM/DD[/YY] or MM.DD[.YY]
              MM/DD[/YY]-HH:MM[:SS]
              YYYY-MM-DD[THH:MM[:SS]]]

       --delay-boot=<minutes>
              Do  not  reboot  nodes  in order to satisfied this job's feature specification if the job has been
              eligible to run for less than this time period.  If the job has waited for less than the specified
              period,  it  will  use  only  nodes which already have the specified features.  The argument is in
              units of minutes.  A default value may be set by  a  system  administrator  using  the  delay_boot
              option  of  the  SchedulerParameters configuration parameter in the slurm.conf file, otherwise the
              default value is zero (no delay).

       -d, --dependency=<dependency_list>
              Defer the start of this job until  the  specified  dependencies  have  been  satisfied  completed.
              <dependency_list>    is    of    the    form    <type:job_id[:job_id][,type:job_id[:job_id]]>   or
              <type:job_id[:job_id][?type:job_id[:job_id]]>.  All dependencies must  be  satisfied  if  the  ","
              separator  is  used.  Any dependency may be satisfied if the "?" separator is used.  Many jobs can
              share the same dependency and these jobs may even belong to different  users. The   value  may  be
              changed  after  job submission using the scontrol command.  Once a job dependency fails due to the
              termination state of a preceding job, the dependent job will never be run, even if  the  preceding
              job is requeued and has a different termination state in a subsequent execution.

              after:job_id[:jobid...]
                     This job can begin execution after the specified jobs have begun execution.

              afterany:job_id[:jobid...]
                     This job can begin execution after the specified jobs have terminated.

              aftercorr:job_id[:jobid...]
                     A  task  of  this  job  array  can  begin  execution after the corresponding task ID in the
                     specified job has completed successfully (ran to completion with an exit code of zero).

              afternotok:job_id[:jobid...]
                     This job can begin execution after the specified jobs have terminated in some failed  state
                     (non-zero exit code, node failure, timed out, etc).

              afterok:job_id[:jobid...]
                     This  job  can  begin execution after the specified jobs have successfully executed (ran to
                     completion with an exit code of zero).

              expand:job_id
                     Resources allocated to this job should be used to expand the specified  job.   The  job  to
                     expand  must  share  the  same  QOS (Quality of Service) and partition.  Gang scheduling of
                     resources in the partition is also not supported.

              singleton
                     This job can begin execution after any previously launched jobs sharing the same  job  name
                     and user have terminated.

       -D, --chdir=<path>
              Change  directory  to  path  before beginning execution. The path can be specified as full path or
              relative path to the directory where the command is executed.

       --exclusive[=user|mcs]
              The job allocation can not share nodes with other running jobs  (or  just  other  users  with  the
              "=user"  option  or  with  the  "=mcs"  option).  The default shared/exclusive behavior depends on
              system configuration and the partition's OverSubscribe option  takes  precedence  over  the  job's
              option.

       -F, --nodefile=<node file>
              Much  like  --nodelist,  but the list is contained in a file of name node file.  The node names of
              the list may also span multiple lines in the file.    Duplicate node names in  the  file  will  be
              ignored.   The order of the node names in the list is not important; the node names will be sorted
              by Slurm.

       --get-user-env[=timeout][mode]
              This option will load login environment variables for the user specified in the --uid option.  The
              environment  variables  are  retrieved  by  running  something  of  this  sort "su - <username> -c
              /usr/bin/env" and parsing the output.  Be aware that any  environment  variables  already  set  in
              salloc's  environment  will  take  precedence  over  any environment variables in the user's login
              environment.  The optional timeout value is in seconds. Default value is 3 seconds.  The  optional
              mode  value  control the "su" options.  With a mode value of "S", "su" is executed without the "-"
              option.  With a mode value of "L", "su" is executed with the "-"  option,  replicating  the  login
              environment.  If mode not specified, the mode established at Slurm build time is used.  Example of
              use include "--get-user-env", "--get-user-env=10"  "--get-user-env=10L",  and  "--get-user-env=S".
              NOTE:  This  option  only  works  if  the  caller has an effective uid of "root".  This option was
              originally created for use by Moab.

       --gid=<group>
              Submit the job with the specified group's group access permissions.  group may be the  group  name
              or  the  numerical  group  ID.  In the default Slurm configuration, this option is only valid when
              used by the user root.

       --gres=<list>
              Specifies a comma delimited list of generic consumable resources.  The format of each entry on the
              list  is  "name[[:type]:count]".   The  name is that of the consumable resource.  The count is the
              number of those resources with a default value of 1.  The specified resources will be allocated to
              the  job  on  each node.  The available generic consumable resources is configurable by the system
              administrator.  A list of available generic consumable resources will be printed and  the  command
              will  exit  if  the  option  argument  is  "help".   Examples of use include "--gres=gpu:2,mic=1",
              "--gres=gpu:kepler:2", and "--gres=help".

       --gres-flags=enforce-binding
              If set, the only CPUs available to the job will be those bound to the selected GRES (i.e. the CPUs
              identified  in the gres.conf file will be strictly enforced rather than advisory). This option may
              result in delayed initiation of a job.  For example a job requiring two GPUs and one CPU  will  be
              delayed  until both GPUs on a single socket are available rather than using GPUs bound to separate
              sockets, however the application performance may be improved due to improved communication  speed.
              Requires  the  node  to  be  configured  with  more than one socket and resource filtering will be
              performed on a per-socket basis.

       -H, --hold
              Specify the job is to be submitted in a held state (priority of zero).  A  held  job  can  now  be
              released using scontrol to reset its priority (e.g. "scontrol release <job_id>").

       -h, --help
              Display help information and exit.

       --hint=<type>
              Bind tasks according to application hints.

              compute_bound
                     Select  settings  for  compute bound applications: use all cores in each socket, one thread
                     per core.

              memory_bound
                     Select settings for memory bound applications: use only one core in each socket, one thread
                     per core.

              [no]multithread
                     [don't]  use  extra  threads  with  in-core multi-threading which can benefit communication
                     intensive applications.  Only supported with the task/affinity plugin.

              help   show this help message

       -I, --immediate[=<seconds>]
              exit if resources are not available within the time period specified.  If no  argument  is  given,
              resources  must  be  available immediately for the request to succeed.  By default, --immediate is
              off, and the command will block until resources become available. Since this option's argument  is
              optional,  for proper parsing the single letter option must be followed immediately with the value
              and not include a space between them. For example "-I60" and not "-I 60".

       -J, --job-name=<jobname>
              Specify a name for the job allocation. The specified name will appear along with the job id number
              when  querying  running  jobs  on  the  system.  The default job name is the name of the "command"
              specified on the command line.

       --jobid=<jobid>
              Allocate resources as the specified job id.  NOTE: Only valid for users root and SlurmUser.

       -K, --kill-command[=signal]
              salloc always runs a user-specified command once the allocation  is  granted.   salloc  will  wait
              indefinitely  for that command to exit.  If you specify the --kill-command option salloc will send
              a signal to your command any time that the Slurm controller tells salloc that its  job  allocation
              has  been revoked. The job allocation can be revoked for a couple of reasons: someone used scancel
              to revoke the allocation, or the allocation reached its time limit.   If  you  do  not  specify  a
              signal  name  or  number and Slurm is configured to signal the spawned command at job termination,
              the default signal is SIGHUP for interactive and SIGTERM for non-interactive sessions. Since  this
              option's  argument  is  optional,  for  proper  parsing  the single letter option must be followed
              immediately with the value and not include a space between them. For example "-K1" and not "-K 1".

       -k, --no-kill
              Do not automatically terminate a job if one of the nodes it has been allocated  fails.   The  user
              will  assume  the  responsibilities  for fault-tolerance should a node fail.  When there is a node
              failure, any active job steps (usually MPI jobs) on that node will almost certainly suffer a fatal
              error,  but  with --no-kill, the job allocation will not be revoked so the user may launch new job
              steps on the remaining nodes in their allocation.

              By default Slurm terminates the entire job allocation if any node fails in its range of  allocated
              nodes.

       -L, --licenses=<license>
              Specification of licenses (or other resources available on all nodes of the cluster) which must be
              allocated to this job.  License names can be followed by a colon and count (the default  count  is
              one).  Multiple license names should be comma separated (e.g.  "--licenses=foo:4,bar").

       -M, --clusters=<string>
              Clusters  to  issue  commands to.  Multiple cluster names may be comma separated.  The job will be
              submitted to the one cluster providing the earliest expected  job  initiation  time.  The  default
              value  is  the  current  cluster.  A  value  of 'all' will query to run on all clusters.  Note the
              --export option to control  environment  variables  exported  between  clusters.   Note  that  the
              SlurmDBD must be up for this option to work properly.

       -m, --distribution=
              arbitrary|<block|cyclic|plane=<options>[:block|cyclic|fcyclic]>

              Specify  alternate  distribution  methods  for  remote  processes.   In  salloc,  this  only  sets
              environment variables that will be used by subsequent srun requests.   This  option  controls  the
              assignment  of  tasks to the nodes on which resources have been allocated, and the distribution of
              those resources to tasks for binding (task affinity). The first distribution  method  (before  the
              ":")  controls the distribution of resources across nodes. The optional second distribution method
              (after the ":") controls the distribution of resources across sockets within a  node.   Note  that
              with select/cons_res, the number of cpus allocated on each socket and node may be different. Refer
              to  https://slurm.schedmd.com/mc_support.html  for  more  information  on   resource   allocation,
              assignment of tasks to nodes, and binding of tasks to CPUs.

              First distribution method:

              block  The  block  distribution method will distribute tasks to a node such that consecutive tasks
                     share a node. For example, consider an allocation of three nodes  each  with  two  cpus.  A
                     four-task  block  distribution  request will distribute those tasks to the nodes with tasks
                     one and two on the first node, task three on the second node, and task four  on  the  third
                     node.  Block distribution is the default behavior if the number of tasks exceeds the number
                     of allocated nodes.

              cyclic The cyclic distribution method will distribute tasks to a node such that consecutive  tasks
                     are distributed over consecutive nodes (in a round-robin fashion). For example, consider an
                     allocation of three nodes each with two cpus. A four-task cyclic distribution request  will
                     distribute  those tasks to the nodes with tasks one and four on the first node, task two on
                     the second node, and  task  three  on  the  third  node.   Note  that  when  SelectType  is
                     select/cons_res,  the  same  number  of  CPUs  may  not  be  allocated  on  each node. Task
                     distribution will be round-robin among all the nodes with CPUs yet to be assigned to tasks.
                     Cyclic  distribution  is  the default behavior if the number of tasks is no larger than the
                     number of allocated nodes.

              plane  The tasks are distributed in blocks of a specified size.   The  options  include  a  number
                     representing  the size of the task block.  This is followed by an optional specification of
                     the task distribution scheme within a block of tasks and between the blocks of tasks.   The
                     number  of  tasks  distributed to each node is the same as for cyclic distribution, but the
                     taskids assigned to each node depend  on  the  plane  size.  For  more  details  (including
                     examples and diagrams), please see
                     https://slurm.schedmd.com/mc_support.html
                     and
                     https://slurm.schedmd.com/dist_plane.html

              arbitrary
                     The  arbitrary  method  of  distribution will allocate processes in-order as listed in file
                     designated by the environment variable SLURM_HOSTFILE.  If this variable is listed it  will
                     over ride any other method specified.  If not set the method will default to block.  Inside
                     the hostfile must contain at minimum the number of hosts requested and be one per  line  or
                     comma  separated.   If  specifying a task count (-n, --ntasks=<number>), your tasks will be
                     laid out on the nodes in the order of the file.
                     NOTE: The arbitrary distribution option on a job allocation only controls the nodes  to  be
                     allocated  to  the  job and not the allocation of CPUs on those nodes. This option is meant
                     primarily to control a job step's task layout in an existing job allocation  for  the  srun
                     command.

              Second distribution method:

              block  The  block distribution method will distribute tasks to sockets such that consecutive tasks
                     share a socket.

              cyclic The cyclic distribution method will distribute tasks to sockets such that consecutive tasks
                     are  distributed over consecutive sockets (in a round-robin fashion).  Tasks requiring more
                     than one CPU will have all of those CPUs allocated on a single socket if possible.

              fcyclic
                     The fcyclic distribution method will distribute tasks  to  sockets  such  that  consecutive
                     tasks are distributed over consecutive sockets (in a round-robin fashion).  Tasks requiring
                     more than one CPU will have each CPUs allocated in a cyclic fashion across sockets.

       --mail-type=<type>
              Notify user by email when certain event types occur.  Valid type  values  are  NONE,  BEGIN,  END,
              FAIL,  REQUEUE,  ALL  (equivalent  to  BEGIN, END, FAIL, REQUEUE, and STAGE_OUT), STAGE_OUT (burst
              buffer stage out and teardown completed), TIME_LIMIT, TIME_LIMIT_90 (reached 90  percent  of  time
              limit), TIME_LIMIT_80 (reached 80 percent of time limit), and TIME_LIMIT_50 (reached 50 percent of
              time limit).  Multiple type values may be specified in a comma separated list.   The  user  to  be
              notified is indicated with --mail-user.

       --mail-user=<user>
              User  to receive email notification of state changes as defined by --mail-type.  The default value
              is the submitting user.

       --mcs-label=<mcs>
              Used only when the mcs/group plugin is enabled.  This parameter is a group among the groups of the
              user.  Default value is calculated by the Plugin mcs if it's enabled.

       --mem=<size[units]>
              Specify   the   real   memory   required  per  node.   Default  units  are  megabytes  unless  the
              SchedulerParameters configuration parameter includes the "default_gbytes"  option  for  gigabytes.
              Different  units  can be specified using the suffix [K|M|G|T].  Default value is DefMemPerNode and
              the maximum value is MaxMemPerNode. If configured, both  of  parameters  can  be  seen  using  the
              scontrol show config command.  This parameter would generally be used if whole nodes are allocated
              to jobs (SelectType=select/linear).  Also see --mem-per-cpu.  --mem and --mem-per-cpu are mutually
              exclusive.

              NOTE:  A  memory size specification of zero is treated as a special case and grants the job access
              to all of the memory on each node.  If the job is allocated  multiple  nodes  in  a  heterogeneous
              cluster,  the  memory  limit  on  each  node  will  be that of the node in the allocation with the
              smallest memory size (same limit will apply to every node in the job's allocation).

              NOTE: Enforcement of memory limits currently relies upon the task/cgroup  plugin  or  enabling  of
              accounting,  which  samples  memory  use  on  a  periodic  basis  (data  need  not be stored, just
              collected). In both cases memory use is based upon the job's Resident Set Size (RSS). A  task  may
              exceed the memory limit until the next periodic accounting sample.

       --mem-per-cpu=<size[units]>
              Minimum   memory   required   per   allocated   CPU.   Default  units  are  megabytes  unless  the
              SchedulerParameters configuration parameter includes the "default_gbytes"  option  for  gigabytes.
              Different  units  can  be specified using the suffix [K|M|G|T].  Default value is DefMemPerCPU and
              the maximum value is MaxMemPerCPU (see exception below). If configured, both of parameters can  be
              seen  using  the scontrol show config command.  Note that if the job's --mem-per-cpu value exceeds
              the configured MaxMemPerCPU, then the user's limit will be treated as a  memory  limit  per  task;
              --mem-per-cpu  will be reduced to a value no larger than MaxMemPerCPU; --cpus-per-task will be set
              and the value of --cpus-per-task multiplied by the new --mem-per-cpu value will equal the original
              --mem-per-cpu  value  specified by the user.  This parameter would generally be used if individual
              processors are allocated to jobs (SelectType=select/cons_res).  If resources are allocated by  the
              core,  socket  or  whole  nodes; the number of CPUs allocated to a job may be higher than the task
              count and the value of --mem-per-cpu should be adjusted accordingly.  Also see --mem.   --mem  and
              --mem-per-cpu are mutually exclusive.

       --mem-bind=[{quiet,verbose},]type
              Bind  tasks  to  memory.  Used  only  when the task/affinity plugin is enabled and the NUMA memory
              functions are available.  Note that the resolution of CPU and memory binding may  differ  on  some
              architectures.  For  example,  CPU  binding  may  be  performed at the level of the cores within a
              processor while memory binding will be performed at the level of nodes, where  the  definition  of
              "nodes"  may  differ  from  system to system.  By default no memory binding is performed; any task
              using any CPU can use any memory. This option is typically used to ensure that each task is  bound
              to  the  memory  closest to it's assigned CPU. The use of any type other than "none" or "local" is
              not recommended.  If you want greater control, try running a simple test  code  with  the  options
              "--cpu-bind=verbose,none --mem-bind=verbose,none" to determine the specific configuration.

              NOTE:  To  have  Slurm always report on the selected memory binding for all commands executed in a
              shell, you can enable verbose mode by setting the SLURM_MEM_BIND  environment  variable  value  to
              "verbose".

              The following informational environment variables are set when --mem-bind is in use:

                   SLURM_MEM_BIND_LIST
                   SLURM_MEM_BIND_PREFER
                   SLURM_MEM_BIND_SORT
                   SLURM_MEM_BIND_TYPE
                   SLURM_MEM_BIND_VERBOSE

              See  the  ENVIRONMENT  VARIABLES  section  for  a  more  detailed  description  of  the individual
              SLURM_MEM_BIND* variables.

              Supported options include:

              help   show this help message

              local  Use memory local to the processor in use

              map_mem:<list>
                     Bind  by  setting  memory  masks  on  tasks  (or  ranks)  as  specified  where  <list>   is
                     <numa_id_for_task_0>,<numa_id_for_task_1>,...   The  mapping  is  specified  for a node and
                     identical mapping is applied to the tasks on every node (i.e. the lowest task  ID  on  each
                     node  is  mapped to the first ID specified in the list, etc.).  NUMA IDs are interpreted as
                     decimal values unless they are preceded  with  '0x'  in  which  case  they  interpreted  as
                     hexadecimal  values.   If  the number of tasks (or ranks) exceeds the number of elements in
                     this list, elements in the list will be reused as needed starting from the beginning of the
                     list.   To  simplify  support  for  large  task  counts, the lists may follow a map with an
                     asterisk and repetition count For example "map_mem:0x0f*4,0xf0*4".   Not  supported  unless
                     the entire node is allocated to the job.

              mask_mem:<list>
                     Bind   by  setting  memory  masks  on  tasks  (or  ranks)  as  specified  where  <list>  is
                     <numa_mask_for_task_0>,<numa_mask_for_task_1>,...  The mapping is specified for a node  and
                     identical  mapping  is  applied to the tasks on every node (i.e. the lowest task ID on each
                     node is mapped to the first mask specified in the  list,  etc.).   NUMA  masks  are  always
                     interpreted  as  hexadecimal  values.  Note that masks must be preceded with a '0x' if they
                     don't begin with [0-9] so they are seen as numerical values.  If the number  of  tasks  (or
                     ranks)  exceeds the number of elements in this list, elements in the list will be reused as
                     needed starting from the beginning of the list.  To simplify support for large task counts,
                     the   lists  may  follow  a  mask  with  an  asterisk  and  repetition  count  For  example
                     "mask_mem:0*4,1*4".  Not supported unless the entire node is allocated to the job.

              no[ne] don't bind tasks to memory (default)

              p[refer]
                     Prefer use of first specified NUMA node, but permit
                      use of other available NUMA nodes.

              q[uiet]
                     quietly bind before task runs (default)

              rank   bind by task rank (not recommended)

              sort   sort free cache pages (run zonesort on Intel KNL nodes)

              v[erbose]
                     verbosely report binding before task runs

       --mincpus=<n>
              Specify a minimum number of logical cpus/processors per node.

       -N, --nodes=<minnodes[-maxnodes]>
              Request that a minimum of minnodes nodes be allocated to this job.  A maximum node count may  also
              be specified with maxnodes.  If only one number is specified, this is used as both the minimum and
              maximum node count.  The partition's node limits supersede those of the  job.   If  a  job's  node
              limits  are outside of the range permitted for its associated partition, the job will be left in a
              PENDING state.  This permits possible execution at a later  time,  when  the  partition  limit  is
              changed.   If  a  job  node limit exceeds the number of nodes configured in the partition, the job
              will be rejected.  Note that the environment variable SLURM_JOB_NODES will be set to the count  of
              nodes  actually allocated to the job. See the ENVIRONMENT VARIABLES  section for more information.
              If -N is not specified,  the  default  behavior  is  to  allocate  enough  nodes  to  satisfy  the
              requirements of the -n and -c options.  The job will be allocated as many nodes as possible within
              the range specified and without delaying the initiation of the job.  The node count  specification
              may include a numeric value followed by a suffix of "k" (multiplies numeric value by 1,024) or "m"
              (multiplies numeric value by 1,048,576).

       -n, --ntasks=<number>
              salloc does not launch tasks, it requests an allocation of resources and  executed  some  command.
              This  option  advises the Slurm controller that job steps run within this allocation will launch a
              maximum of number tasks and sufficient resources are allocated to accomplish this.  The default is
              one task per node, but note that the --cpus-per-task option will change this default.

       --network=<type>
              Specify  information  pertaining  to  the switch or network.  The interpretation of type is system
              dependent.  This option is supported when running Slurm on a Cray natively.  It is used to request
              using  Network  Performance  Counters.  Only one value per request is valid.  All options are case
              in-sensitive.  In this configuration supported values include:

              system
                    Use the system-wide network performance counters. Only nodes requested will be marked in use
                    for the job allocation.  If the job does not fill up the entire system the rest of the nodes
                    are not able to be used by other jobs  using  NPC,  if  idle  their  state  will  appear  as
                    PerfCnts.  These nodes are still available for other jobs not using NPC.

              blade Use  the  blade network performance counters. Only nodes requested will be marked in use for
                    the job allocation.  If the job does not fill up the entire blade(s) allocated  to  the  job
                    those  blade(s)  are  not  able to be used by other jobs using NPC, if idle their state will
                    appear as PerfCnts.  These nodes are still available for other jobs not using NPC.

              In all cases the job allocation request must specify the
              --exclusive option.  Otherwise the request will be denied.

              Also with any of these options steps are not allowed to share blades, so  resources  would  remain
              idle  inside  an  allocation  if the step running on a blade does not take up all the nodes on the
              blade.

              The network option is also supported on systems with IBM's Parallel Environment (PE).   See  IBM's
              LoadLeveler  job  command  keyword documentation about the keyword "network" for more information.
              Multiple values may be specified in a comma separated list.  All options  are  case  in-sensitive.
              Supported values include:

              BULK_XFER[=<resources>]
                          Enable  bulk  transfer of data using Remote Direct-Memory Access (RDMA).  The optional
                          resources specification is a numeric value which can have a suffix of "k",  "K",  "m",
                          "M",  "g"  or  "G"  for  kilobytes,  megabytes  or  gigabytes.   NOTE:  The  resources
                          specification is not supported by the underlying IBM  infrastructure  as  of  Parallel
                          Environment version 2.2 and no value should be specified at this time.

              CAU=<count> Number  of Collectve Acceleration Units (CAU) required.  Applies only to IBM Power7-IH
                          processors.  Default value is zero.   Independent  CAU  will  be  allocated  for  each
                          programming interface (MPI, LAPI, etc.)

              DEVNAME=<name>
                          Specify the device name to use for communications (e.g. "eth0" or "mlx4_0").

              DEVTYPE=<type>
                          Specify  the device type to use for communications.  The supported values of type are:
                          "IB" (InfiniBand), "HFI" (P7 Host Fabric Interface),  "IPONLY"  (IP-Only  interfaces),
                          "HPCE"  (HPC  Ethernet), and "KMUX" (Kernel Emulation of HPCE).  The devices allocated
                          to a job must all be of the same type.  The default value depends  upon  depends  upon
                          what  hardware  is  available  and  in  order  of  preferences is IPONLY (which is not
                          considered in User Space mode), HFI, IB, HPCE, and KMUX.

              IMMED =<count>
                          Number of immediate send slots per window required.  Applies  only  to  IBM  Power7-IH
                          processors.  Default value is zero.

              INSTANCES =<count>
                          Specify  number  of network connections for each task on each network connection.  The
                          default instance count is 1.

              IPV4        Use Internet Protocol (IP) version 4 communications (default).

              IPV6        Use Internet Protocol (IP) version 6 communications.

              LAPI        Use the LAPI programming interface.

              MPI         Use the MPI programming interface.  MPI is the default interface.

              PAMI        Use the PAMI programming interface.

              SHMEM       Use the OpenSHMEM programming interface.

              SN_ALL      Use all available switch networks (default).

              SN_SINGLE   Use one available switch network.

              UPC         Use the UPC programming interface.

              US          Use User Space communications.

              Some examples of network specifications:

              Instances=2,US,MPI,SN_ALL
                          Create two user space connections for MPI communications on every switch  network  for
                          each task.

              US,MPI,Instances=3,Devtype=IB
                          Create three user space connections for MPI communications on every InfiniBand network
                          for each task.

              IPV4,LAPI,SN_Single
                          Create a IP version 4 connection for LAPI communications on  one  switch  network  for
                          each task.

              Instances=2,US,LAPI,MPI
                          Create two user space connections each for LAPI and MPI communications on every switch
                          network for each task. Note that SN_ALL is the default option so every switch  network
                          is used. Also note that Instances=2 specifies that two connections are established for
                          each protocol (LAPI and MPI) and each task.  If there are two networks and four  tasks
                          on  the node then a total of 32 connections are established (2 instances x 2 protocols
                          x 2 networks x 4 tasks).

       --nice[=adjustment]
              Run the job with an adjusted scheduling priority  within  Slurm.  With  no  adjustment  value  the
              scheduling  priority  is decreased by 100. A negative nice value increases the priority, otherwise
              decreases it. The adjustment range is +/- 2147483645. Only privileged users can specify a negative
              adjustment.

       --ntasks-per-core=<ntasks>
              Request  the  maximum  ntasks be invoked on each core.  Meant to be used with the --ntasks option.
              Related to --ntasks-per-node except at the core level instead  of  the  node  level.   NOTE:  This
              option is not supported unless SelectType=cons_res is configured (either directly or indirectly on
              Cray systems) along with the node's core count.

       --ntasks-per-node=<ntasks>
              Request that ntasks be invoked on each node.  If used  with  the  --ntasks  option,  the  --ntasks
              option  will take precedence and the --ntasks-per-node will be treated as a maximum count of tasks
              per node.  Meant to be used with the --nodes option.  This is  related  to  --cpus-per-task=ncpus,
              but  does  not  require knowledge of the actual number of cpus on each node.  In some cases, it is
              more convenient to be able to request that no more than a specific number of tasks be  invoked  on
              each  node.   Examples  of  this  include  submitting  a  hybrid MPI/OpenMP app where only one MPI
              "task/rank" should be assigned to each node while allowing the OpenMP portion to  utilize  all  of
              the  parallelism  present in the node, or submitting a single setup/cleanup/monitoring job to each
              node of a pre-existing allocation as one step in a larger job script.

       --ntasks-per-socket=<ntasks>
              Request the maximum ntasks be invoked on each socket.  Meant to be used with the --ntasks  option.
              Related  to  --ntasks-per-node  except  at the socket level instead of the node level.  NOTE: This
              option is not supported unless SelectType=cons_res is configured (either directly or indirectly on
              Cray systems) along with the node's socket count.

       --no-bell
              Silence salloc's use of the terminal bell. Also see the option --bell.

       --no-shell
              immediately  exit  after  allocating  resources, without running a command. However, the Slurm job
              will still be created and will remain active and will own the allocated resources as long as it is
              active.   You  will have a Slurm job id with no associated processes or tasks. You can submit srun
              commands against this resource allocation, if you specify the --jobid= option with the job  id  of
              this Slurm job.  Or, this can be used to temporarily reserve a set of resources so that other jobs
              cannot use them for some period of time.  (Note that the  Slurm  job  is  subject  to  the  normal
              constraints  on  jobs,  including  time  limits, so that eventually the job will terminate and the
              resources will be freed, or you can terminate the job manually using the scancel command.)

       -O, --overcommit
              Overcommit resources.  When applied to job allocation, only one CPU is allocated to  the  job  per
              node  and  options  used to specify the number of tasks per node, socket, core, etc.  are ignored.
              When applied to job step allocations (the srun  command  when  executed  within  an  existing  job
              allocation),  this  option  can be used to launch more than one task per CPU.  Normally, srun will
              not allocate more than one process  per  CPU.   By  specifying  --overcommit  you  are  explicitly
              allowing  more  than  one  process  per  CPU.  However  no  more than MAX_TASKS_PER_NODE tasks are
              permitted to execute per node.  NOTE: MAX_TASKS_PER_NODE is defined in the file slurm.h and is not
              a variable, it is set at Slurm build time.

       -p, --partition=<partition_names>
              Request  a specific partition for the resource allocation.  If not specified, the default behavior
              is to allow the slurm controller to select the default  partition  as  designated  by  the  system
              administrator. If the job can use more than one partition, specify their names in a comma separate
              list and the one offering earliest initiation will be used with no regard given to  the  partition
              name  ordering  (although  higher  priority partitions will be considered first).  When the job is
              initiated, the name of the partition used will be placed first in the job record partition string.

       --power=<flags>
              Comma separated list of power management plugin options.  Currently available flags include: level
              (all  nodes  allocated  to  the job should have identical power caps, may be disabled by the Slurm
              configuration option PowerParameters=job_no_level).

       --priority=<value>
              Request a specific job priority.  May be subject to  configuration  specific  constraints.   value
              should  either be a numeric value or "TOP" (for highest possible value).  Only Slurm operators and
              administrators can set the priority of a job.

       --profile=<all|none|[energy[,|task[,|lustre[,|network]]]]>
              enables detailed data collection by the acct_gather_profile plugin.  Detailed data  are  typically
              time-series that are stored in an HDF5 file for the job.

              All       All data types are collected. (Cannot be combined with other values.)

              None      No data types are collected. This is the default.
                         (Cannot be combined with other values.)

              Energy    Energy data is collected.

              Task      Task (I/O, Memory, ...) data is collected.

              Lustre    Lustre data is collected.

              Network   Network (InfiniBand) data is collected.

       -q, --qos=<qos>
              Request a quality of service for the job.  QOS values can be defined for each user/cluster/account
              association in the Slurm database.  Users will be limited to their association's  defined  set  of
              qos's  when  the  Slurm  configuration parameter, AccountingStorageEnforce, includes "qos" in it's
              definition.

       -Q, --quiet
              Suppress informational messages from salloc. Errors will still be displayed.

       --reboot
              Force the allocated nodes to reboot before starting the job.  This is  only  supported  with  some
              system configurations and will otherwise be silently ignored.

       --reservation=<name>
              Allocate resources for the job from the named reservation.

              --share The --share option has been replaced by the --oversubscribe option described below.

       -s, --oversubscribe
              The  job  allocation  can  over-subscribe  resources with other running jobs.  The resources to be
              over-subscribed can be nodes, sockets, cores, and/or hyperthreads  depending  upon  configuration.
              The   default  over-subscribe  behavior  depends  on  system  configuration  and  the  partition's
              OverSubscribe option takes precedence over the job's  option.   This  option  may  result  in  the
              allocation  being  granted  sooner than if the --oversubscribe option was not set and allow higher
              system utilization, but  application  performance  will  likely  suffer  due  to  competition  for
              resources.  Also see the --exclusive option.

       -S, --core-spec=<num>
              Count  of specialized cores per node reserved by the job for system operations and not used by the
              application. The application will not use these cores, but will be charged for  their  allocation.
              Default  value is dependent upon the node's configured CoreSpecCount value.  If a value of zero is
              designated and the Slurm configuration option AllowSpecResourcesUsage is enabled, the job will  be
              allowed  to  override  CoreSpecCount  and  use the specialized resources on nodes it is allocated.
              This option can not be used with the --thread-spec option.

       --signal=<sig_num>[@<sig_time>]
              When a job is within sig_time seconds of its end time, send it the signal  sig_num.   Due  to  the
              resolution  of  event  handling  by  Slurm,  the  signal may be sent up to 60 seconds earlier than
              specified.  sig_num may either be a signal number or name (e.g. "10" or  "USR1").   sig_time  must
              have  an  integer  value  between 0 and 65535.  By default, no signal is sent before the job's end
              time.  If a sig_num is specified without any sig_time, the default time will be 60 seconds.

       --sockets-per-node=<sockets>
              Restrict node selection to nodes with at least the specified number of  sockets.   See  additional
              information under -B option above when task/affinity plugin is enabled.

       --spread-job
              Spread  the  job  allocation over as many nodes as possible and attempt to evenly distribute tasks
              across the allocated nodes.  This option disables the topology/tree plugin.

       --switches=<count>[@<max-time>]
              When a tree topology is used, this defines the maximum count  of  switches  desired  for  the  job
              allocation  and optionally the maximum time to wait for that number of switches. If Slurm finds an
              allocation containing more switches than the count specified, the job  remains  pending  until  it
              either  finds  an  allocation with desired switch count or the time limit expires.  It there is no
              switch count limit, there is no delay in  starting  the  job.   Acceptable  time  formats  include
              "minutes",  "minutes:seconds",  "hours:minutes:seconds",  "days-hours",  "days-hours:minutes"  and
              "days-hours:minutes:seconds".  The  job's  maximum  time  delay  may  be  limited  by  the  system
              administrator  using  the  SchedulerParameters  configuration  parameter  with the max_switch_wait
              parameter option.  On a dragonfly network the only switch count supported is 1 since communication
              performance  will  be  highest  when a job is allocate resources on one leaf switch or more than 2
              leaf switches.  The default max-time is the max_switch_wait SchedulerParameters.

       -t, --time=<time>
              Set a limit on the total run time of the job allocation.  If the requested time limit exceeds  the
              partition's  time  limit,  the  job  will be left in a PENDING state (possibly indefinitely).  The
              default time limit is the partition's default time limit.  When the time limit  is  reached,  each
              task  in  each  job  step  is  sent  SIGTERM followed by SIGKILL.  The interval between signals is
              specified  by  the  Slurm  configuration  parameter  KillWait.   The  OverTimeLimit  configuration
              parameter  may  permit  the  job  to run longer than scheduled.  Time resolution is one minute and
              second values are rounded up to the next minute.

              A time limit of zero requests that no time limit be  imposed.   Acceptable  time  formats  include
              "minutes",  "minutes:seconds",  "hours:minutes:seconds",  "days-hours",  "days-hours:minutes"  and
              "days-hours:minutes:seconds".

       --thread-spec=<num>
              Count of specialized threads per node reserved by the job for system operations and  not  used  by
              the  application.  The  application  will  not  use  these  threads, but will be charged for their
              allocation.  This option can not be used with the --core-spec option.

       --threads-per-core=<threads>
              Restrict node selection to nodes with at least the specified number of threads  per  core.   NOTE:
              "Threads"  refers  to  the  number  of  processing  units  on  each core rather than the number of
              application tasks to be launched per core.  See additional information under -B option above  when
              task/affinity plugin is enabled.

       --time-min=<time>
              Set  a minimum time limit on the job allocation.  If specified, the job may have it's --time limit
              lowered to a value no lower than --time-min if doing so permits the job to begin execution earlier
              than  otherwise  possible.   The  job's  time limit will not be changed after the job is allocated
              resources.  This is performed by a backfill scheduling algorithm to allocate  resources  otherwise
              reserved  for higher priority jobs.  Acceptable time formats include "minutes", "minutes:seconds",
              "hours:minutes:seconds", "days-hours", "days-hours:minutes" and "days-hours:minutes:seconds".

       --tmp=<size[units]>
              Specify a minimum amount of temporary disk space per node.  Default units are megabytes unless the
              SchedulerParameters  configuration  parameter  includes the "default_gbytes" option for gigabytes.
              Different units can be specified using the suffix [K|M|G|T].

       -u, --usage
              Display brief help message and exit.

       --uid=<user>
              Attempt to submit and/or run a job as user instead of the invoking user id.  The  invoking  user's
              credentials will be used to check access permissions for the target partition. This option is only
              valid for user root. This option may be used by user root may use this option to  run  jobs  as  a
              normal  user in a RootOnly partition for example. If run as root, salloc will drop its permissions
              to the uid specified after node allocation is successful. user may be the user name  or  numerical
              user ID.

       --use-min-nodes
              If a range of node counts is given, prefer the smaller count.

       -V, --version
              Display version information and exit.

       -v, --verbose
              Increase  the  verbosity  of salloc's informational messages.  Multiple -v's will further increase
              salloc's verbosity.  By default only errors will be displayed.

       -w, --nodelist=<node name list>
              Request a specific list of hosts.  The job will contain all of these hosts and possibly additional
              hosts  as needed to satisfy resource requirements.  The list may be specified as a comma-separated
              list of hosts, a range of hosts (host[1-5,7,...] for example), or a filename.  The host list  will
              be  assumed  to  be  a  filename if it contains a "/" character.  If you specify a minimum node or
              processor count larger than can be satisfied by the supplied host list, additional resources  will
              be  allocated  on  other  nodes as needed.  Duplicate node names in the list will be ignored.  The
              order of the node names in the list is not important; the node names will be sorted by Slurm.

       --wait-all-nodes=<value>
              Controls when the execution of the command begins with respect to when nodes  are  ready  for  use
              (i.e.  booted).   By  default,  the  salloc command will return as soon as the allocation is made.
              This default can  be  altered  using  the  salloc_wait_nodes  option  to  the  SchedulerParameters
              parameter in the slurm.conf file.

              0    Begin execution as soon as allocation can be made.  Do not wait for all nodes to be ready for
                   use (i.e. booted).

              1    Do not begin execution until all nodes are ready for use.

       --wckey=<wckey>
              Specify wckey to be used with job.  If TrackWCKey=no (default) in the  slurm.conf  this  value  is
              ignored.

       -x, --exclude=<node name list>
              Explicitly exclude certain nodes from the resources granted to the job.

       The following options support Blue Gene systems, but may be applicable to other systems as well.

       --blrts-image=<path>
              Path to blrts image for bluegene block.  BGL only.  Default from blugene.conf if not set.

       --cnload-image=<path>
              Path to compute node image for bluegene block.  BGP only.  Default from blugene.conf if not set.

       --conn-type=<type>
              Require  the  block  connection type to be of a certain type.  On Blue Gene the acceptable of type
              are MESH, TORUS and NAV.  If NAV, or  if  not  set,  then  Slurm  will  try  to  fit  a  what  the
              DefaultConnType is set to in the bluegene.conf if that isn't set the default is TORUS.  You should
              not normally set this option.  If running on a BGP system and wanting to run in HTC mode (only for
              1  midplane  and  below).  You can use HTC_S for SMP, HTC_D for Dual, HTC_V for virtual node mode,
              and HTC_L for Linux mode.  For systems that allow a different connection type  per  dimension  you
              can  supply  a  comma  separated list of connection types may be specified, one for each dimension
              (i.e. M,T,T,T will give you a torus connection is all dimensions expect the first).

       -g, --geometry=<XxYxZ> | <AxXxYxZ>
              Specify the geometry requirements for the job. On BlueGene/L  and  BlueGene/P  systems  there  are
              three  numbers  giving  dimensions in the X, Y and Z directions, while on BlueGene/Q systems there
              are four numbers giving dimensions in the A, X, Y and Z directions and can not be used to allocate
              sub-blocks.   For  example "--geometry=1x2x3x4", specifies a block of nodes having 1 x 2 x 3 x 4 =
              24 nodes (actually midplanes on BlueGene).

       --ioload-image=<path>
              Path to io image for bluegene block.  BGP only.  Default from blugene.conf if not set.

       --linux-image=<path>
              Path to linux image for bluegene block.  BGL only.  Default from blugene.conf if not set.

       --mloader-image=<path>
              Path to mloader image for bluegene block.  Default from blugene.conf if not set.

       -R, --no-rotate
              Disables rotation of the job's requested geometry in  order  to  fit  an  appropriate  block.   By
              default the specified geometry can rotate in three dimensions.

       --ramdisk-image=<path>
              Path to ramdisk image for bluegene block.  BGL only.  Default from blugene.conf if not set.

INPUT ENVIRONMENT VARIABLES

       Upon  startup, salloc will read and handle the options set in the following environment variables.  Note:
       Command line options always override environment variables settings.

       SALLOC_ACCOUNT        Same as -A, --account

       SALLOC_ACCTG_FREQ     Same as --acctg-freq

       SALLOC_BELL           Same as --bell

       SALLOC_BURST_BUFFER   Same as --bb

       SALLOC_CLUSTERS or SLURM_CLUSTERS
                             Same as --clusters

       SALLOC_CONN_TYPE      Same as --conn-type

       SALLOC_CONSTRAINT     Same as -C, --constraint

       SALLOC_CORE_SPEC      Same as --core-spec

       SALLOC_DEBUG          Same as -v, --verbose

       SALLOC_DELAY_BOOT     Same as --delay-boot

       SALLOC_EXCLUSIVE      Same as --exclusive

       SALLOC_GEOMETRY       Same as -g, --geometry

       SALLOC_GRES_FLAGS     Same as --gres-flags

       SALLOC_HINT or SLURM_HINT
                             Same as --hint

       SALLOC_IMMEDIATE      Same as -I, --immediate

       SALLOC_JOBID          Same as --jobid

       SALLOC_KILL_CMD       Same as -K, --kill-command

       SALLOC_MEM_BIND       Same as --mem-bind

       SALLOC_NETWORK        Same as --network

       SALLOC_NO_BELL        Same as --no-bell

       SALLOC_NO_ROTATE      Same as -R, --no-rotate

       SALLOC_OVERCOMMIT     Same as -O, --overcommit

       SALLOC_PARTITION      Same as -p, --partition

       SALLOC_POWER          Same as --power

       SALLOC_PROFILE        Same as --profile

       SALLOC_QOS            Same as --qos

       SALLOC_REQ_SWITCH     When a tree topology is used, this defines the maximum count  of  switches  desired
                             for  the  job allocation and optionally the maximum time to wait for that number of
                             switches. See --switches.

       SALLOC_RESERVATION    Same as --reservation

       SALLOC_SIGNAL         Same as --signal

       SALLOC_SPREAD_JOB     Same as --spread-job

       SALLOC_THREAD_SPEC    Same as --thread-spec

       SALLOC_TIMELIMIT      Same as -t, --time

       SALLOC_USE_MIN_NODES  Same as --use-min-nodes

       SALLOC_WAIT_ALL_NODES Same as --wait-all-nodes

       SALLOC_WCKEY          Same as --wckey

       SALLOC_WAIT4SWITCH    Max time waiting for requested switches. See --switches

       SLURM_CONF            The location of the Slurm configuration file.

       SLURM_EXIT_ERROR      Specifies the exit code generated when a Slurm error occurs (e.g. invalid options).
                             This  can  be  used  by a script to distinguish application exit codes from various
                             Slurm error conditions.  Also see SLURM_EXIT_IMMEDIATE.

       SLURM_EXIT_IMMEDIATE  Specifies the exit code generated when the --immediate option is used and resources
                             are  not  currently  available.   This  can  be  used  by  a  script to distinguish
                             application  exit  codes  from  various   Slurm   error   conditions.    Also   see
                             SLURM_EXIT_ERROR.

OUTPUT ENVIRONMENT VARIABLES

       salloc will set the following environment variables in the environment of the executed program:

       BASIL_RESERVATION_ID
              The reservation ID on Cray systems running ALPS/BASIL only.

       MPIRUN_NOALLOCATE
              Do not allocate a block on Blue Gene L/P systems only.

       MPIRUN_NOFREE
              Do not free a block on Blue Gene L/P systems only.

       MPIRUN_PARTITION
              The block name on Blue Gene systems only.

       SLURM_*_PACK_GROUP_#
              For  a  heterogenous  job  allocation,  the  environment  variables  are  set  separately for each
              component.

       SLURM_CLUSTER_NAME
              Name of the cluster on which the job is executing.

       SLURM_CPUS_PER_TASK
              Number of cpus requested per task.  Only set if the --cpus-per-task option is specified.

       SLURM_DISTRIBUTION
              Same as -m, --distribution

       SLURM_JOB_ACCOUNT
              Account name associated of the job allocation.

       SLURM_JOB_ID (and SLURM_JOBID for backwards compatibility)
              The ID of the job allocation.

       SLURM_JOB_CPUS_PER_NODE
              Count of processors available to the job on this node.  Note the  select/linear  plugin  allocates
              entire  nodes  to  jobs,  so  the  value  indicates  the  total  count  of CPUs on each node.  The
              select/cons_res plugin allocates individual processors to  jobs,  so  this  number  indicates  the
              number of processors on each node allocated to the job allocation.

       SLURM_JOB_NODELIST (and SLURM_NODELIST for backwards compatibility)
              List of nodes allocated to the job.

       SLURM_JOB_NUM_NODES (and SLURM_NNODES for backwards compatibility)
              Total number of nodes in the job allocation.

       SLURM_JOB_PARTITION
              Name of the partition in which the job is running.

       SLURM_JOB_QOS
              Quality Of Service (QOS) of the job allocation.

       SLURM_JOB_RESERVATION
              Advanced reservation containing the job allocation, if any.

       SLURM_MEM_BIND
              Set to value of the --mem-bind option.

       SLURM_MEM_BIND_LIST
              Set to bit mask used for memory binding.

       SLURM_MEM_BIND_PREFER
              Set to "prefer" if the --mem-bind option includes the prefer option.

       SLURM_MEM_BIND_SORT
              Sort free cache pages (run zonesort on Intel KNL nodes)

       SLURM_MEM_BIND_TYPE
              Set  to the memory binding type specified with the --mem-bind option.  Possible values are "none",
              "rank", "map_map", "mask_mem" and "local".

       SLURM_MEM_BIND_VERBOSE
              Set to "verbose" if the --mem-bind option includes the verbose option.  Set to "quiet" otherwise.

       SLURM_MEM_PER_CPU
              Same as --mem-per-cpu

       SLURM_MEM_PER_NODE
              Same as --mem

       SLURM_PACK_SIZE
              Set to count of components in heterogeneous job.

       SLURM_SUBMIT_DIR
              The directory from which salloc was invoked.

       SLURM_SUBMIT_HOST
              The hostname of the computer from which salloc was invoked.

       SLURM_NODE_ALIASES
              Sets of node name, communication address and hostname for nodes allocated  to  the  job  from  the
              cloud.  Each  element  in the set if colon separated and each set is comma separated. For example:
              SLURM_NODE_ALIASES=ec0:1.2.3.4:foo,ec1:1.2.3.5:bar

       SLURM_NTASKS
              Same as -n, --ntasks

       SLURM_NTASKS_PER_NODE
              Set to value of the --ntasks-per-node option, if specified.

       SLURM_PROFILE
              Same as --profile

       SLURM_TASKS_PER_NODE
              Number of tasks to be initiated on each node. Values are comma separated and in the same order  as
              SLURM_JOB_NODELIST.   If two or more consecutive nodes are to have the same task count, that count
              is   followed   by   "(x#)"   where    "#"    is    the    repetition    count.    For    example,
              "SLURM_TASKS_PER_NODE=2(x3),1"  indicates that the first three nodes will each execute three tasks
              and the fourth node will execute one task.

SIGNALS

       While salloc is waiting for a PENDING job allocation, most  signals  will  cause  salloc  to  revoke  the
       allocation request and exit.

       However  if  the  allocation  has been granted and salloc has already started the specified command, then
       salloc will ignore most signals.  salloc will not exit or release the allocation until the command exits.
       One  notable  exception  is  SIGHUP. A SIGHUP signal will cause salloc to release the allocation and exit
       without waiting for the command to finish.  Another exception is SIGTERM, which will be forwarded to  the
       spawned process.

EXAMPLES

       To get an allocation, and open a new xterm in which srun commands may be typed interactively:

              $ salloc -N16 xterm
              salloc: Granted job allocation 65537
              (at this point the xterm appears, and salloc waits for xterm to exit)
              salloc: Relinquishing job allocation 65537

       To  grab an allocation of nodes and launch a parallel application on one command line (See the salloc man
       page for more examples):

              salloc -N5 srun -n10 myprogram

       +To create a heterogeneous job with 3 components, each allocating a unique set of nodes:

              salloc -w node[2-3] : -w node4 : -w node[5-7] bash
              salloc: job 32294 queued and waiting for resources
              salloc: job 32294 has been allocated resources
              salloc: Granted job allocation 32294

COPYING

       Copyright (C) 2006-2007 The Regents of the University of  California.   Produced  at  Lawrence  Livermore
       National Laboratory (cf, DISCLAIMER).
       Copyright (C) 2008-2010 Lawrence Livermore National Security.
       Copyright (C) 2010-2015 SchedMD LLC.

       This    file    is    part    of    Slurm,   a   resource   management   program.    For   details,   see
       <https://slurm.schedmd.com/>.

       Slurm is free software; you can redistribute it and/or modify it under  the  terms  of  the  GNU  General
       Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
       option) any later version.

       Slurm is distributed in the hope that it will be useful, but  WITHOUT  ANY  WARRANTY;  without  even  the
       implied  warranty  of  MERCHANTABILITY  or  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
       License for more details.

SEE ALSO

       sinfo(1), sattach(1), sbatch(1), squeue(1),  scancel(1),  scontrol(1),  slurm.conf(5),  sched_setaffinity
       (2), numa (3)