Provided by: openmpi-doc_2.1.1-8_all bug

NAME

       MPI_Scan, MPI_Iscan - Computes an inclusive scan (partial reduction)

SYNTAX

C Syntax

       #include <mpi.h>
       int MPI_Scan(const void *sendbuf, void *recvbuf, int count,
                    MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

       int MPI_Iscan(const void *sendbuf, void *recvbuf, int count,
                     MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
                     MPI_Request *request)

Fortran Syntax

       INCLUDE 'mpif.h'
       MPI_SCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
            <type>    SENDBUF(*), RECVBUF(*)
            INTEGER   COUNT, DATATYPE, OP, COMM, IERROR

       MPI_ISCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR)
            <type>    SENDBUF(*), RECVBUF(*)
            INTEGER   COUNT, DATATYPE, OP, COMM, REQUEST, IERROR

C++ Syntax

       #include <mpi.h>
       void MPI::Intracomm::Scan(const void* sendbuf, void* recvbuf,
            int count, const MPI::Datatype& datatype,
            const MPI::Op& op) const

INPUT PARAMETERS

       sendbuf   Send buffer (choice).

       count     Number of elements in input buffer (integer).

       datatype  Data type of elements of input buffer (handle).

       op        Operation (handle).

       comm      Communicator (handle).

OUTPUT PARAMETERS

       recvbuf   Receive buffer (choice).

       request   Request (handle, non-blocking only).

       IERROR    Fortran only: Error status (integer).

DESCRIPTION

       MPI_Scan  is  used  to  perform  an  inclusive  prefix  reduction  on data distributed across the calling
       processes. The operation returns, in the recvbuf of the process with rank i,  the  reduction  (calculated
       according  to  the  function  op)  of  the  values  in  the  sendbufs  of  processes with ranks 0, ..., i
       (inclusive). The type of operations supported, their semantics, and the constraints on send  and  receive
       buffers are as for MPI_Reduce.

EXAMPLE

       This example uses a user-defined operation to produce a segmented scan. A segmented scan takes, as input,
       a set of values and a set of logicals, where the logicals delineate the various segments of the scan. For
       example,

       values     v1      v2      v3      v4      v5      v6      v7      v8
       logicals   0       0       1       1       1       0       0       1
       result     v1    v1+v2     v3    v3+v4  v3+v4+v5   v6    v6+v7     v8

       The  result  for  rank  j is thus the sum v(i) + ... + v(j), where i is the lowest rank such that for all
       ranks n, i <= n <= j, logical(n) = logical(j). The operator that produces this effect is

             [ u ]     [ v ]     [ w ]
             [   ]  o  [   ]  =  [   ]
             [ i ]     [ j ]     [ j ]

       where

                   ( u + v if i  = j
             w  =  (
                   ( v     if i != j

       Note that this is a noncommutative operator. C code that implements it is given below.

            typedef struct {
                 double val;
                 int log;
            } SegScanPair;

            /*
             * the user-defined function
             */
            void segScan(SegScanPair *in, SegScanPair *inout, int *len,
                 MPI_Datatype *dptr)
            {
                 int i;
                 SegScanPair c;

                 for (i = 0; i < *len; ++i) {
                      if (in->log == inout->log)
                           c.val = in->val + inout->val;
                      else
                           c.val = inout->val;

                      c.log = inout->log;
                      *inout = c;
                      in++;
                      inout++;
                 }
            }

       Note that the inout argument to the user-defined function corresponds to the right-hand  operand  of  the
       operator.  When  using  this operator, we must be careful to specify that it is noncommutative, as in the
       following:

            int            i, base;
            SeqScanPair    a, answer;
            MPI_Op         myOp;
            MPI_Datatype   type[2] = {MPI_DOUBLE, MPI_INT};
            MPI_Aint       disp[2];
            int            blocklen[2] = {1, 1};
            MPI_Datatype   sspair;

            /*
             * explain to MPI how type SegScanPair is defined
             */
            MPI_Get_address(a, disp);
            MPI_Get_address(a.log, disp + 1);
            base = disp[0];
            for (i = 0; i < 2; ++i)
                 disp[i] -= base;
            MPI_Type_struct(2, blocklen, disp, type, &sspair);
            MPI_Type_commit(&sspair);

            /*
             * create the segmented-scan user-op
             * noncommutative - set commute (arg 2) to 0
             */
            MPI_Op_create((MPI_User_function *)segScan, 0, &myOp);
            ...
            MPI_Scan(a, answer, 1, sspair, myOp, comm);

USE OF IN-PLACE OPTION

       When the communicator is an intracommunicator, you can perform a scanning operation in place (the  output
       buffer is used as the input buffer).  Use the variable MPI_IN_PLACE as the value of the sendbuf argument.
       The input data is taken from the receive buffer and replaced by the output data.

NOTES ON COLLECTIVE OPERATIONS

       The reduction functions of type MPI_Op do not return an error value.   As  a  result,  if  the  functions
       detect  an  error,  all  they  can do is either call MPI_Abort or silently skip the problem. Thus, if the
       error handler is changed from MPI_ERRORS_ARE_FATAL to something else (e.g., MPI_ERRORS_RETURN),  then  no
       error may be indicated.

       The  reason for this is the performance problems in ensuring that all collective routines return the same
       error value.

ERRORS

       Almost all MPI routines return an error value; C routines as  the  value  of  the  function  and  Fortran
       routines in the last argument. C++ functions do not return errors. If the default error handler is set to
       MPI::ERRORS_THROW_EXCEPTIONS, then on error the  C++  exception  mechanism  will  be  used  to  throw  an
       MPI::Exception object.

       Before  the  error  value  is  returned,  the current MPI error handler is called. By default, this error
       handler aborts the MPI job, except for I/O function  errors.  The  error  handler  may  be  changed  with
       MPI_Comm_set_errhandler; the predefined error handler MPI_ERRORS_RETURN may be used to cause error values
       to be returned. Note that MPI does not guarantee that an MPI program can continue past an error.

       See the MPI man page for a full list of MPI error codes.

SEE ALSO

       MPI_Exscan
       MPI_Op_create
       MPI_Reduce