Provided by: libmath-gsl-perl_0.39-1build2_amd64 bug

NAME

       Math::GSL::Integration - Routines for performing numerical integration (quadrature) of a
       function in one dimension

SYNOPSIS

           use Math::GSL::Integration qw /:all/;

           my $function = sub { $_[0]**2 } ;
           my ($lower, $upper ) = (0,1);
           my ($relerr,$abserr) = (0,1e-7);

           my ($status, $result, $abserr, $num_evals) = gsl_integration_qng ( $function,
                                                           $lower, $upper, $relerr, $abserr
                                                        );

DESCRIPTION

       This module allows you to numerically integrate a Perl subroutine. Depending on the
       properties of your function (singularities, smoothness) and the type of integration range
       (finite, infinite, semi-infinite), you will need to choose a quadrature routine that fits
       your needs.

       •   "gsl_integration_workspace_alloc($n)"

           This function allocates a workspace sufficient to hold $n double precision intervals,
           their integration results and error estimates.

       •   "gsl_integration_workspace_free($w)"

            This function frees the memory associated with the workspace $w.

       •   "gsl_integration_qaws_table_alloc($alpha, $beta, $mu, $nu)"

            This function allocates space for a gsl_integration_qaws_table struct
            describing a singular weight function W(x) with the parameters ($alpha, $beta,
            $mu, $nu), W(x) = (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x) where
            $alpha > -1, $beta > -1, and $mu = 0, 1, $nu = 0, 1. The weight function can
            take four different forms depending on the values of $mu and $nu,

                         W(x) = (x-a)^alpha (b-x)^beta                   (mu = 0, nu = 0)
                         W(x) = (x-a)^alpha (b-x)^beta log(x-a)          (mu = 1, nu = 0)
                         W(x) = (x-a)^alpha (b-x)^beta log(b-x)          (mu = 0, nu = 1)
                         W(x) = (x-a)^alpha (b-x)^beta log(x-a) log(b-x) (mu = 1, nu = 1)

           The singular points (a,b) do not have to be specified until the integral is computed,
           where they are the endpoints of the integration range.  The function returns a pointer
           to the newly allocated table gsl_integration_qaws_table if no errors were detected,
           and 0 in the case of error.

       •   "gsl_integration_qaws_table_set($t, $alpha, $beta, $mu, $nu)"

            This function modifies the parameters ($alpha, $beta, $mu, $nu) of an existing
            gsl_integration_qaws_table struct $t.

       •   "gsl_integration_qaws_table_free($t)"

            This function frees all the memory associated with the
            gsl_integration_qaws_table struct $t.

       •   "gsl_integration_qawo_table_alloc($omega, $L, $sine, $n)"

       •   "gsl_integration_qawo_table_set($t, $omega, $L, $sine, $n)"

            This function changes the parameters omega, L and sine of the existing
            workspace $t.

       •   "gsl_integration_qawo_table_set_length($t, $L)"

            This function allows the length parameter $L of the workspace $t to be
            changed.

       •   "gsl_integration_qawo_table_free($t)"

            This function frees all the memory associated with the workspace $t.

       •   "gsl_integration_qk15($function,$a,$b,$resabs,$resasc) "

       •   "gsl_integration_qk21($function,$a,$b,$resabs,$resasc) "

       •   "gsl_integration_qk31($function,$a,$b,$resabs,$resasc) "

       •   "gsl_integration_qk41($function,$a,$b,$resabs,$resasc) "

       •   "gsl_integration_qk51($function,$a,$b,$resabs,$resasc) "

       •   "gsl_integration_qk61($function,$a,$b,$resabs,$resasc) "

       •   "gsl_integration_qcheb($function, $a, $b, $cheb12, $cheb24) "

       •   "gsl_integration_qk "

       •   "gsl_integration_qng($function,$a,$b,$epsabs,$epsrel,$num_evals) "

           This routine QNG (Quadrature Non-Adaptive Gaussian) is inexpensive is the sense that
           it will evaluate the function much fewer times than the adaptive routines.  Because of
           this it does not need any workspaces, so it is also more memory efficient. It should
           be perfectly fine for well-behaved functions (smooth and nonsingular), but will not be
           able to get the required accuracy or may not converge for more complicated functions.

       •   "gsl_integration_qag($function,$a,$b,$epsabs,$epsrel,$limit,$key,$workspace) "

           This routine QAG (Quadrature Adaptive Gaussian) ...

       •   "gsl_integration_qagi($function,$epsabs,$epsrel,$limit,$workspace) "

       •   "gsl_integration_qagiu($function,$a,$epsabs,$epsrel,$limit,$workspace) "

       •   "gsl_integration_qagil($function,$b,$epsabs,$epsrel,$limit,$workspace) "

       •   "gsl_integration_qags($func,$a,$b,$epsabs,$epsrel,$limit,$workspace)"

               ($status, $result, $abserr) = gsl_integration_qags (
                                       sub { 1/$_[0]} ,
                                       1, 10, 0, 1e-7, 1000,
                                       $workspace,
                                   );

            This function applies the Gauss-Kronrod 21-point integration rule
            adaptively until an estimate of the integral of $func over ($a,$b) is
            achieved within the desired absolute and relative error limits,
            $epsabs and $epsrel.

       •   "gsl_integration_qagp($function, $pts, $npts, $epsbs, $epsrel, $limit, $workspace) "

       •   "gsl_integration_qawc($function, $a, $b, $c, $epsabs, $epsrel, $limit, $workspace) "

       •   "gsl_integration_qaws($function, $a, $b, $qaws_table, $epsabs, $epsrel, $limit,
           $workspace) "

       •   "gsl_integration_qawo($function, $a, $epsabs, $epsrel, $limit, $workspace,
           $qawo_table) "

       •   "gsl_integration_qawf($function, $a, $epsabs, $limit, $workspace, $cycle_workspace,
           $qawo_table) "

       This module also includes the following constants :

       •   $GSL_INTEG_COSINE

       •   $GSL_INTEG_SINE

       •   $GSL_INTEG_GAUSS15

       •   $GSL_INTEG_GAUSS21

       •   $GSL_INTEG_GAUSS31

       •   $GSL_INTEG_GAUSS41

       •   $GSL_INTEG_GAUSS51

       •   $GSL_INTEG_GAUSS61

       The following error constants are part of the Math::GSL::Errno module and can be returned
       by the gsl_integration_* functions :

       •   $GSL_EMAXITER

           Maximum number of subdivisions was exceeded.

       •   $GSL_EROUND

           Cannot reach tolerance because of roundoff error, or roundoff error was detected in
           the extrapolation table.

       •   GSL_ESING

           A non-integrable singularity or other bad integrand behavior was found in the
           integration interval.

       •   GSL_EDIVERGE

           The integral is divergent, or too slowly convergent to be integrated numerically.

MORE INFO

       For more information on the functions, we refer you to the GSL offcial documentation:
       <http://www.gnu.org/software/gsl/manual/html_node/>

AUTHORS

       Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>

COPYRIGHT AND LICENSE

       Copyright (C) 2008-2011 Jonathan "Duke" Leto and Thierry Moisan

       This program is free software; you can redistribute it and/or modify it under the same
       terms as Perl itself.