Provided by: pdl_2.018-1ubuntu4_amd64 bug

NAME

       PDL::GSL::INTEG - PDL interface to numerical integration routines in GSL

DESCRIPTION

       This is an interface to the numerical integration package present in the GNU Scientific Library, which is
       an implementation of QUADPACK.

       Functions are named gslinteg_{algorithm} where {algorithm} is the QUADPACK naming convention. The
       available functions are:

       gslinteg_qng: Non-adaptive Gauss-Kronrod integration
       gslinteg_qag: Adaptive integration
       gslinteg_qags: Adaptive integration with singularities
       gslinteg_qagp: Adaptive integration with known singular points
       gslinteg_qagi: Adaptive integration on infinite interval of the form (-\infty,\infty)
       gslinteg_qagiu: Adaptive integration on infinite interval of the form (a,\infty)
       gslinteg_qagil: Adaptive integration on infinite interval of the form (-\infty,b)
       gslinteg_qawc: Adaptive integration for Cauchy principal values
       gslinteg_qaws: Adaptive integration for singular functions
       gslinteg_qawo: Adaptive integration for oscillatory functions
       gslinteg_qawf: Adaptive integration for Fourier integrals

       Each algorithm computes an approximation to the integral, I, of the function f(x)w(x), where w(x) is a
       weight function (for general integrands w(x)=1). The user provides absolute and relative error bounds
       (epsabs,epsrel) which specify the following accuracy requirement:

       |RESULT - I|  <= max(epsabs, epsrel |I|)

       The routines will fail to converge if the error bounds are too stringent, but always return the best
       approximation obtained up to that stage

       All functions return the result, and estimate of the absolute error and an error flag (which is zero if
       there were no problems).  You are responsible for checking for any errors, no warnings are issued unless
       the option {Warn => 'y'} is specified in which case the reason of failure will be printed.

       You can nest integrals up to 20 levels. If you find yourself in the unlikely situation that you need
       more, you can change the value of 'max_nested_integrals' in the first line of the file 'FUNC.c' and
       recompile.

       Please check the GSL documentation for more information.

SYNOPSIS

          use PDL;
          use PDL::GSL::INTEG;

          my $a = 1.2;
          my $b = 3.7;
          my $epsrel = 0;
          my $epsabs = 1e-6;

          # Non adaptive integration
          my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&myf,$a,$b,$epsrel,$epsabs);
          # Warnings on
          my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&myf,$a,$b,$epsrel,$epsabs,{Warn=>'y'});

          # Adaptive integration with warnings on
          my $limit = 1000;
          my $key = 5;
          my ($res,$abserr,$ierr) = gslinteg_qag(\&myf,$a,$b,$epsrel,
                                            $epsabs,$limit,$key,{Warn=>'y'});

          sub myf{
            my ($x) = @_;
            return exp(-$x**2);
          }

FUNCTIONS

   qng_meat
         Signature: (double a(); double b(); double epsabs();
                          double epsrel(); double [o] result(); double [o] abserr();
                          int [o] neval(); int [o] ierr(); int gslwarn(); SV* function)

       info not available

       qng_meat does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qag_meat
         Signature: (double a(); double b(); double epsabs();double epsrel(); int limit();
                          int key(); double [o] result(); double [o] abserr();int n();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qag_meat does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qags_meat
         Signature: (double a(); double b(); double epsabs();double epsrel(); int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qags_meat does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qagp_meat
         Signature: (double pts(l); double epsabs();double epsrel();int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qagp_meat does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qagi_meat
         Signature: (double epsabs();double epsrel(); int limit();
                          double [o] result(); double [o] abserr(); int n(); int [o] ierr();int gslwarn();; SV* function)

       info not available

       qagi_meat does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qagiu_meat
         Signature: (double a(); double epsabs();double epsrel();int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qagiu_meat does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qagil_meat
         Signature: (double b(); double epsabs();double epsrel();int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qagil_meat does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qawc_meat
         Signature: (double a(); double b(); double c(); double epsabs();double epsrel();int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qawc_meat does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qaws_meat
         Signature: (double a(); double b();double epsabs();double epsrel();int limit();
                        double [o] result(); double [o] abserr();int n();
                        double alpha(); double beta(); int mu(); int nu();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qaws_meat does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qawo_meat
         Signature: (double a(); double b();double epsabs();double epsrel();int limit();
                        double [o] result(); double [o] abserr();int n();
                        int sincosopt(); double omega(); double L(); int nlevels();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qawo_meat does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qawf_meat
         Signature: (double a(); double epsabs();int limit();
                        double [o] result(); double [o] abserr();int n();
                        int sincosopt(); double omega(); int nlevels();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qawf_meat does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   gslinteg_qng
       Non-adaptive Gauss-Kronrod integration

       This function applies the Gauss-Kronrod 10-point, 21-point, 43-point and 87-point integration rules in
       succession until an estimate of the integral of f over ($a,$b) is achieved within the desired absolute
       and relative error limits, $epsabs and $epsrel.  It is meant for fast integration of smooth functions. It
       returns an array with the result, an estimate of the absolute error, an error flag and the number of
       function evaluations performed.

       Usage:

         ($res,$abserr,$ierr,$neval) = gslinteg_qng($function_ref,$a,$b,
                                                    $epsrel,$epsabs,[{Warn => $warn}]);

       Example:

          my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&f,0,1,0,1e-9);
          # with warnings on
          my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&f,0,1,0,1e-9,{Warn => 'y'});

          sub f{
            my ($x) = @_;
            return ($x**2.6)*log(1.0/$x);
          }

   gslinteg_qag
       Adaptive integration

       This function applies an integration rule adaptively until an estimate of the integral of f over ($a,$b)
       is achieved within the desired absolute and relative error limits, $epsabs and $epsrel. On each iteration
       the adaptive integration strategy bisects the interval with the largest error estimate; the maximum
       number of allowed subdivisions is given by the parameter $limit.  The integration rule is determined by
       the value of $key, which has to be one of (1,2,3,4,5,6) and correspond to the 15, 21, 31, 41, 51 and 61
       point Gauss-Kronrod rules respectively.  It returns an array with the result, an estimate of the absolute
       error and an error flag.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qag($function_ref,$a,$b,$epsrel,
                                             $epsabs,$limit,$key,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qag(\&f,0,1,0,1e-10,1000,1);
         # with warnings on
         my ($res,$abserr,$ierr) = gslinteg_qag(\&f,0,1,0,1e-10,1000,1,{Warn => 'y'});

         sub f{
            my ($x) = @_;
            return ($x**2.6)*log(1.0/$x);
          }

   gslinteg_qags
       Adaptive integration with singularities

       This function applies the Gauss-Kronrod 21-point integration rule adaptively until an estimate of the
       integral of f over ($a,$b) is achieved within the desired absolute and relative error limits, $epsabs and
       $epsrel. The algorithm is such that it accelerates the convergence of the integral in the presence of
       discontinuities and integrable singularities.  The maximum number of allowed subdivisions done by the
       adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qags($function_ref,$a,$b,$epsrel,
                                              $epsabs,$limit,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qags(\&f,0,1,0,1e-10,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qags(\&f,0,1,0,1e-10,1000,{Warn => 'y'});

         sub f{
            my ($x) = @_;
            return ($x)*log(1.0/$x);
          }

   gslinteg_qagp
       Adaptive integration with known singular points

       This function applies the adaptive integration algorithm used by gslinteg_qags taking into account the
       location of singular points until an estimate of the integral of f over ($a,$b) is achieved within the
       desired absolute and relative error limits, $epsabs and $epsrel.  Singular points are supplied in the
       piddle $points, whose endpoints determine the integration range.  So, for example, if the function has
       singular points at x_1 and x_2 and the integral is desired from a to b (a < x_1 < x_2 < b), $points =
       pdl(a,x_1,x_2,b).  The maximum number of allowed subdivisions done by the adaptive algorithm must be
       supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qagp($function_ref,$points,$epsabs,
                                              $epsrel,$limit,[{Warn => $warn}])

       Example:

         my $points = pdl(0,1,sqrt(2),3);
         my ($res,$abserr,$ierr) = gslinteg_qagp(\&f,$points,0,1e-3,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qagp(\&f,$points,0,1e-3,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           my $x2 = $x**2;
           my $x3 = $x**3;
           return $x3 * log(abs(($x2-1.0)*($x2-2.0)));
         }

   gslinteg_qagi
       Adaptive integration on infinite interval

       This function estimates the integral of the function f over the infinite interval (-\infty,+\infty)
       within the desired absolute and relative error limits, $epsabs and $epsrel.  After a transformation, the
       algorithm of gslinteg_qags with a 15-point Gauss-Kronrod rule is used.  The maximum number of allowed
       subdivisions done by the adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qagi($function_ref,$epsabs,
                                              $epsrel,$limit,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qagi(\&myfn,1e-7,0,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qagi(\&myfn,1e-7,0,1000,{Warn => 'y'});

         sub myfn{
           my ($x) = @_;
           return exp(-$x - $x*$x) ;
         }

   gslinteg_qagiu
       Adaptive integration on infinite interval

       This function estimates the integral of the function f over the infinite interval (a,+\infty) within the
       desired absolute and relative error limits, $epsabs and $epsrel.  After a transformation, the algorithm
       of gslinteg_qags with a 15-point Gauss-Kronrod rule is used.  The maximum number of allowed subdivisions
       done by the adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qagiu($function_ref,$a,$epsabs,
                                               $epsrel,$limit,[{Warn => $warn}]);

       Example:

         my $alfa = 1;
         my ($res,$abserr,$ierr) = gslinteg_qagiu(\&f,99.9,1e-7,0,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qagiu(\&f,99.9,1e-7,0,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           if (($x==0) && ($alfa == 1)) {return 1;}
           if (($x==0) && ($alfa > 1)) {return 0;}
           return ($x**($alfa-1))/((1+10*$x)**2);
         }

   gslinteg_qagil
       Adaptive integration on infinite interval

       This function estimates the integral of the function f over the infinite interval (-\infty,b) within the
       desired absolute and relative error limits, $epsabs and $epsrel.  After a transformation, the algorithm
       of gslinteg_qags with a 15-point Gauss-Kronrod rule is used.  The maximum number of allowed subdivisions
       done by the adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qagl($function_ref,$b,$epsabs,
                                              $epsrel,$limit,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qagil(\&myfn,1.0,1e-7,0,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qagil(\&myfn,1.0,1e-7,0,1000,{Warn => 'y'});

         sub myfn{
           my ($x) = @_;
           return exp($x);
         }

   gslinteg_qawc
       Adaptive integration for Cauchy principal values

       This function computes the Cauchy principal value of the integral of f over (a,b), with a singularity at
       c, I = \int_a^b dx f(x)/(x - c). The integral is estimated within the desired absolute and relative error
       limits, $epsabs and $epsrel.  The maximum number of allowed subdivisions done by the adaptive algorithm
       must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qawc($function_ref,$a,$b,$c,$epsabs,$epsrel,$limit)

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qawc(\&f,-1,5,0,0,1e-3,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qawc(\&f,-1,5,0,0,1e-3,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           return 1.0 / (5.0 * $x * $x * $x + 6.0) ;
         }

   gslinteg_qaws
       Adaptive integration for singular functions

       The algorithm in gslinteg_qaws is designed for integrands with algebraic-logarithmic singularities at the
       end-points of an integration region.  Specifically, this function computes the integral given by I =
       \int_a^b dx f(x) (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x).  The integral is estimated within the
       desired absolute and relative error limits, $epsabs and $epsrel.  The maximum number of allowed
       subdivisions done by the adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) =
             gslinteg_qawc($function_ref,$alpha,$beta,$mu,$nu,$a,$b,
                           $epsabs,$epsrel,$limit,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qaws(\&f,0,0,1,0,0,1,0,1e-7,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qaws(\&f,0,0,1,0,0,1,0,1e-7,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           if($x==0){return 0;}
           else{
             my $u = log($x);
             my $v = 1 + $u*$u;
             return 1.0/($v*$v);
           }
         }

   gslinteg_qawo
       Adaptive integration for oscillatory functions

       This function uses an adaptive algorithm to compute the integral of f over (a,b) with the weight function
       sin(omega*x) or cos(omega*x) -- which of sine or cosine is used is determined by the parameter $opt
       ('cos' or 'sin').  The integral is estimated within the desired absolute and relative error limits,
       $epsabs and $epsrel.  The maximum number of allowed subdivisions done by the adaptive algorithm must be
       supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qawo($function_ref,$omega,$sin_or_cos,
                                       $a,$b,$epsabs,$epsrel,$limit,[opt])

       Example:

         my $PI = 3.14159265358979323846264338328;
         my ($res,$abserr,$ierr) = PDL::GSL::INTEG::gslinteg_qawo(\&f,10*$PI,'sin',0,1,0,1e-7,1000);
         # with warnings on
         ($res,$abserr,$ierr) = PDL::GSL::INTEG::gslinteg_qawo(\&f,10*$PI,'sin',0,1,0,1e-7,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           if($x==0){return 0;}
           else{ return log($x);}
         }

   gslinteg_qawf
       Adaptive integration for Fourier integrals

       This function attempts to compute a Fourier integral of the function f over the semi-infinite interval
       [a,+\infty). Specifically, it attempts tp compute I = \int_a^{+\infty} dx f(x)w(x), where w(x) is
       sin(omega*x) or cos(omega*x) -- which of sine or cosine is used is determined by the parameter $opt
       ('cos' or 'sin').  The integral is estimated within the desired absolute error limit $epsabs.  The
       maximum number of allowed subdivisions done by the adaptive algorithm must be supplied in the parameter
       $limit.

       Please check the GSL documentation for more information.

       Usage:

         gslinteg_qawf($function_ref,$omega,$sin_or_cos,$a,$epsabs,$limit,[opt])

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qawf(\&f,$PI/2.0,'cos',0,1e-7,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qawf(\&f,$PI/2.0,'cos',0,1e-7,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           if ($x == 0){return 0;}
           return 1.0/sqrt($x)
         }

BUGS

       Feedback is welcome. Log bugs in the PDL bug database (the database is always linked from
       <http://pdl.perl.org>).

SEE ALSO

       PDL

       The GSL documentation is online at

         http://www.gnu.org/software/gsl/manual/

AUTHOR

       This file copyright (C) 2003,2005 Andres Jordan <ajordan@eso.org> All rights reserved. There is no
       warranty. You are allowed to redistribute this software documentation under certain conditions. For
       details, see the file COPYING in the PDL distribution. If this file is separated from the PDL
       distribution, the copyright notice should be included in the file.

       The GSL integration routines were written by Brian Gough. QUADPACK was written by Piessens, Doncker-
       Kapenga, Uberhuber and Kahaner.