Provided by: pdl_2.018-1ubuntu4_amd64 bug

NAME

       Inline::Pdlpp - Write PDL Subroutines inline with PDL::PP

DESCRIPTION

       "Inline::Pdlpp" is a module that allows you to write PDL subroutines in the PDL::PP style.
       The big benefit compared to plain "PDL::PP" is that you can write these definitions inline
       in any old perl script (without the normal hassle of creating Makefiles, building, etc).
       Since version 0.30 the Inline module supports multiple programming languages and each
       language has its own support module. This document describes how to use Inline with
       PDL::PP (or rather, it will once these docs are complete ";)".

       For more information on Inline in general, see Inline.

       Some example scripts demonstrating "Inline::Pdlpp" usage can be found in the
       Example/InlinePdlpp directory.

       "Inline::Pdlpp" is a subclass of Inline::C. Most Kudos goes to Brian I.

Usage

       You never actually use "Inline::Pdlpp" directly. It is just a support module for using
       "Inline.pm" with "PDL::PP". So the usage is always:

           use Inline Pdlpp => ...;

       or

           bind Inline Pdlpp => ...;

Examples

       Pending availability of full docs a few quick examples that illustrate typical usage.

   A simple example
          # example script inlpp.pl
          use PDL; # must be called before (!) 'use Inline Pdlpp' calls

          use Inline Pdlpp; # the actual code is in the __Pdlpp__ block below

          $a = sequence 10;
          print $a->inc,"\n";
          print $a->inc->dummy(1,10)->tcumul,"\n";

          __DATA__

          __Pdlpp__

          pp_def('inc',
                 Pars => 'i();[o] o()',
                 Code => '$o() = $i() + 1;',
                );

          pp_def('tcumul',
                 Pars => 'in(n);[o] mul()',
                 Code => '$mul() = 1;
                          loop(n) %{
                            $mul() *= $in();
                          %}',
          );
          # end example script

       If you call this script it should generate output similar to this:

          prompt> perl inlpp.pl
          Inline running PDL::PP version 2.2...
          [1 2 3 4 5 6 7 8 9 10]
          [3628800 3628800 3628800 3628800 3628800 3628800 3628800 3628800 3628800 3628800]

       Usage of "Inline::Pdlpp" in general is similar to "Inline::C".  In the absence of full
       docs for "Inline::Pdlpp" you might want to compare Inline::C.

   Code that uses external libraries, etc
       The script below is somewhat more complicated in that it uses code from an external
       library (here from Numerical Recipes). All the relevant information regarding include
       files, libraries and boot code is specified in a config call to "Inline". For more
       experienced Perl hackers it might be helpful to know that the format is similar to that
       used with ExtUtils::MakeMaker. The keywords are largely equivalent to those used with
       "Inline::C". Please see below for further details on the usage of "INC", "LIBS",
       "AUTO_INCLUDE" and "BOOT".

          use PDL; # this must be called before (!) 'use Inline Pdlpp' calls

          use Inline Pdlpp => Config =>
            INC => "-I$ENV{HOME}/include",
            LIBS => "-L$ENV{HOME}/lib -lnr -lm",
            # code to be included in the generated XS
            AUTO_INCLUDE => <<'EOINC',
          #include <math.h>
          #include "nr.h"    /* for poidev */
          #include "nrutil.h"  /* for err_handler */

          static void nr_barf(char *err_txt)
          {
            fprintf(stderr,"Now calling croak...\n");
            croak("NR runtime error: %s",err_txt);
          }
          EOINC
          # install our error handler when loading the Inline::Pdlpp code
          BOOT => 'set_nr_err_handler(nr_barf);';

          use Inline Pdlpp; # the actual code is in the __Pdlpp__ block below

          $a = zeroes(10) + 30;;
          print $a->poidev(5),"\n";

          __DATA__

          __Pdlpp__

          pp_def('poidev',
                  Pars => 'xm(); [o] pd()',
                  GenericTypes => [L,F,D],
                  OtherPars => 'long idum',
                  Code => '$pd() = poidev((float) $xm(), &$COMP(idum));',
          );

Pdlpp Configuration Options

       For information on how to specify Inline configuration options, see Inline. This section
       describes each of the configuration options available for Pdlpp. Most of the options
       correspond either to MakeMaker or XS options of the same name. See ExtUtils::MakeMaker and
       perlxs.

   AUTO_INCLUDE
       Specifies extra statements to automatically included. They will be added onto the
       defaults. A newline char will be automatically added.  Does essentially the same as a call
       to "pp_addhdr". For short bits of code "AUTO_INCLUDE" is probably syntactically nicer.

           use Inline Pdlpp => Config => AUTO_INCLUDE => '#include "yourheader.h"';

   BLESS
       Same as "pp_bless" command. Specifies the package (i.e. class) to which your new pp_defed
       methods will be added. Defaults to "PDL" if omitted.

           use Inline Pdlpp => Config => BLESS => 'PDL::Complex';

   BOOT
       Specifies C code to be executed in the XS BOOT section. Corresponds to the XS parameter.
       Does the same as the "pp_add_boot" command. Often used to execute code only once at load
       time of the module, e.g. a library initialization call.

   CC
       Specify which compiler to use.

   CCFLAGS
       Specify extra compiler flags.

   INC
       Specifies an include path to use. Corresponds to the MakeMaker parameter.

           use Inline Pdlpp => Config => INC => '-I/inc/path';

   LD
       Specify which linker to use.

   LDDLFLAGS
       Specify which linker flags to use.

       NOTE: These flags will completely override the existing flags, instead of just adding to
       them. So if you need to use those too, you must respecify them here.

   LIBS
       Specifies external libraries that should be linked into your code. Corresponds to the
       MakeMaker parameter.

           use Inline Pdlpp => Config => LIBS => '-lyourlib';

       or

           use Inline Pdlpp => Config => LIBS => '-L/your/path -lyourlib';

   MAKE
       Specify the name of the 'make' utility to use.

   MYEXTLIB
       Specifies a user compiled object that should be linked in. Corresponds to the MakeMaker
       parameter.

           use Inline Pdlpp => Config => MYEXTLIB => '/your/path/yourmodule.so';

   OPTIMIZE
       This controls the MakeMaker OPTIMIZE setting. By setting this value to '-g', you can turn
       on debugging support for your Inline extensions. This will allow you to be able to set
       breakpoints in your C code using a debugger like gdb.

   TYPEMAPS
       Specifies extra typemap files to use. Corresponds to the MakeMaker parameter.

           use Inline Pdlpp => Config => TYPEMAPS => '/your/path/typemap';

   NOISY
       Show the output of any compilations going on behind the scenes. Turns on "BUILD_NOISY" in
       Inline::C.

BUGS

   "do"ing inline scripts
       Beware that there is a problem when you use the __DATA__ keyword style of Inline
       definition and want to "do" your script containing inlined code. For example

          # myscript.pl contains inlined code
          # in the __DATA__ section
          perl -e 'do "myscript.pl";'
        One or more DATA sections were not processed by Inline.

       According to Brian Ingerson (of Inline fame) the workaround is to include an
       "Inline->init" call in your script, e.g.

         use PDL;
         use Inline Pdlpp;
         Inline->init;

         # perl code

         __DATA__
         __Pdlpp__

         # pp code

   "PDL::NiceSlice" and "Inline::Pdlpp"
       There is currently an undesired interaction between PDL::NiceSlice and "Inline::Pdlpp".
       Since PP code generally contains expressions of the type "$var()" (to access piddles, etc)
       PDL::NiceSlice recognizes those incorrectly as slice expressions and does its
       substitutions. For the moment (until hopefully the parser can deal with that) it is best
       to explicitly switch PDL::NiceSlice off before the section of inlined Pdlpp code. For
       example:

         use PDL::NiceSlice;
         use Inline::Pdlpp;

         $a = sequence 10;
         $a(0:3)++;
         $a->inc;

         no PDL::NiceSlice;

         __DATA__

         __C__

         ppdef (...); # your full pp definition here

ACKNOWLEDGEMENTS

       Brian Ingerson for creating the Inline infrastructure.

AUTHOR

       Christian Soeller <soellermail@excite.com>

SEE ALSO

       PDL

       PDL::PP

       Inline

       Inline::C

COPYRIGHT

       Copyright (c) 2001. Christian Soeller. All rights reserved.

       This program is free software; you can redistribute it and/or modify it under the same
       terms as PDL itself.

       See http://pdl.perl.org