Provided by: tcllib_1.19-dfsg-2_all bug

NAME

       simulation::montecarlo - Monte Carlo simulations

SYNOPSIS

       package require Tcl  ?8.4?

       package require simulation::montecarlo  0.1

       package require simulation::random

       package require math::statistics

       ::simulation::montecarlo::getOption keyword

       ::simulation::montecarlo::hasOption keyword

       ::simulation::montecarlo::setOption keyword value

       ::simulation::montecarlo::setTrialResult values

       ::simulation::montecarlo::setExpResult values

       ::simulation::montecarlo::getTrialResults

       ::simulation::montecarlo::getExpResult

       ::simulation::montecarlo::transposeData values

       ::simulation::montecarlo::integral2D ...

       ::simulation::montecarlo::singleExperiment args

_________________________________________________________________________________________________

DESCRIPTION

       The technique of Monte Carlo simulations is basically simple:

       •      generate random values for one or more parameters.

       •      evaluate  the model of some system you are interested in and record the interesting
              results for each realisation of these parameters.

       •      after a suitable number of such trials, deduce an  overall  characteristic  of  the
              model.

       You  can  think of a model of a network of computers, an ecosystem of some kind or in fact
       anything that can be quantitatively described and has some stochastic element in it.

       The  package  simulation::montecarlo  offers  a  basic  framework  for  such  a  modelling
       technique:

              #
              # MC experiments:
              # Determine the mean and median of a set of points and compare them
              #
              ::simulation::montecarlo::singleExperiment -init {
                  package require math::statistics

                  set prng [::simulation::random::prng_Normal 0.0 1.0]
              } -loop {
                  set numbers {}
                  for { set i 0 } { $i < [getOption samples] } { incr i } {
                      lappend numbers [$prng]
                  }
                  set mean   [::math::statistics::mean $numbers]
                  set median [::math::statistics::median $numbers] ;# ? Exists?
                  setTrialResult [list $mean $median]
              } -final {
                  set result [getTrialResults]
                  set means   {}
                  set medians {}
                  foreach r $result {
                      foreach {m M} $r break
                      lappend means   $m
                      lappend medians $M
                  }
                  puts [getOption reportfile] "Correlation: [::math::statistics::corr $means $medians]"

              } -trials 100 -samples 10 -verbose 1 -columns {Mean Median}

       This  example attemps to find out how well the median value and the mean value of a random
       set of numbers correlate. Sometimes a median value is a more robust characteristic than  a
       mean value - especially if you have a statistical distribution with "fat" tails.

PROCEDURES

       The package defines the following auxiliary procedures:

       ::simulation::montecarlo::getOption keyword
              Get the value of an option given as part of the singeExperiment command.

              string keyword
                     Given keyword (without leading minus)

       ::simulation::montecarlo::hasOption keyword
              Returns 1 if the option is available, 0 if not.

              string keyword
                     Given keyword (without leading minus)

       ::simulation::montecarlo::setOption keyword value
              Set the value of the given option.

              string keyword
                     Given keyword (without leading minus)

              string value
                     (New) value for the option

       ::simulation::montecarlo::setTrialResult values
              Store the results of the trial for later analysis

              list values
                     List of values to be stored

       ::simulation::montecarlo::setExpResult values
              Set the results of the entire experiment (typically used in the final phase).

              list values
                     List of values to be stored

       ::simulation::montecarlo::getTrialResults
              Get  the results of all individual trials for analysis (typically used in the final
              phase or after completion of the command).

       ::simulation::montecarlo::getExpResult
              Get the results of the entire experiment (typically used in the final phase or even
              after completion of the singleExperiment command).

       ::simulation::montecarlo::transposeData values
              Interchange columns and rows of a list of lists and return the result.

              list values
                     List of lists of values

       There are two main procedures: integral2D and singleExperiment.

       ::simulation::montecarlo::integral2D ...
              Integrate a function over a two-dimensional region using a Monte Carlo approach.

              Arguments PM

       ::simulation::montecarlo::singleExperiment args
              Iterate  code  over  a  number  of  trials  and store the results. The iteration is
              gouverned by parameters given via a list of keyword-value pairs.

              int n  List of keyword-value pairs, all of which are available during the execution
                     via the getOption command.

       The singleExperiment command predefines the following options:

       •      -init code: code to be run at start up

       •      -loop body: body of code that defines the computation to be run time and again. The
              code should use setTrialResult to store the results of each trial (typically a list
              of  numbers,  but  the  interpretation is up to the implementation). Note: Required
              keyword.

       •      -final code: code to be run at the end

       •      -trials n: number of trials in the experiment (required)

       •      -reportfile file: opened file to send the output to (default: stdout)

       •      -verbose: write the intermediate results (1) or not (0) (default: 0)

       •      -analysis proc: either "none" (no automatic analysis), standard  (basic  statistics
              of the trial results and a correlation matrix) or the name of a procedure that will
              take care of the analysis.

       •      -columns list: list of column names, useful for verbose output and the analysis

       Any other options can be used via the getOption procedure in the body.

TIPS

       The procedure singleExperiment works by constructing a temporary procedure that  does  the
       actual work. It loops for the given number of trials.

       As  it  constructs a temporary procedure, local variables defined at the start continue to
       exist in the loop.

KEYWORDS

       math, montecarlo simulation, stochastic modelling

CATEGORY

       Mathematics

COPYRIGHT

       Copyright (c) 2008 Arjen Markus <arjenmarkus@users.sourceforge.net>