Provided by: scalapack-doc_1.5-11_all
NAME
PCPBTRF - compute a Cholesky factorization of an N-by-N complex banded symmetric positive definite distributed matrix with bandwidth BW
SYNOPSIS
SUBROUTINE PCPBTRF( UPLO, N, BW, A, JA, DESCA, AF, LAF, WORK, LWORK, INFO ) CHARACTER UPLO INTEGER BW, INFO, JA, LAF, LWORK, N INTEGER DESCA( * ) COMPLEX A( * ), AF( * ), WORK( * )
PURPOSE
PCPBTRF computes a Cholesky factorization of an N-by-N complex banded symmetric positive definite distributed matrix with bandwidth BW: A(1:N, JA:JA+N-1). Reordering is used to increase parallelism in the factorization. This reordering results in factors that are DIFFERENT from those produced by equivalent sequential codes. These factors cannot be used directly by users; however, they can be used in subsequent calls to PCPBTRS to solve linear systems. The factorization has the form P A(1:N, JA:JA+N-1) P^T = U' U , if UPLO = 'U', or P A(1:N, JA:JA+N-1) P^T = L L', if UPLO = 'L' where U is a banded upper triangular matrix and L is banded lower triangular, and P is a permutation matrix.