Provided by: scalapack-doc_1.5-11_all
NAME
PDGEBRD - reduce a real general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal form B by an orthogonal transformation
SYNOPSIS
SUBROUTINE PDGEBRD( M, N, A, IA, JA, DESCA, D, E, TAUQ, TAUP, WORK, LWORK, INFO ) INTEGER IA, INFO, JA, LWORK, M, N INTEGER DESCA( * ) DOUBLE PRECISION A( * ), D( * ), E( * ), TAUP( * ), TAUQ( * ), WORK( * )
PURPOSE
PDGEBRD reduces a real general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal form B by an orthogonal transformation: Q' * sub( A ) * P = B. If M >= N, B is upper bidiagonal; if M < N, B is lower bidiagonal. Notes ===== Each global data object is described by an associated description vector. This vector stores the information required to establish the mapping between an object element and its corresponding process and memory location. Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array". NOTATION STORED IN EXPLANATION --------------- -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case, DTYPE_A = 1. CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating the BLACS process grid A is distribu- ted over. The context itself is glo- bal, but the handle (the integer value) may vary. M_A (global) DESCA( M_ ) The number of rows in the global array A. N_A (global) DESCA( N_ ) The number of columns in the global array A. MB_A (global) DESCA( MB_ ) The blocking factor used to distribute the rows of the array. NB_A (global) DESCA( NB_ ) The blocking factor used to distribute the columns of the array. RSRC_A (global) DESCA( RSRC_ ) The process row over which the first row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the first column of the array A is distributed. LLD_A (local) DESCA( LLD_ ) The leading dimension of the local array. LLD_A >= MAX(1,LOCr(M_A)). Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q. LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process column. Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row. The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC: LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ), LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by: LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
ARGUMENTS
M (global input) INTEGER The number of rows to be operated on, i.e. the number of rows of the distributed submatrix sub( A ). M >= 0. N (global input) INTEGER The number of columns to be operated on, i.e. the number of columns of the distributed submatrix sub( A ). N >= 0. A (local input/local output) DOUBLE PRECISION pointer into the local memory to an array of dimension (LLD_A,LOCc(JA+N-1)). On entry, this array contains the local pieces of the general distributed matrix sub( A ). On exit, if M >= N, the diagonal and the first superdiagonal of sub( A ) are overwritten with the upper bidiagonal matrix B; the elements below the diagonal, with the array TAUQ, represent the orthogonal matrix Q as a product of elementary reflectors, and the elements above the first superdiagonal, with the array TAUP, represent the orthogonal matrix P as a product of elementary reflectors. If M < N, the diagonal and the first subdiagonal are overwritten with the lower bidiagonal matrix B; the elements below the first subdiagonal, with the array TAUQ, represent the orthogonal matrix Q as a product of elementary reflectors, and the elements above the diagonal, with the array TAUP, represent the orthogonal matrix P as a product of elementary reflectors. See Further Details. IA (global input) INTEGER The row index in the global array A indicating the first row of sub( A ). JA (global input) INTEGER The column index in the global array A indicating the first column of sub( A ). DESCA (global and local input) INTEGER array of dimension DLEN_. The array descriptor for the distributed matrix A. D (local output) DOUBLE PRECISION array, dimension LOCc(JA+MIN(M,N)-1) if M >= N; LOCr(IA+MIN(M,N)-1) otherwise. The distributed diagonal elements of the bidiagonal matrix B: D(i) = A(i,i). D is tied to the distributed matrix A. E (local output) DOUBLE PRECISION array, dimension LOCr(IA+MIN(M,N)-1) if M >= N; LOCc(JA+MIN(M,N)-2) otherwise. The distributed off-diagonal elements of the bidiagonal distributed matrix B: if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. E is tied to the distributed matrix A. TAUQ (local output) DOUBLE PRECISION array dimension LOCc(JA+MIN(M,N)-1). The scalar factors of the elementary reflectors which represent the orthogonal matrix Q. TAUQ is tied to the distributed matrix A. See Further Details. TAUP (local output) DOUBLE PRECISION array, dimension LOCr(IA+MIN(M,N)-1). The scalar factors of the elementary reflectors which represent the orthogonal matrix P. TAUP is tied to the distributed matrix A. See Further Details. WORK (local workspace/local output) DOUBLE PRECISION array, dimension (LWORK) On exit, WORK( 1 ) returns the minimal and optimal LWORK. LWORK (local or global input) INTEGER The dimension of the array WORK. LWORK is local input and must be at least LWORK >= NB*( MpA0 + NqA0 + 1 ) + NqA0 where NB = MB_A = NB_A, IROFFA = MOD( IA-1, NB ), ICOFFA = MOD( JA-1, NB ), IAROW = INDXG2P( IA, NB, MYROW, RSRC_A, NPROW ), IACOL = INDXG2P( JA, NB, MYCOL, CSRC_A, NPCOL ), MpA0 = NUMROC( M+IROFFA, NB, MYROW, IAROW, NPROW ), NqA0 = NUMROC( N+ICOFFA, NB, MYCOL, IACOL, NPCOL ). INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine BLACS_GRIDINFO. If LWORK = -1, then LWORK is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by PXERBLA. INFO (global output) INTEGER = 0: successful exit < 0: If the i-th argument is an array and the j-entry had an illegal value, then INFO = -(i*100+j), if the i-th argument is a scalar and had an illegal value, then INFO = -i.
FURTHER DETAILS
The matrices Q and P are represented as products of elementary reflectors: If m >= n, Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) Each H(i) and G(i) has the form: H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' where tauq and taup are real scalars, and v and u are real vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(ia+i:ia+m-1,ja+i-1); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(ia+i-1,ja+i+1:ja+n-1); tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1). If m < n, Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) Each H(i) and G(i) has the form: H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' where tauq and taup are real scalars, and v and u are real vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(ia+i+1:ia+m-1,ja+i-1); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(ia+i-1,ja+i:ja+n-1); tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1). The contents of sub( A ) on exit are illustrated by the following examples: m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) ( v1 v2 v3 v4 v5 ) where d and e denote diagonal and off-diagonal elements of B, vi denotes an element of the vector defining H(i), and ui an element of the vector defining G(i). Alignment requirements ====================== The distributed submatrix sub( A ) must verify some alignment proper- ties, namely the following expressions should be true: ( MB_A.EQ.NB_A .AND. IROFFA.EQ.ICOFFA )