Provided by: scalapack-doc_1.5-11_all bug

NAME

       PSLARFB  - applie a real block reflector Q or its transpose Q**T to a real distributed M-by-N matrix sub(
       C ) = C(IC:IC+M-1,JC:JC+N-1)

SYNOPSIS

       SUBROUTINE PSLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, IV, JV, DESCV, T, C, IC, JC, DESCC, WORK )

           CHARACTER       SIDE, TRANS, DIRECT, STOREV

           INTEGER         IC, IV, JC, JV, K, M, N

           INTEGER         DESCC( * ), DESCV( * )

           REAL            C( * ), T( * ), V( * ), WORK( * )

PURPOSE

       PSLARFB applies a real block reflector Q or its transpose Q**T to a real distributed M-by-N matrix sub( C
       ) = C(IC:IC+M-1,JC:JC+N-1) from the left or the right.

       Notes
       =====

       Each  global  data  object  is  described  by  an  associated description vector.  This vector stores the
       information required to establish the mapping between an object element and its corresponding process and
       memory location.

       Let  A  be  a  generic  term  for  any  2D  block cyclicly distributed array.  Such a global array has an
       associated description vector DESCA.  In the following comments, the character _ should be  read  as  "of
       the global array".

       NOTATION        STORED IN      EXPLANATION
       ---------------  -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_ )The
       descriptor type.  In this case,
                                      DTYPE_A = 1.
       CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
                                      the BLACS process grid A is distribu-
                                      ted over. The context itself is glo-
                                      bal, but the handle (the integer
                                      value) may vary.
       M_A    (global) DESCA( M_ )    The number of rows in the global
                                      array A.
       N_A    (global) DESCA( N_ )    The number of columns in the global
                                      array A.
       MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
                                      the rows of the array.
       NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
                                      the columns of the array.
       RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
                                      row of the array A is distributed.  CSRC_A (global)  DESCA(  CSRC_  )  The
       process column over which the
                                      first column of the array A is
                                      distributed.
       LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
                                      array.  LLD_A >= MAX(1,LOCr(M_A)).

       Let  K  be  the  number  of rows or columns of a distributed matrix, and assume that its process grid has
       dimension p x q.
       LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the
       p processes of its process column.
       Similarly,  LOCc(  K  )  denotes  the  number  of  elements  of  K that a process would receive if K were
       distributed over the q processes of its process row.
       The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC:
               LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
               LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).  An upper bound for these quantities may  be
       computed by:
               LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
               LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

ARGUMENTS

       SIDE    (global input) CHARACTER
               = 'L': apply Q or Q**T from the Left;
               = 'R': apply Q or Q**T from the Right.

       TRANS   (global input) CHARACTER
               = 'N':  No transpose, apply Q;
               = 'T':  Transpose, apply Q**T.

       DIRECT  (global input) CHARACTER
               Indicates how Q is formed from a product of elementary reflectors = 'F': Q = H(1) H(2) . . . H(k)
               (Forward)
               = 'B': Q = H(k) . . . H(2) H(1) (Backward)

       STOREV  (global input) CHARACTER
               Indicates how the vectors which define the elementary reflectors are stored:
               = 'C': Columnwise
               = 'R': Rowwise

       M       (global input) INTEGER
               The number of rows to be operated on i.e the number of rows of the distributed submatrix  sub(  C
               ). M >= 0.

       N       (global input) INTEGER
               The  number  of  columns to be operated on i.e the number of columns of the distributed submatrix
               sub( C ). N >= 0.

       K       (global input) INTEGER
               The order of the matrix T (= the number of elementary reflectors whose product defines the  block
               reflector).

       V       (local input) REAL pointer into the local memory
               to  an  array  of  dimension  (  LLD_V, LOCc(JV+K-1) ) if STOREV = 'C', ( LLD_V, LOCc(JV+M-1)) if
               STOREV = 'R' and SIDE = 'L', ( LLD_V, LOCc(JV+N-1) ) if STOREV = 'R' and SIDE = 'R'. It  contains
               the  local  pieces of the distributed vectors V representing the Householder transformation.  See
               further details.  If STOREV = 'C' and SIDE = 'L', LLD_V >= MAX(1,LOCr(IV+M-1)); if STOREV  =  'C'
               and SIDE = 'R', LLD_V >= MAX(1,LOCr(IV+N-1)); if STOREV = 'R', LLD_V >= LOCr(IV+K-1).

       IV      (global input) INTEGER
               The row index in the global array V indicating the first row of sub( V ).

       JV      (global input) INTEGER
               The column index in the global array V indicating the first column of sub( V ).

       DESCV   (global and local input) INTEGER array of dimension DLEN_.
               The array descriptor for the distributed matrix V.

       T       (local input) REAL array, dimension MB_V by MB_V
               if STOREV = 'R' and NB_V by NB_V if STOREV = 'C'. The trian- gular matrix T in the representation
               of the block reflector.

       C       (local input/local output) REAL pointer into the
               local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).  On  entry,  the  M-by-N  distributed
               matrix  sub(  C ). On exit, sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C ) or sub( C )*Q or
               sub( C )*Q'.

       IC      (global input) INTEGER
               The row index in the global array C indicating the first row of sub( C ).

       JC      (global input) INTEGER
               The column index in the global array C indicating the first column of sub( C ).

       DESCC   (global and local input) INTEGER array of dimension DLEN_.
               The array descriptor for the distributed matrix C.

       WORK    (local workspace) REAL array, dimension (LWORK)
               If STOREV = 'C', if SIDE = 'L', LWORK >= ( NqC0 + MpC0 ) * K else if SIDE = 'R', LWORK >= (  NqC0
               + MAX( NpV0 + NUMROC( NUMROC( N+ICOFFC, NB_V, 0, 0, NPCOL ), NB_V, 0, 0, LCMQ ), MpC0 ) ) * K end
               if else if STOREV = 'R', if SIDE = 'L', LWORK >= ( MpC0 + MAX( MqV0 + NUMROC(  NUMROC(  M+IROFFC,
               MB_V,  0, 0, NPROW ), MB_V, 0, 0, LCMP ), NqC0 ) ) * K else if SIDE = 'R', LWORK >= ( MpC0 + NqC0
               ) * K end if end if

               where LCMQ = LCM / NPCOL with LCM = ICLM( NPROW, NPCOL ),

               IROFFV = MOD( IV-1, MB_V ), ICOFFV = MOD( JV-1, NB_V ), IVROW = INDXG2P( IV, MB_V, MYROW, RSRC_V,
               NPROW ), IVCOL = INDXG2P( JV, NB_V, MYCOL, CSRC_V, NPCOL ), MqV0 = NUMROC( M+ICOFFV, NB_V, MYCOL,
               IVCOL, NPCOL ), NpV0 = NUMROC( N+IROFFV, MB_V, MYROW, IVROW, NPROW ),

               IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ), ICROW = INDXG2P( IC, MB_C, MYROW, RSRC_C,
               NPROW ), ICCOL = INDXG2P( JC, NB_C, MYCOL, CSRC_C, NPCOL ), MpC0 = NUMROC( M+IROFFC, MB_C, MYROW,
               ICROW, NPROW ), NpC0 = NUMROC( N+ICOFFC, MB_C, MYROW, ICROW, NPROW ), NqC0  =  NUMROC(  N+ICOFFC,
               NB_C, MYCOL, ICCOL, NPCOL ),

               ILCM,  INDXG2P  and  NUMROC  are  ScaLAPACK  tool functions; MYROW, MYCOL, NPROW and NPCOL can be
               determined by calling the subroutine BLACS_GRIDINFO.

               Alignment requirements ======================

               The distributed submatrices V(IV:*, JV:*) and C(IC:IC+M-1,JC:JC+N-1) must verify  some  alignment
               properties, namely the following expressions should be true:

               If  STOREV  =  'Columnwise'  If  SIDE  =  'Left',  (  MB_V.EQ.MB_C  .AND.  IROFFV.EQ.IROFFC .AND.
               IVROW.EQ.ICROW ) If SIDE = 'Right', ( MB_V.EQ.NB_C .AND. IROFFV.EQ.ICOFFC  )  else  if  STOREV  =
               'Rowwise'  If  SIDE  =  'Left',  (  NB_V.EQ.MB_C  .AND.  ICOFFV.EQ.IROFFC  ) If SIDE = 'Right', (
               NB_V.EQ.NB_C .AND. ICOFFV.EQ.ICOFFC .AND. IVCOL.EQ.ICCOL ) end if