Provided by: scalapack-doc_1.5-11_all
NAME
PSORMBR - VECT = 'Q', PSORMBR overwrites the general real distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
SYNOPSIS
SUBROUTINE PSORMBR( VECT, SIDE, TRANS, M, N, K, A, IA, JA, DESCA, TAU, C, IC, JC, DESCC, WORK, LWORK, INFO ) CHARACTER SIDE, TRANS, VECT INTEGER IA, IC, INFO, JA, JC, K, LWORK, M, N INTEGER DESCA( * ), DESCC( * ) REAL A( * ), C( * ), TAU( * ), WORK( * )
PURPOSE
If VECT = 'Q', PSORMBR overwrites the general real distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with TRANS = 'T': Q**T * sub( C ) sub( C ) * Q**T If VECT = 'P', PSORMBR overwrites sub( C ) with SIDE = 'L' SIDE = 'R' TRANS = 'N': P * sub( C ) sub( C ) * P TRANS = 'T': P**T * sub( C ) sub( C ) * P**T Here Q and P**T are the orthogonal distributed matrices determined by PSGEBRD when reducing a real distributed matrix A(IA:*,JA:*) to bidiagonal form: A(IA:*,JA:*) = Q * B * P**T. Q and P**T are defined as products of elementary reflectors H(i) and G(i) respectively. Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the order of the orthogonal matrix Q or P**T that is applied. If VECT = 'Q', A(IA:*,JA:*) is assumed to have been an NQ-by-K matrix: if nq >= k, Q = H(1) H(2) . . . H(k); if nq < k, Q = H(1) H(2) . . . H(nq-1). If VECT = 'P', A(IA:*,JA:*) is assumed to have been a K-by-NQ matrix: if k < nq, P = G(1) G(2) . . . G(k); if k >= nq, P = G(1) G(2) . . . G(nq-1). Notes ===== Each global data object is described by an associated description vector. This vector stores the information required to establish the mapping between an object element and its corresponding process and memory location. Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array". NOTATION STORED IN EXPLANATION --------------- -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case, DTYPE_A = 1. CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating the BLACS process grid A is distribu- ted over. The context itself is glo- bal, but the handle (the integer value) may vary. M_A (global) DESCA( M_ ) The number of rows in the global array A. N_A (global) DESCA( N_ ) The number of columns in the global array A. MB_A (global) DESCA( MB_ ) The blocking factor used to distribute the rows of the array. NB_A (global) DESCA( NB_ ) The blocking factor used to distribute the columns of the array. RSRC_A (global) DESCA( RSRC_ ) The process row over which the first row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the first column of the array A is distributed. LLD_A (local) DESCA( LLD_ ) The leading dimension of the local array. LLD_A >= MAX(1,LOCr(M_A)). Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q. LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process column. Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row. The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC: LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ), LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by: LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
ARGUMENTS
VECT (global input) CHARACTER = 'Q': apply Q or Q**T; = 'P': apply P or P**T. SIDE (global input) CHARACTER = 'L': apply Q, Q**T, P or P**T from the Left; = 'R': apply Q, Q**T, P or P**T from the Right. TRANS (global input) CHARACTER = 'N': No transpose, apply Q or P; = 'T': Transpose, apply Q**T or P**T. M (global input) INTEGER The number of rows to be operated on i.e the number of rows of the distributed submatrix sub( C ). M >= 0. N (global input) INTEGER The number of columns to be operated on i.e the number of columns of the distributed submatrix sub( C ). N >= 0. K (global input) INTEGER If VECT = 'Q', the number of columns in the original distributed matrix reduced by PSGEBRD. If VECT = 'P', the number of rows in the original distributed matrix reduced by PSGEBRD. K >= 0. A (local input) REAL pointer into the local memory to an array of dimension (LLD_A,LOCc(JA+MIN(NQ,K)-1)) if VECT='Q', and (LLD_A,LOCc(JA+NQ-1)) if VECT = 'P'. NQ = M if SIDE = 'L', and NQ = N otherwise. The vectors which define the elementary reflectors H(i) and G(i), whose products determine the matrices Q and P, as returned by PSGEBRD. If VECT = 'Q', LLD_A >= max(1,LOCr(IA+NQ-1)); if VECT = 'P', LLD_A >= max(1,LOCr(IA+MIN(NQ,K)-1)). IA (global input) INTEGER The row index in the global array A indicating the first row of sub( A ). JA (global input) INTEGER The column index in the global array A indicating the first column of sub( A ). DESCA (global and local input) INTEGER array of dimension DLEN_. The array descriptor for the distributed matrix A. TAU (local input) REAL array, dimension LOCc(JA+MIN(NQ,K)-1) if VECT = 'Q', LOCr(IA+MIN(NQ,K)-1) if VECT = 'P', TAU(i) must contain the scalar factor of the elementary reflector H(i) or G(i), which determines Q or P, as returned by PDGEBRD in its array argument TAUQ or TAUP. TAU is tied to the distributed matrix A. C (local input/local output) REAL pointer into the local memory to an array of dimension (LLD_C,LOCc(JC+N-1)). On entry, the local pieces of the distributed matrix sub(C). On exit, if VECT='Q', sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C ) or sub( C )*Q' or sub( C )*Q; if VECT='P, sub( C ) is overwritten by P*sub( C ) or P'*sub( C ) or sub( C )*P or sub( C )*P'. IC (global input) INTEGER The row index in the global array C indicating the first row of sub( C ). JC (global input) INTEGER The column index in the global array C indicating the first column of sub( C ). DESCC (global and local input) INTEGER array of dimension DLEN_. The array descriptor for the distributed matrix C. WORK (local workspace/local output) REAL array, dimension (LWORK) On exit, WORK(1) returns the minimal and optimal LWORK. LWORK (local or global input) INTEGER The dimension of the array WORK. LWORK is local input and must be at least If SIDE = 'L', NQ = M; if( (VECT = 'Q' and NQ >= K) or (VECT <> 'Q' and NQ > K) ), IAA=IA; JAA=JA; MI=M; NI=N; ICC=IC; JCC=JC; else IAA=IA+1; JAA=JA; MI=M-1; NI=N; ICC=IC+1; JCC=JC; end if else if SIDE = 'R', NQ = N; if( (VECT = 'Q' and NQ >= K) or (VECT <> 'Q' and NQ > K) ), IAA=IA; JAA=JA; MI=M; NI=N; ICC=IC; JCC=JC; else IAA=IA; JAA=JA+1; MI=M; NI=N-1; ICC=IC; JCC=JC+1; end if end if If VECT = 'Q', If SIDE = 'L', LWORK >= MAX( (NB_A*(NB_A-1))/2, (NqC0 + MpC0)*NB_A ) + NB_A * NB_A else if SIDE = 'R', LWORK >= MAX( (NB_A*(NB_A-1))/2, ( NqC0 + MAX( NpA0 + NUMROC( NUMROC( NI+ICOFFC, NB_A, 0, 0, NPCOL ), NB_A, 0, 0, LCMQ ), MpC0 ) )*NB_A ) + NB_A * NB_A end if else if VECT <> 'Q', if SIDE = 'L', LWORK >= MAX( (MB_A*(MB_A-1))/2, ( MpC0 + MAX( MqA0 + NUMROC( NUMROC( MI+IROFFC, MB_A, 0, 0, NPROW ), MB_A, 0, 0, LCMP ), NqC0 ) )*MB_A ) + MB_A * MB_A else if SIDE = 'R', LWORK >= MAX( (MB_A*(MB_A-1))/2, (MpC0 + NqC0)*MB_A ) + MB_A * MB_A end if end if where LCMP = LCM / NPROW, LCMQ = LCM / NPCOL, with LCM = ICLM( NPROW, NPCOL ), IROFFA = MOD( IAA-1, MB_A ), ICOFFA = MOD( JAA-1, NB_A ), IAROW = INDXG2P( IAA, MB_A, MYROW, RSRC_A, NPROW ), IACOL = INDXG2P( JAA, NB_A, MYCOL, CSRC_A, NPCOL ), MqA0 = NUMROC( MI+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ), NpA0 = NUMROC( NI+IROFFA, MB_A, MYROW, IAROW, NPROW ), IROFFC = MOD( ICC-1, MB_C ), ICOFFC = MOD( JCC-1, NB_C ), ICROW = INDXG2P( ICC, MB_C, MYROW, RSRC_C, NPROW ), ICCOL = INDXG2P( JCC, NB_C, MYCOL, CSRC_C, NPCOL ), MpC0 = NUMROC( MI+IROFFC, MB_C, MYROW, ICROW, NPROW ), NqC0 = NUMROC( NI+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ), INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine BLACS_GRIDINFO. If LWORK = -1, then LWORK is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by PXERBLA. INFO (global output) INTEGER = 0: successful exit < 0: If the i-th argument is an array and the j-entry had an illegal value, then INFO = -(i*100+j), if the i-th argument is a scalar and had an illegal value, then INFO = -i. Alignment requirements ====================== The distributed submatrices A(IA:*, JA:*) and C(IC:IC+M-1,JC:JC+N-1) must verify some alignment properties, namely the following expressions should be true: If VECT = 'Q', If SIDE = 'L', ( MB_A.EQ.MB_C .AND. IROFFA.EQ.IROFFC .AND. IAROW.EQ.ICROW ) If SIDE = 'R', ( MB_A.EQ.NB_C .AND. IROFFA.EQ.ICOFFC ) else If SIDE = 'L', ( MB_A.EQ.MB_C .AND. ICOFFA.EQ.IROFFC ) If SIDE = 'R', ( NB_A.EQ.NB_C .AND. ICOFFA.EQ.ICOFFC .AND. IACOL.EQ.ICCOL ) end if