bionic (4) acpi.4freebsd.gz

Provided by: freebsd-manpages_11.1-3_all bug

NAME

     acpi — Advanced Configuration and Power Management support

SYNOPSIS

     device acpi

     options ACPI_DEBUG
     options DDB

DESCRIPTION

     The acpi driver provides support for the Intel/Microsoft/Compaq/Toshiba ACPI standard.  This support
     includes platform hardware discovery (superseding the PnP and PCI BIOS), as well as power management
     (superseding APM) and other features.  ACPI core support is provided by the ACPI CA reference
     implementation from Intel.

     Note that the acpi driver is automatically loaded by the loader(8), and should only be compiled into the
     kernel on platforms where ACPI is mandatory.

SYSCTL VARIABLES

     The acpi driver is intended to provide power management without user intervention.  If the default settings
     are not optimal, the following sysctls can be used to modify or monitor acpi behavior.  Note that some
     variables will be available only if the given hardware supports them (such as hw.acpi.acline).

     debug.acpi.enable_debug_objects
             Enable dumping Debug objects without options ACPI_DEBUG.  Default is 0, ignore Debug objects.

     dev.cpu.N.cx_usage
             Debugging information listing the percent of total usage for each sleep state.  The values are
             reset when dev.cpu.N.cx_lowest is modified.

     dev.cpu.N.cx_lowest
             Lowest Cx state to use for idling the CPU.  A scheduling algorithm will select states between C1
             and this setting as system load dictates.  To enable ACPI CPU idling control, machdep.idle should
             be set to acpi if it is listed in machdep.idle_available.

     hw.acpi.cpu.cx_supported
             List of supported CPU idle states and their transition latency in microseconds.  Each state has a
             type (e.g., C2).  C1 is equivalent to the ia32 HLT instruction, C2 provides a deeper sleep with the
             same semantics, and C3 provides the deepest sleep but additionally requires bus mastering to be
             disabled.  States greater than C3 provide even more power savings with the same semantics as the C3
             state.  Deeper sleeps provide more power savings but increased transition latency when an interrupt
             occurs.

     dev.cpu.N.cx_method
             List of supported CPU idle states and their transition methods, as directed by the firmware.

     hw.acpi.acline
             AC line state (1 means online, 0 means on battery power).

     hw.acpi.disable_on_reboot
             Disable ACPI during the reboot process.  Most systems reboot fine with ACPI still enabled, but some
             require exiting to legacy mode first.  Default is 0, leave ACPI enabled.

     hw.acpi.handle_reboot
             Use the ACPI Reset Register capability to reboot the system.  Some newer systems require use of
             this register, while some only work with legacy rebooting support.

     hw.acpi.lid_switch_state
             Suspend state (S1–S5) to enter when the lid switch (i.e., a notebook screen) is closed.  Default is
             “NONE” (do nothing).

     hw.acpi.power_button_state
             Suspend state (S1–S5) to enter when the power button is pressed.  Default is S5 (power-off nicely).

     hw.acpi.reset_video
             Reset the video adapter from real mode during the resume path.  Some systems need this help, others
             have display problems if it is enabled.  Default is 0 (disabled).

     hw.acpi.s4bios
             Indicate whether the system supports S4BIOS.  This means that the BIOS can handle all the functions
             of suspending the system to disk.  Otherwise, the OS is responsible for suspending to disk (S4OS).
             Most current systems do not support S4BIOS.

     hw.acpi.sleep_button_state
             Suspend state (S1–S5) to enter when the sleep button is pressed.  This is usually a special
             function button on the keyboard.  Default is S3 (suspend-to-RAM).

     hw.acpi.sleep_delay
             Wait this number of seconds between preparing the system to suspend and actually entering the
             suspend state.  Default is 1 second.

     hw.acpi.supported_sleep_state
             Suspend states (S1–S5) supported by the BIOS.

             S1      Quick suspend to RAM.  The CPU enters a lower power state, but most peripherals are left
                     running.

             S2      Lower power state than S1, but with the same basic characteristics.  Not supported by many
                     systems.

             S3      Suspend to RAM.  Most devices are powered off, and the system stops running except for
                     memory refresh.

             S4      Suspend to disk.  All devices are powered off, and the system stops running.  When
                     resuming, the system starts as if from a cold power on.  Not yet supported by FreeBSD
                     unless S4BIOS is available.

             S5      System shuts down cleanly and powers off.

     hw.acpi.verbose
             Enable verbose printing from the various ACPI subsystems.

LOADER TUNABLES

     Tunables can be set at the loader(8) prompt before booting the kernel or stored in /boot/loader.conf.  Many
     of these tunables also have a matching sysctl(8) entry for access after boot.

     acpi_dsdt_load
             Enables loading of a custom ACPI DSDT.

     acpi_dsdt_name
             Name of the DSDT table to load, if loading is enabled.

     debug.acpi.cpu_unordered
             Do not use the MADT to match ACPI Processor objects to CPUs.  This is needed on a few systems with
             a buggy BIOS that does not use consistent processor IDs.  Default is 0 (disabled).

     debug.acpi.disabled
             Selectively disables portions of ACPI for debugging purposes.

     debug.acpi.interpreter_slack
             Enable less strict ACPI implementations.  Default is 1, ignore common BIOS mistakes.

     debug.acpi.max_threads
             Specify the number of task threads that are started on boot.  Limiting this to 1 may help work
             around various BIOSes that cannot handle parallel requests.  The default value is 3.

     debug.acpi.quirks
             Override any automatic quirks completely.

     debug.acpi.resume_beep
             Beep the PC speaker on resume.  This can help diagnose suspend/resume problems.  Default is 0
             (disabled).

     hint.acpi.0.disabled
             Set this to 1 to disable all of ACPI.  If ACPI has been disabled on your system due to a blacklist
             entry for your BIOS, you can set this to 0 to re-enable ACPI for testing.

     hw.acpi.ec.poll_timeout
             Delay in milliseconds to wait for the EC to respond.  Try increasing this number if you get the
             error "AE_NO_HARDWARE_RESPONSE".

     hw.acpi.host_mem_start
             Override the assumed memory starting address for PCI host bridges.

     hw.acpi.install_interface, hw.acpi.remove_interface
             Install or remove OS interface(s) to control return value of ‘_OSI’ query method.  When an OS
             interface is specified in hw.acpi.install_interface, _OSI query for the interface returns it is
             supported.  Conversely, when an OS interface is specified in hw.acpi.remove_interface, _OSI query
             returns it is not supported.  Multiple interfaces can be specified in a comma-separated list and
             any leading white spaces will be ignored.  For example, "FreeBSD, Linux" is a valid list of two
             interfaces "FreeBSD" and "Linux".

     hw.acpi.reset_video
             Enables calling the VESA reset BIOS vector on the resume path.  This can fix some graphics cards
             that have problems such as LCD white-out after resume.  Default is 0 (disabled).

     hw.acpi.serialize_methods
             Allow override of whether methods execute in parallel or not.  Enable this for serial behavior,
             which fixes "AE_ALREADY_EXISTS" errors for AML that really cannot handle parallel method execution.
             It is off by default since this breaks recursive methods and some IBMs use such code.

     hw.acpi.verbose
             Turn on verbose debugging information about what ACPI is doing.

     hw.pci.link.%s.%d.irq
             Override the interrupt to use for this link and index.  This capability should be used carefully,
             and only if a device is not working with acpi enabled.  "%s" is the name of the link (e.g., LNKA).
             "%d" is the resource index when the link supports multiple IRQs.  Most PCI links only have one IRQ
             resource, so the below form should be used.

     hw.pci.link.%s.irq
             Override the interrupt to use.  This capability should be used carefully, and only if a device is
             not working with acpi enabled.  "%s" is the name of the link (e.g., LNKA).

DISABLING ACPI

     Since ACPI support on different platforms varies greatly, there are many debugging and tuning options
     available.

     For machines known not to work with acpi enabled, there is a BIOS blacklist.  Currently, the blacklist only
     controls whether acpi should be disabled or not.  In the future, it will have more granularity to control
     features (the infrastructure for that is already there).

     To enable acpi (for debugging purposes, etc.) on machines that are on the blacklist, set the kernel
     environment variable hint.acpi.0.disabled to 0.  Before trying this, consider updating your BIOS to a more
     recent version that may be compatible with ACPI.

     To disable the acpi driver completely, set the kernel environment variable hint.acpi.0.disabled to 1.

     Some i386 machines totally fail to operate with some or all of ACPI disabled.  Other i386 machines fail
     with ACPI enabled.  Disabling all or part of ACPI on non-i386 platforms (i.e., platforms where ACPI support
     is mandatory) may result in a non-functional system.

     The acpi driver comprises a set of drivers, which may be selectively disabled in case of problems.  To
     disable a sub-driver, list it in the kernel environment variable debug.acpi.disabled.  Multiple entries can
     be listed, separated by a space.

     ACPI sub-devices and features that can be disabled:

     all          Disable all ACPI features and devices.

     acad         (device) Supports AC adapter.

     bus          (feature) Probes and attaches subdevices.  Disabling will avoid scanning the ACPI namespace
                  entirely.

     children     (feature) Attaches standard ACPI sub-drivers and devices enumerated in the ACPI namespace.
                  Disabling this has a similar effect to disabling “bus”, except that the ACPI namespace will
                  still be scanned.

     button       (device) Supports ACPI button devices (typically power and sleep buttons).

     cmbat        (device) Control-method batteries device.

     cpu          (device) Supports CPU power-saving and speed-setting functions.

     ec           (device) Supports the ACPI Embedded Controller interface, used to communicate with embedded
                  platform controllers.

     isa          (device) Supports an ISA bus bridge defined in the ACPI namespace, typically as a child of a
                  PCI bus.

     lid          (device) Supports an ACPI laptop lid switch, which typically puts a system to sleep.

     mwait        (feature) Do not ask firmware for available x86-vendor specific methods to enter Cx sleep
                  states.  Only query and use the generic I/O-based entrance method.  The knob is provided to
                  work around inconsistencies in the tables filled by firmware.

     quirks       (feature) Do not honor quirks.  Quirks automatically disable ACPI functionality based on the
                  XSDT table's OEM vendor name and revision date.

     pci          (device) Supports Host to PCI bridges.

     pci_link     (feature) Performs PCI interrupt routing.

     sysresource  (device) Pseudo-devices containing resources which ACPI claims.

     thermal      (device) Supports system cooling and heat management.

     timer        (device) Implements a timecounter using the ACPI fixed-frequency timer.

     video        (device) Supports acpi_video(4) which may conflict with agp(4) device.

     It is also possible to avoid portions of the ACPI namespace which may be causing problems, by listing the
     full path of the root of the region to be avoided in the kernel environment variable debug.acpi.avoid.  The
     object and all of its children will be ignored during the bus/children scan of the namespace.  The ACPI CA
     code will still know about the avoided region.

DEBUGGING OUTPUT

     To enable debugging output, acpi must be compiled with options ACPI_DEBUG.  Debugging output is separated
     between layers and levels, where a layer is a component of the ACPI subsystem, and a level is a particular
     kind of debugging output.

     Both layers and levels are specified as a whitespace-separated list of tokens, with layers listed in
     debug.acpi.layer and levels in debug.acpi.level.

     The first set of layers is for ACPI-CA components, and the second is for FreeBSD drivers.  The ACPI-CA
     layer descriptions include the prefix for the files they refer to.  The supported layers are:

     ACPI_UTILITIES        Utility ("ut") functions
     ACPI_HARDWARE         Hardware access ("hw")
     ACPI_EVENTS           Event and GPE ("ev")
     ACPI_TABLES           Table access ("tb")
     ACPI_NAMESPACE        Namespace evaluation ("ns")
     ACPI_PARSER           AML parser ("ps")
     ACPI_DISPATCHER       Internal representation of interpreter state ("ds")
     ACPI_EXECUTER         Execute AML methods ("ex")
     ACPI_RESOURCES        Resource parsing ("rs")
     ACPI_CA_DEBUGGER      Debugger implementation ("db", "dm")
     ACPI_OS_SERVICES      Usermode support routines ("os")
     ACPI_CA_DISASSEMBLER  Disassembler implementation (unused)
     ACPI_ALL_COMPONENTS   All the above ACPI-CA components
     ACPI_AC_ADAPTER       AC adapter driver
     ACPI_BATTERY          Control-method battery driver
     ACPI_BUS              ACPI, ISA, and PCI bus drivers
     ACPI_BUTTON           Power and sleep button driver
     ACPI_EC               Embedded controller driver
     ACPI_FAN              Fan driver
     ACPI_OEM              Platform-specific driver for hotkeys, LED, etc.
     ACPI_POWER            Power resource driver
     ACPI_PROCESSOR        CPU driver
     ACPI_THERMAL          Thermal zone driver
     ACPI_TIMER            Timer driver
     ACPI_ALL_DRIVERS      All the above FreeBSD ACPI drivers

     The supported levels are:

     ACPI_LV_INIT             Initialization progress
     ACPI_LV_DEBUG_OBJECT     Stores to objects
     ACPI_LV_INFO             General information and progress
     ACPI_LV_REPAIR           Repair a common problem with predefined methods
     ACPI_LV_ALL_EXCEPTIONS   All the previous levels
     ACPI_LV_PARSE
     ACPI_LV_DISPATCH
     ACPI_LV_EXEC
     ACPI_LV_NAMES
     ACPI_LV_OPREGION
     ACPI_LV_BFIELD
     ACPI_LV_TABLES
     ACPI_LV_VALUES
     ACPI_LV_OBJECTS
     ACPI_LV_RESOURCES
     ACPI_LV_USER_REQUESTS
     ACPI_LV_PACKAGE
     ACPI_LV_VERBOSITY1       All the previous levels
     ACPI_LV_ALLOCATIONS
     ACPI_LV_FUNCTIONS
     ACPI_LV_OPTIMIZATIONS
     ACPI_LV_VERBOSITY2       All the previous levels
     ACPI_LV_ALL              Synonym for "ACPI_LV_VERBOSITY2"
     ACPI_LV_MUTEX
     ACPI_LV_THREADS
     ACPI_LV_IO
     ACPI_LV_INTERRUPTS
     ACPI_LV_VERBOSITY3       All the previous levels
     ACPI_LV_AML_DISASSEMBLE
     ACPI_LV_VERBOSE_INFO
     ACPI_LV_FULL_TABLES
     ACPI_LV_EVENTS
     ACPI_LV_VERBOSE          All levels after "ACPI_LV_VERBOSITY3"
     ACPI_LV_INIT_NAMES
     ACPI_LV_LOAD

     Selection of the appropriate layer and level values is important to avoid massive amounts of debugging
     output.  For example, the following configuration is a good way to gather initial information.  It enables
     debug output for both ACPI-CA and the acpi driver, printing basic information about errors, warnings, and
     progress.

           debug.acpi.layer="ACPI_ALL_COMPONENTS ACPI_ALL_DRIVERS"
           debug.acpi.level="ACPI_LV_ALL_EXCEPTIONS"

     Debugging output by the ACPI CA subsystem is prefixed with the module name in lowercase, followed by a
     source line number.  Output from the FreeBSD-local code follows the same format, but the module name is
     uppercased.

OVERRIDING YOUR BIOS BYTECODE

     ACPI interprets bytecode named AML (ACPI Machine Language) provided by the BIOS vendor as a memory image at
     boot time.  Sometimes, the AML code contains a bug that does not appear when parsed by the Microsoft
     implementation.  FreeBSD provides a way to override it with your own AML code to work around or debug such
     problems.  Note that all AML in your DSDT and any SSDT tables is overridden.

     In order to load your AML code, you must edit /boot/loader.conf and include the following lines.

           acpi_dsdt_load="YES"
           acpi_dsdt_name="/boot/acpi_dsdt.aml" # You may change this name.

     In order to prepare your AML code, you will need the acpidump(8) and iasl(8) utilities and some ACPI
     knowledge.

COMPATIBILITY

     ACPI is only found and supported on i386/ia32 and amd64.

SEE ALSO

     kenv(1), acpi_thermal(4), device.hints(5), loader.conf(5), acpiconf(8), acpidump(8), config(8), iasl(8)

     Compaq Computer Corporation, Intel Corporation, Microsoft Corporation, Phoenix Technologies Ltd., and
     Toshiba Corporation, Advanced Configuration and Power Interface Specification, http://acpi.info/spec.htm,
     August 25, 2003.

AUTHORS

     The ACPI CA subsystem is developed and maintained by Intel Architecture Labs.

     The following people made notable contributions to the ACPI subsystem in FreeBSD: Michael Smith, Takanori
     Watanabe <takawata@jp.FreeBSD.org>, Mitsuru IWASAKI <iwasaki@jp.FreeBSD.org>, Munehiro Matsuda, Nate
     Lawson, the ACPI-jp mailing list at ⟨acpi-jp@jp.FreeBSD.org⟩, and many other contributors.

     This manual page was written by Michael Smith <msmith@FreeBSD.org>.

BUGS

     Many BIOS versions have serious bugs that may cause system instability, break suspend/resume, or prevent
     devices from operating properly due to IRQ routing problems.  Upgrade your BIOS to the latest version
     available from the vendor before deciding it is a problem with acpi.