bionic (8) ipmi-raw.8.gz

Provided by: freeipmi-tools_1.4.11-1.1ubuntu4.1_amd64 bug

NAME

       ipmi-raw - execute IPMI commands by hex values

SYNOPSIS

       ipmi-raw [OPTION...] [<lun> <netfn> COMMAND-HEX-BYTES...]

DESCRIPTION

       Ipmi-raw  is  used to execute IPMI commands by hex values. Hex values may be input on the command line, a
       file via the --file option, or via stdin if neither of the previous are specified.

       Listed below are general IPMI options, tool specific options, trouble  shooting  information,  workaround
       information, examples, and known issues. For a general introduction to FreeIPMI please see freeipmi(7).

GENERAL OPTIONS

       The  following  options are general options for configuring IPMI communication and executing general tool
       commands.

       -D IPMIDRIVER, --driver-type=IPMIDRIVER
              Specify the driver type to use instead of  doing  an  auto  selection.   The  currently  available
              outofband  drivers  are  LAN  and  LAN_2_0,  which perform IPMI 1.5 and IPMI 2.0 respectively. The
              currently available inband drivers are KCS, SSIF, OPENIPMI, SUNBMC, and INTELDCMI.

       --disable-auto-probe
              Do not probe in-band IPMI devices for default settings.

       --driver-address=DRIVER-ADDRESS
              Specify the in-band driver address to be used instead of the probed value.  DRIVER-ADDRESS  should
              be prefixed with "0x" for a hex value and '0' for an octal value.

       --driver-device=DEVICE
              Specify the in-band driver device path to be used instead of the probed path.

       --register-spacing=REGISTER-SPACING
              Specify  the  in-band  driver  register  spacing instead of the probed value. Argument is in bytes
              (i.e. 32bit register spacing = 4)

       --target-channel-number=CHANNEL-NUMBER
              Specify the in-band driver target channel number to send IPMI requests to.

       --target-slave-address=SLAVE-ADDRESS
              Specify the in-band driver target slave number to send IPMI requests to.

       -h IPMIHOST1,IPMIHOST2,..., --hostname=IPMIHOST1[:PORT],IPMIHOST2[:PORT],...
              Specify the remote host(s) to communicate with. Multiple hostnames may be separated  by  comma  or
              may  be  specified  in  a  range  format;  see  HOSTRANGED  SUPPORT below. An optional port can be
              specified with each host, which may be useful in port forwarding or similar situations.

       -u USERNAME, --username=USERNAME
              Specify the username to use when authenticating with the remote host.  If not  specified,  a  null
              (i.e.  anonymous) username is assumed. The required user privilege will depend on the raw commands
              executed.

       -p PASSWORD, --password=PASSWORD
              Specify the password to use when authenticationg with the remote host.  If not specified,  a  null
              password is assumed. Maximum password length is 16 for IPMI 1.5 and 20 for IPMI 2.0.

       -P, --password-prompt
              Prompt for password to avoid possibility of listing it in process lists.

       -k K_G, --k-g=K_G
              Specify  the  K_g  BMC  key  to  use when authenticating with the remote host for IPMI 2.0. If not
              specified, a null key is assumed. To input the key in hexadecimal form,  prefix  the  string  with
              '0x'. E.g., the key 'abc' can be entered with the either the string 'abc' or the string '0x616263'

       -K, --k-g-prompt
              Prompt for k-g to avoid possibility of listing it in process lists.

       --session-timeout=MILLISECONDS
              Specify  the  session  timeout in milliseconds. Defaults to 20000 milliseconds (20 seconds) if not
              specified.

       --retransmission-timeout=MILLISECONDS
              Specify the packet retransmission timeout  in  milliseconds.  Defaults  to  1000  milliseconds  (1
              second) if not specified. The retransmission timeout cannot be larger than the session timeout.

       -a AUTHENTICATION-TYPE, --authentication-type=AUTHENTICATION-TYPE
              Specify  the IPMI 1.5 authentication type to use. The currently available authentication types are
              NONE, STRAIGHT_PASSWORD_KEY, MD2, and MD5. Defaults to MD5 if not specified.

       -I CIPHER-SUITE-ID, --cipher-suite-id=CIPHER-SUITE-ID
              Specify the IPMI  2.0  cipher  suite  ID  to  use.  The  Cipher  Suite  ID  identifies  a  set  of
              authentication,  integrity,  and confidentiality algorithms to use for IPMI 2.0 communication. The
              authentication algorithm identifies  the  algorithm  to  use  for  session  setup,  the  integrity
              algorithm  identifies  the algorithm to use for session packet signatures, and the confidentiality
              algorithm identifies the algorithm to use for payload encryption. Defaults to cipher suite ID 3 if
              not specified. The following cipher suite ids are currently supported:

              0 - Authentication Algorithm = None; Integrity Algorithm = None; Confidentiality Algorithm = None

              1  - Authentication Algorithm = HMAC-SHA1; Integrity Algorithm = None; Confidentiality Algorithm =
              None

              2 - Authentication Algorithm = HMAC-SHA1;  Integrity  Algorithm  =  HMAC-SHA1-96;  Confidentiality
              Algorithm = None

              3  -  Authentication  Algorithm  =  HMAC-SHA1; Integrity Algorithm = HMAC-SHA1-96; Confidentiality
              Algorithm = AES-CBC-128

              6 - Authentication Algorithm = HMAC-MD5; Integrity Algorithm = None; Confidentiality  Algorithm  =
              None

              7  -  Authentication  Algorithm  =  HMAC-MD5;  Integrity Algorithm = HMAC-MD5-128; Confidentiality
              Algorithm = None

              8 - Authentication Algorithm =  HMAC-MD5;  Integrity  Algorithm  =  HMAC-MD5-128;  Confidentiality
              Algorithm = AES-CBC-128

              11 - Authentication Algorithm = HMAC-MD5; Integrity Algorithm = MD5-128; Confidentiality Algorithm
              = None

              12 - Authentication Algorithm = HMAC-MD5; Integrity Algorithm = MD5-128; Confidentiality Algorithm
              = AES-CBC-128

              15 - Authentication Algorithm = HMAC-SHA256; Integrity Algorithm = None; Confidentiality Algorithm
              = None

              16  -  Authentication  Algorithm   =   HMAC-SHA256;   Integrity   Algorithm   =   HMAC_SHA256_128;
              Confidentiality Algorithm = None

              17   -   Authentication   Algorithm   =   HMAC-SHA256;   Integrity  Algorithm  =  HMAC_SHA256_128;
              Confidentiality Algorithm = AES-CBC-128

       -l PRIVILEGE-LEVEL, --privilege-level=PRIVILEGE-LEVEL
              Specify the privilege level to be  used.  The  currently  available  privilege  levels  are  USER,
              OPERATOR, and ADMIN. Defaults to ADMIN if not specified.

       --config-file=FILE
              Specify an alternate configuration file.

       -W WORKAROUNDS, --workaround-flags=WORKAROUNDS
              Specify  workarounds  to vendor compliance issues. Multiple workarounds can be specified separated
              by commas. A special command line flag of "none", will indicate no workarounds (may be useful  for
              overriding configured defaults). See WORKAROUNDS below for a list of available workarounds.

       --debug
              Turn on debugging.

       -?, --help
              Output a help list and exit.

       --usage
              Output a usage message and exit.

       -V, --version
              Output the program version and exit.

IPMI-RAW OPTIONS

       The following options are specific to Ipmi-raw.

       --file=CMD-FILE
              Specify a file to read command requests from.

HOSTRANGED OPTIONS

       The  following  options  manipulate  hostranged  output.  See  HOSTRANGED  SUPPORT  below  for additional
       information on hostranges.

       -B, --buffer-output
              Buffer hostranged output. For each node, buffer standard output until the node has  completed  its
              IPMI  operation.  When  specifying this option, data may appear to output slower to the user since
              the the entire IPMI operation must complete before any data can be output.  See HOSTRANGED SUPPORT
              below for additional information.

       -C, --consolidate-output
              Consolidate  hostranged  output.  The  complete  standard output from every node specified will be
              consolidated so that nodes with identical output are not output twice. A header  will  list  those
              nodes with the consolidated output. When this option is specified, no output can be seen until the
              IPMI operations to all nodes has completed. If the user breaks  out  of  the  program  early,  all
              currently  consolidated  output  will  be  dumped.  See  HOSTRANGED  SUPPORT  below for additional
              information.

       -F NUM, --fanout=NUM
              Specify multiple host fanout. A "sliding window" (or fanout) algorithm is used for  parallel  IPMI
              communication  so that slower nodes or timed out nodes will not impede parallel communication. The
              maximum number of threads available at the same time is limited by the fanout. The default is 64.

       -E, --eliminate
              Eliminate hosts determined as undetected by ipmidetect.  This attempts to remove the common  issue
              of  hostranged  execution  timing  out  due to several nodes being removed from service in a large
              cluster. The ipmidetectd daemon must be running on the node executing the command.

       --always-prefix
              Always prefix output, even if only one host is specified or communicating in-band. This option  is
              primarily useful for scripting purposes. Option will be ignored if specified with the -C option.

HOSTRANGED SUPPORT

       Multiple  hosts can be input either as an explicit comma separated lists of hosts or a range of hostnames
       in the general form: prefix[n-m,l-k,...], where n < m and l < k,  etc.  The  later  form  should  not  be
       confused  with  regular  expression character classes (also denoted by []). For example, foo[19] does not
       represent foo1 or foo9, but rather represents a degenerate range: foo19.

       This range syntax is meant only as a convenience on  clusters  with  a  prefixNN  naming  convention  and
       specification  of  ranges  should not be considered necessary -- the list foo1,foo9 could be specified as
       such, or by the range foo[1,9].

       Some examples of range usage follow:
           foo[01-05] instead of foo01,foo02,foo03,foo04,foo05
           foo[7,9-10] instead of foo7,foo9,foo10
           foo[0-3] instead of foo0,foo1,foo2,foo3

       As a reminder to the reader, some shells  will  interpret  brackets  ([  and  ])  for  pattern  matching.
       Depending on your shell, it may be necessary to enclose ranged lists within quotes.

       When  multiple hosts are specified by the user, a thread will be executed for each host in parallel up to
       the configured fanout (which can be adjusted via the -F option). This will allow communication  to  large
       numbers of nodes far more quickly than if done in serial.

       By  default,  standard output from each node specified will be output with the hostname prepended to each
       line. Although this output is readable in  many  situations,  it  may  be  difficult  to  read  in  other
       situations.  For  example, output from multiple nodes may be mixed together. The -B and -C options can be
       used to change this default.

       In-band IPMI Communication will be used when the host "localhost" is specified. This allows the  user  to
       add the localhost into the hostranged output.

GENERAL TROUBLESHOOTING

       Most often, IPMI problems are due to configuration problems.

       IPMI over LAN problems involve a misconfiguration of the remote machine's BMC.  Double check to make sure
       the following are configured properly in the remote machine's BMC: IP address, MAC address, subnet  mask,
       username,  user  enablement,  user  privilege,  password,  LAN  privilege,  LAN  enablement,  and allowed
       authentication type(s). For IPMI 2.0 connections, double check to make sure the cipher suite privilege(s)
       and  K_g  key  are  configured properly. The ipmi-config(8) tool can be used to check and/or change these
       configuration settings.

       Inband IPMI problems are typically caused by improperly configured drivers or non-standard BMCs.

       In addition to the troubleshooting tips below, please see WORKAROUNDS below to  also  if  there  are  any
       vendor specific bugs that have been discovered and worked around.

       Listed below are many of the common issues for error messages.  For additional support, please e-mail the
       <freeipmi-users@gnu.org> mailing list.

       "username invalid" - The username entered (or a NULL username if none was entered) is  not  available  on
       the remote machine. It may also be possible the remote BMC's username configuration is incorrect.

       "password invalid" - The password entered (or a NULL password if none was entered) is not correct. It may
       also be possible the password for the user is not correctly configured on the remote BMC.

       "password verification timeout" - Password verification  has  timed  out.   A  "password  invalid"  error
       (described  above)  or  a generic "session timeout" (described below) occurred.  During this point in the
       protocol it cannot be differentiated which occurred.

       "k_g invalid" - The K_g key entered (or a NULL K_g key if none was entered) is not correct. It  may  also
       be possible the K_g key is not correctly configured on the remote BMC.

       "privilege  level  insufficient"  -  An  IPMI  command  requires  a  higher  user  privilege than the one
       authenticated with. Please try to authenticate with a higher privilege. This may  require  authenticating
       to a different user which has a higher maximum privilege.

       "privilege  level  cannot  be  obtained  for  this  user"  -  The  privilege  level you are attempting to
       authenticate with is higher than the maximum allowed for  this  user.  Please  try  again  with  a  lower
       privilege.  It  may  also  be  possible  the maximum privilege level allowed for a user is not configured
       properly on the remote BMC.

       "authentication type unavailable for attempted privilege level" - The authentication  type  you  wish  to
       authenticate  with  is  not  available  for  this  privilege  level.  Please  try again with an alternate
       authentication type or alternate privilege level. It may also be possible  the  available  authentication
       types you can authenticate with are not correctly configured on the remote BMC.

       "cipher suite id unavailable" - The cipher suite id you wish to authenticate with is not available on the
       remote BMC. Please try again with an alternate cipher suite id. It may also  be  possible  the  available
       cipher suite ids are not correctly configured on the remote BMC.

       "ipmi  2.0  unavailable"  - IPMI 2.0 was not discovered on the remote machine. Please try to use IPMI 1.5
       instead.

       "connection timeout" - Initial IPMI communication failed. A number  of  potential  errors  are  possible,
       including  an  invalid  hostname specified, an IPMI IP address cannot be resolved, IPMI is not enabled on
       the remote server, the network connection is bad, etc. Please verify configuration and connectivity.

       "session timeout" - The IPMI session has timed out. Please reconnect.  If this error  occurs  often,  you
       may wish to increase the retransmission timeout. Some remote BMCs are considerably slower than others.

       "device  not  found"  - The specified device could not be found. Please check configuration or inputs and
       try again.

       "driver timeout" - Communication with the driver or device has timed out. Please try again.

       "message timeout" - Communication with the driver or device has timed out. Please try again.

       "BMC busy" - The BMC is currently busy. It may be processing information or have  too  many  simultaneous
       sessions to manage. Please wait and try again.

       "could  not  find  inband  device"  - An inband device could not be found.  Please check configuration or
       specify specific device or driver on the command line.

       "driver timeout" - The inband driver has timed out communicating to the local BMC or  service  processor.
       The BMC or service processor may be busy or (worst case) possibly non-functioning.

       "internal  IPMI  error" - An IPMI error has occurred that FreeIPMI does not know how to handle. Please e-
       mail <freeipmi-users@gnu.org> to report the issue.

WORKAROUNDS

       With so many different vendors implementing their own IPMI solutions,  different  vendors  may  implement
       their  IPMI protocols incorrectly. The following describes a number of workarounds currently available to
       handle discovered compliance issues. When possible, workarounds have been implemented  so  they  will  be
       transparent  to  the user. However, some will require the user to specify a workaround be used via the -W
       option.

       The hardware listed below may only indicate the hardware that a problem was discovered on. Newer versions
       of  hardware  may  fix the problems indicated below. Similar machines from vendors may or may not exhibit
       the same problems. Different vendors may license their firmware from the same IPMI firmware developer, so
       it may be worthwhile to try workarounds listed below even if your motherboard is not listed.

       If  you  believe  your  hardware  has  an  additional  compliance  issue  that  needs  a workaround to be
       implemented,   please   contact    the    FreeIPMI    maintainers    on    <freeipmi-users@gnu.org>    or
       <freeipmi-devel@gnu.org>.

       assumeio  -  This  workaround  flag will assume inband interfaces communicate with system I/O rather than
       being memory-mapped. This will work around systems that report invalid base addresses. Those hitting this
       issue  may  see  "device  not  supported" or "could not find inband device" errors.  Issue observed on HP
       ProLiant DL145 G1.

       spinpoll - This workaround flag will inform some inband drivers (most notably the  KCS  driver)  to  spin
       while  polling  rather  than  putting the process to sleep. This may significantly improve the wall clock
       running time of tools because an operating system scheduler's granularity may be  much  larger  than  the
       time  it  takes  to  perform  a single IPMI message transaction. However, by spinning, your system may be
       performing less useful work by not contexting out the tool for a more useful task.

       authcap - This  workaround  flag  will  skip  early  checks  for  username  capabilities,  authentication
       capabilities,  and  K_g support and allow IPMI authentication to succeed. It works around multiple issues
       in which the remote system does not properly report username capabilities,  authentication  capabilities,
       or  K_g status. Those hitting this issue may see "username invalid", "authentication type unavailable for
       attempted privilege level", or "k_g invalid" errors.  Issue observed  on  Asus  P5M2/P5MT-R/RS162-E4/RX4,
       Intel SR1520ML/X38ML, and Sun Fire 2200/4150/4450 with ELOM.

       nochecksumcheck  -  This workaround flag will tell FreeIPMI to not check the checksums returned from IPMI
       command responses. It works around systems that return invalid checksums due  to  implementation  errors,
       but  the  packet  is  otherwise  valid.  Users  are  cautioned  on  the use of this option, as it removes
       validation of packet integrity in a number of circumstances. However, it is unlikely to be  an  issue  in
       most  situations.  Those hitting this issue may see "connection timeout", "session timeout", or "password
       verification timeout" errors. On IPMI 1.5 connections, the "noauthcodecheck" workaround may  also  needed
       too. Issue observed on Supermicro X9SCM-iiF, Supermicro X9DRi-F, and Supermicro X9DRFR.

       idzero  - This workaround flag will allow empty session IDs to be accepted by the client. It works around
       IPMI sessions that report empty session IDs to the client. Those hitting  this  issue  may  see  "session
       timeout" errors. Issue observed on Tyan S2882 with M3289 BMC.

       unexpectedauth  -  This  workaround flag will allow unexpected non-null authcodes to be checked as though
       they were expected. It works around an issue when packets contain non-null authentication data when  they
       should  be  null  due  to  disabled per-message authentication. Those hitting this issue may see "session
       timeout" errors. Issue observed on Dell PowerEdge 2850,SC1425. Confirmed fixed on newer firmware.

       forcepermsg - This workaround flag will force per-message authentication to be used  no  matter  what  is
       advertised  by  the remote system. It works around an issue when per-message authentication is advertised
       as disabled on the remote system, but it is actually required for the protocol. Those hitting this  issue
       may see "session timeout" errors.  Issue observed on IBM eServer 325.

       endianseq  -  This  workaround  flag  will  flip  the endian of the session sequence numbers to allow the
       session to continue properly. It works around IPMI 1.5  session  sequence  numbers  that  are  the  wrong
       endian.   Those  hitting  this  issue  may  see "session timeout" errors. Issue observed on some Sun ILOM
       1.0/2.0 (depends on service processor endian).

       noauthcodecheck - This workaround flag will tell FreeIPMI to not check the authentication codes  returned
       from  IPMI 1.5 command responses. It works around systems that return invalid authentication codes due to
       hashing or implementation errors. Users are cautioned on the  use  of  this  option,  as  it  removes  an
       authentication check verifying the validity of a packet. However, in most organizations, this is unlikely
       to be a security issue. Those hitting this issue may see  "connection  timeout",  "session  timeout",  or
       "password  verification  timeout"  errors.   Issue observed on Xyratex FB-H8-SRAY, Intel Windmill, Quanta
       Winterfell, and Wiwynn Windmill.

       intel20 - This workaround flag will work around several Intel IPMI 2.0 authentication issues. The  issues
       covered  include  padding  of usernames, and password truncation if the authentication algorithm is HMAC-
       MD5-128. Those hitting this issue may see  "username  invalid",  "password  invalid",  or  "k_g  invalid"
       errors. Issue observed on Intel SE7520AF2 with Intel Server Management Module (Professional Edition).

       supermicro20 - This workaround flag will work around several Supermicro IPMI 2.0 authentication issues on
       motherboards  w/  Peppercon  IPMI  firmware.  The  issues  covered  include   handling   invalid   length
       authentication  codes.  Those  hitting  this  issue may see "password invalid" errors.  Issue observed on
       Supermicro H8QME with SIMSO daughter card. Confirmed fixed on newerver firmware.

       sun20 - This workaround flag will work work around several Sun IPMI 2.0 authentication issues. The issues
       covered  include  invalid  lengthed  hash keys, improperly hashed keys, and invalid cipher suite records.
       Those hitting this issue may see "password invalid" or "bmc error" errors.  Issue observed  on  Sun  Fire
       4100/4200/4500 with ILOM.  This workaround automatically includes the "opensesspriv" workaround.

       opensesspriv  -  This  workaround  flag  will  slightly  alter FreeIPMI's IPMI 2.0 connection protocol to
       workaround an invalid hashing algorithm used by the remote system. The privilege level  sent  during  the
       Open Session stage of an IPMI 2.0 connection is used for hashing keys instead of the privilege level sent
       during the RAKP1 connection stage. Those hitting this issue may see "password invalid", "k_g invalid", or
       "bad  rmcpplus  status  code"  errors.   Issue  observed  on  Sun Fire 4100/4200/4500 with ILOM, Inventec
       5441/Dell Xanadu II, Supermicro  X8DTH,  Supermicro  X8DTG,  Intel  S5500WBV/Penguin  Relion  700,  Intel
       S2600JF/Appro  512X, and Quanta QSSC-S4R/Appro GB812X-CN. This workaround is automatically triggered with
       the "sun20" workaround.

       integritycheckvalue - This workaround flag will work around an invalid integrity check  value  during  an
       IPMI  2.0  session  establishment  when  using  Cipher  Suite ID 0. The integrity check value should be 0
       length, however the remote motherboard responds with a non-empty field. Those hitting this issue may  see
       "k_g  invalid"  errors.  Issue observed on Supermicro X8DTG, Supermicro X8DTU, and Intel S5500WBV/Penguin
       Relion 700, and Intel S2600JF/Appro 512X.

       No IPMI 1.5 Support - Some motherboards that support IPMI 2.0 have been found to not  support  IPMI  1.5.
       Those hitting this issue may see "ipmi 2.0 unavailable" or "connection timeout" errors. This issue can be
       worked around by using IPMI 2.0 instead of IPMI 1.5 by specifying --driver-type=LAN_2_0.  Issue  observed
       on HP Proliant DL 145.

EXAMPLES

       # ipmi-raw 0 6 01

       Execute command 0x01 with LUN 0x0 and NETFN 0x06 on the local machine.

       # ipmi-raw -h ahost -u myusername -p mypassword 0 6 01

       Execute command 0x01 with LUN 0x0 and NETFN 0x06 on a remote machine using IPMI over LAN.

       # ipmi-raw -h mycluster[0-127] -u myusername -p mypassword 0 6 01

       Execute command 0x01 with LUN 0x0 and NETFN 0x06 across a cluster using IPMI over LAN.

       # ipmi-raw

       Read LUN, NETFN, command and request data from standard input.

       # ipmi-raw -f command-file

       Read LUN/FN, command and request data from given file instead of standard input.

       # ipmi-raw < command-file

       Read LUN, NETFN, command and request data from file as standard input.

DIAGNOSTICS

       Upon successful execution, exit status is 0. On error, exit status is 1.

       If  multiple  hosts  are  specified  for  communication,  the exit status is 0 if and only if all targets
       successfully execute. Otherwise the exit status is 1.

KNOWN ISSUES

       On older operating systems, if you input your username, password, and other potentially security relevant
       information  on the command line, this information may be discovered by other users when using tools like
       the ps(1) command or looking in the /proc file system. It is generally  more  secure  to  input  password
       information  with  options  like  the  -P or -K options. Configuring security relevant information in the
       FreeIPMI configuration file would also be an appropriate way to hide this information.

       In order to prevent brute force attacks, some BMCs will temporarily "lock up" after a  number  of  remote
       authentication  errors.  You  may need to wait awhile in order to this temporary "lock up" to pass before
       you may authenticate again.

REPORTING BUGS

       Report bugs to <freeipmi-users@gnu.org> or <freeipmi-devel@gnu.org>.

       Copyright © 2005-2014 FreeIPMI Core Team

       This program is free software; you can redistribute it and/or modify  it  under  the  terms  of  the  GNU
       General  Public License as published by the Free Software Foundation; either version 3 of the License, or
       (at your option) any later version.

SEE ALSO

       freeipmi.conf(5), freeipmi(7), ipmi-config(8), ipmi-oem(8)

       http://www.gnu.org/software/freeipmi/