Provided by: btrfs-progs_5.4.1-2_amd64 bug

NAME

       btrfs-balance - balance block groups on a btrfs filesystem

SYNOPSIS

       btrfs balance <subcommand> <args>

DESCRIPTION

       The primary purpose of the balance feature is to spread block groups across all devices so
       they match constraints defined by the respective profiles. See mkfs.btrfs(8) section
       PROFILES for more details. The scope of the balancing process can be further tuned by use
       of filters that can select the block groups to process. Balance works only on a mounted
       filesystem.

       The balance operation is cancellable by the user. The on-disk state of the filesystem is
       always consistent so an unexpected interruption (eg. system crash, reboot) does not
       corrupt the filesystem. The progress of the balance operation is temporarily stored as an
       internal state and will be resumed upon mount, unless the mount option skip_balance is
       specified.

           Warning
           running balance without filters will take a lot of time as it basically rewrites the
           entire filesystem and needs to update all block pointers.

       The filters can be used to perform following actions:

       •   convert block group profiles (filter convert)

       •   make block group usage more compact (filter usage)

       •   perform actions only on a given device (filters devid, drange)

       The filters can be applied to a combination of block group types (data, metadata, system).
       Note that changing system needs the force option.

           Note
           the balance operation needs enough work space, ie. space that is completely unused in
           the filesystem, otherwise this may lead to ENOSPC reports. See the section ENOSPC for
           more details.

COMPATIBILITY

           Note
           The balance subcommand also exists under the btrfs filesystem namespace. This still
           works for backward compatibility but is deprecated and should not be used any more.

           Note
           A short syntax btrfs balance <path> works due to backward compatibility but is
           deprecated and should not be used any more. Use btrfs balance start command instead.

PERFORMANCE IMPLICATIONS

       Balancing operations are very IO intensive and can also be quite CPU intensive, impacting
       other ongoing filesystem operations. Typically large amounts of data are copied from one
       location to another, with corresponding metadata updates.

       Depending upon the block group layout, it can also be seek heavy. Performance on
       rotational devices is noticeably worse compared to SSDs or fast arrays.

SUBCOMMAND

       cancel <path>
           cancels a running or paused balance, the command will block and wait until the current
           blockgroup being processed completes

       pause <path>
           pause running balance operation, this will store the state of the balance progress and
           used filters to the filesystem

       resume <path>
           resume interrupted balance, the balance status must be stored on the filesystem from
           previous run, eg. after it was forcibly interrupted and mounted again with
           skip_balance

       start [options] <path>
           start the balance operation according to the specified filters, no filters will
           rewrite the entire filesystem. The process runs in the foreground.

               Note
               the balance command without filters will basically rewrite everything in the
               filesystem. The run time is potentially very long, depending on the filesystem
               size. To prevent starting a full balance by accident, the user is warned and has a
               few seconds to cancel the operation before it starts. The warning and delay can be
               skipped with --full-balance option.
           Please note that the filters must be written together with the -d, -m and -s options,
           because they’re optional and bare -d etc also work and mean no filters.

           Options

           -d[<filters>]
               act on data block groups, see FILTERS section for details about filters

           -m[<filters>]
               act on metadata chunks, see FILTERS section for details about filters

           -s[<filters>]
               act on system chunks (requires -f), see FILTERS section for details about filters.

           -v
               be verbose and print balance filter arguments

           -f
               force a reduction of metadata integrity, eg. when going from raid1 to single

           --background|--bg
               run the balance operation asynchronously in the background, uses fork(2) to start
               the process that calls the kernel ioctl

       status [-v] <path>
           Show status of running or paused balance.

           If -v option is given, output will be verbose.

FILTERS

       From kernel 3.3 onwards, btrfs balance can limit its action to a subset of the whole
       filesystem, and can be used to change the replication configuration (e.g. moving data from
       single to RAID1). This functionality is accessed through the -d, -m or -s options to btrfs
       balance start, which filter on data, metadata and system blocks respectively.

       A filter has the following structure: type[=params][,type=...]

       The available types are:

       profiles=<profiles>
           Balances only block groups with the given profiles. Parameters are a list of profile
           names separated by "|" (pipe).

       usage=<percent>, usage=<range>
           Balances only block groups with usage under the given percentage. The value of 0 is
           allowed and will clean up completely unused block groups, this should not require any
           new work space allocated. You may want to use usage=0 in case balance is returning
           ENOSPC and your filesystem is not too full.

           The argument may be a single value or a range. The single value N means at most N
           percent used, equivalent to ..N range syntax. Kernels prior to 4.4 accept only the
           single value format. The minimum range boundary is inclusive, maximum is exclusive.

       devid=<id>
           Balances only block groups which have at least one chunk on the given device. To list
           devices with ids use btrfs filesystem show.

       drange=<range>
           Balance only block groups which overlap with the given byte range on any device. Use
           in conjunction with devid to filter on a specific device. The parameter is a range
           specified as start..end.

       vrange=<range>
           Balance only block groups which overlap with the given byte range in the filesystem’s
           internal virtual address space. This is the address space that most reports from btrfs
           in the kernel log use. The parameter is a range specified as start..end.

       convert=<profile>
           Convert each selected block group to the given profile name identified by parameters.

               Note
               starting with kernel 4.5, the data chunks can be converted to/from the DUP profile
               on a single device.

               Note
               starting with kernel 4.6, all profiles can be converted to/from DUP on
               multi-device filesystems.

       limit=<number>, limit=<range>
           Process only given number of chunks, after all filters are applied. This can be used
           to specifically target a chunk in connection with other filters (drange, vrange) or
           just simply limit the amount of work done by a single balance run.

           The argument may be a single value or a range. The single value N means at most N
           chunks, equivalent to ..N range syntax. Kernels prior to 4.4 accept only the single
           value format. The range minimum and maximum are inclusive.

       stripes=<range>
           Balance only block groups which have the given number of stripes. The parameter is a
           range specified as start..end. Makes sense for block group profiles that utilize
           striping, ie. RAID0/10/5/6. The range minimum and maximum are inclusive.

       soft
           Takes no parameters. Only has meaning when converting between profiles. When doing
           convert from one profile to another and soft mode is on, chunks that already have the
           target profile are left untouched. This is useful e.g. when half of the filesystem was
           converted earlier but got cancelled.

           The soft mode switch is (like every other filter) per-type. For example, this means
           that we can convert metadata chunks the "hard" way while converting data chunks
           selectively with soft switch.

       Profile names, used in profiles and convert are one of: raid0, raid1, raid10, raid5,
       raid6, dup, single. The mixed data/metadata profiles can be converted in the same way, but
       it’s conversion between mixed and non-mixed is not implemented. For the constraints of the
       profiles please refer to mkfs.btrfs(8), section PROFILES.

ENOSPC

       The way balance operates, it usually needs to temporarily create a new block group and
       move the old data there, before the old block group can be removed. For that it needs the
       work space, otherwise it fails for ENOSPC reasons. This is not the same ENOSPC as if the
       free space is exhausted. This refers to the space on the level of block groups, which are
       bigger parts of the filesystem that contain many file extents.

       The free work space can be calculated from the output of the btrfs filesystem show
       command:

              Label: 'BTRFS'  uuid: 8a9d72cd-ead3-469d-b371-9c7203276265
                      Total devices 2 FS bytes used 77.03GiB
                      devid    1 size 53.90GiB used 51.90GiB path /dev/sdc2
                      devid    2 size 53.90GiB used 51.90GiB path /dev/sde1

       size - used = free work space 53.90GiB - 51.90GiB = 2.00GiB

       An example of a filter that does not require workspace is usage=0. This will scan through
       all unused block groups of a given type and will reclaim the space. After that it might be
       possible to run other filters.

       CONVERSIONS ON MULTIPLE DEVICES

       Conversion to profiles based on striping (RAID0, RAID5/6) require the work space on each
       device. An interrupted balance may leave partially filled block groups that consume the
       work space.

EXAMPLES

       A more comprehensive example when going from one to multiple devices, and back, can be
       found in section TYPICAL USECASES of btrfs-device(8).

   MAKING BLOCK GROUP LAYOUT MORE COMPACT
       The layout of block groups is not normally visible; most tools report only summarized
       numbers of free or used space, but there are still some hints provided.

       Let’s use the following real life example and start with the output:

           $ btrfs filesystem df /path
           Data, single: total=75.81GiB, used=64.44GiB
           System, RAID1: total=32.00MiB, used=20.00KiB
           Metadata, RAID1: total=15.87GiB, used=8.84GiB
           GlobalReserve, single: total=512.00MiB, used=0.00B

       Roughly calculating for data, 75G - 64G = 11G, the used/total ratio is about 85%. How can
       we can interpret that:

       •   chunks are filled by 85% on average, ie. the usage filter with anything smaller than
           85 will likely not affect anything

       •   in a more realistic scenario, the space is distributed unevenly, we can assume there
           are completely used chunks and the remaining are partially filled

       Compacting the layout could be used on both. In the former case it would spread data of a
       given chunk to the others and removing it. Here we can estimate that roughly 850 MiB of
       data have to be moved (85% of a 1 GiB chunk).

       In the latter case, targeting the partially used chunks will have to move less data and
       thus will be faster. A typical filter command would look like:

           # btrfs balance start -dusage=50 /path
           Done, had to relocate 2 out of 97 chunks

           $ btrfs filesystem df /path
           Data, single: total=74.03GiB, used=64.43GiB
           System, RAID1: total=32.00MiB, used=20.00KiB
           Metadata, RAID1: total=15.87GiB, used=8.84GiB
           GlobalReserve, single: total=512.00MiB, used=0.00B

       As you can see, the total amount of data is decreased by just 1 GiB, which is an expected
       result. Let’s see what will happen when we increase the estimated usage filter.

           # btrfs balance start -dusage=85 /path
           Done, had to relocate 13 out of 95 chunks

           $ btrfs filesystem df /path
           Data, single: total=68.03GiB, used=64.43GiB
           System, RAID1: total=32.00MiB, used=20.00KiB
           Metadata, RAID1: total=15.87GiB, used=8.85GiB
           GlobalReserve, single: total=512.00MiB, used=0.00B

       Now the used/total ratio is about 94% and we moved about 74G - 68G = 6G of data to the
       remaining blockgroups, ie. the 6GiB are now free of filesystem structures, and can be
       reused for new data or metadata block groups.

       We can do a similar exercise with the metadata block groups, but this should not typically
       be necessary, unless the used/total ratio is really off. Here the ratio is roughly 50% but
       the difference as an absolute number is "a few gigabytes", which can be considered normal
       for a workload with snapshots or reflinks updated frequently.

           # btrfs balance start -musage=50 /path
           Done, had to relocate 4 out of 89 chunks

           $ btrfs filesystem df /path
           Data, single: total=68.03GiB, used=64.43GiB
           System, RAID1: total=32.00MiB, used=20.00KiB
           Metadata, RAID1: total=14.87GiB, used=8.85GiB
           GlobalReserve, single: total=512.00MiB, used=0.00B

       Just 1 GiB decrease, which possibly means there are block groups with good utilization.
       Making the metadata layout more compact would in turn require updating more metadata
       structures, ie. lots of IO. As running out of metadata space is a more severe problem,
       it’s not necessary to keep the utilization ratio too high. For the purpose of this
       example, let’s see the effects of further compaction:

           # btrfs balance start -musage=70 /path
           Done, had to relocate 13 out of 88 chunks

           $ btrfs filesystem df .
           Data, single: total=68.03GiB, used=64.43GiB
           System, RAID1: total=32.00MiB, used=20.00KiB
           Metadata, RAID1: total=11.97GiB, used=8.83GiB
           GlobalReserve, single: total=512.00MiB, used=0.00B

   GETTING RID OF COMPLETELY UNUSED BLOCK GROUPS
       Normally the balance operation needs a work space, to temporarily move the data before the
       old block groups gets removed. If there’s no work space, it ends with no space left.

       There’s a special case when the block groups are completely unused, possibly left after
       removing lots of files or deleting snapshots. Removing empty block groups is automatic
       since 3.18. The same can be achieved manually with a notable exception that this operation
       does not require the work space. Thus it can be used to reclaim unused block groups to
       make it available.

           # btrfs balance start -dusage=0 /path

       This should lead to decrease in the total numbers in the btrfs filesystem df output.

EXIT STATUS

       Unless indicated otherwise below, all btrfs balance subcommands return a zero exit status
       if they succeed, and non zero in case of failure.

       The pause, cancel, and resume subcommands exit with a status of 2 if they fail because a
       balance operation was not running.

       The status subcommand exits with a status of 0 if a balance operation is not running, 1 if
       the command-line usage is incorrect or a balance operation is still running, and 2 on
       other errors.

AVAILABILITY

       btrfs is part of btrfs-progs. Please refer to the btrfs wiki http://btrfs.wiki.kernel.org
       for further details.

SEE ALSO

       mkfs.btrfs(8), btrfs-device(8)