Provided by: dcmtk_3.6.4-2.1ubuntu0.1_amd64 bug

NAME

       dcmcjpls - Encode DICOM file to JPEG-LS transfer syntax

SYNOPSIS

       dcmcjpls [options] dcmfile-in dcmfile-out

DESCRIPTION

       The  dcmcjpls  utility reads an uncompressed DICOM image (dcmfile-in), performs a JPEG-LS compression (i.
       e. conversion to an encapsulated DICOM transfer syntax) and writes the converted image to an output  file
       (dcmfile-out).

PARAMETERS

       dcmfile-in   DICOM input filename to be converted

       dcmfile-out  DICOM output filename

OPTIONS

   general options
         -h   --help
                print this help text and exit

              --version
                print version information and exit

              --arguments
                print expanded command line arguments

         -q   --quiet
                quiet mode, print no warnings and errors

         -v   --verbose
                verbose mode, print processing details

         -d   --debug
                debug mode, print debug information

         -ll  --log-level  [l]evel: string constant
                (fatal, error, warn, info, debug, trace)
                use level l for the logger

         -lc  --log-config  [f]ilename: string
                use config file f for the logger

   input options
       input file format:

         +f   --read-file
                read file format or data set (default)

         +fo  --read-file-only
                read file format only

         -f   --read-dataset
                read data set without file meta information

       input transfer syntax:

         -t=  --read-xfer-auto
                use TS recognition (default)

         -td  --read-xfer-detect
                ignore TS specified in the file meta header

         -te  --read-xfer-little
                read with explicit VR little endian TS

         -tb  --read-xfer-big
                read with explicit VR big endian TS

         -ti  --read-xfer-implicit
                read with implicit VR little endian TS

   JPEG-LS encoding options
       JPEG-LS process:

         +el  --encode-lossless
                encode JPEG-LS lossless only TS (default)

         # This options selects the JPEG-LS lossless only transfer syntax
         # and performs a lossless compression.

         +en  --encode-nearlossless
                encode JPEG-LS near-lossless TS (NEAR: 2)

         # This options selects the JPEG-LS lossy transfer syntax
         # and performs a near-lossless compression.

       JPEG-LS bit rate (near-lossless only):

         +md  --max-deviation  [d]eviation: integer (default: 2)
                defines maximum deviation for an encoded pixel

         # This option specifies the maximum deviation for a single pixel from
         # the original pixel value.

       lossless compression:

         +pr  --prefer-raw
                prefer raw encoder mode (default)

         # This option enables the raw encoder. The raw encoder encodes the
         # complete pixel cell as it was read from the source image without
         # performing any modifications.

         +pc  --prefer-cooked
                prefer cooked encoder mode

         # This option enables the cooked encoder. The cooked encoder moves
         # overlay data to separate tags (60xx,3000) and only encodes the
         # stored bits in each pixel.

       JPEG-LS compression:

         +t1  --threshold1  [t]hreshhold: integer (default for 8 bpp: 3)
                set JPEG-LS encoding parameter threshold 1

         +t2  --threshold2  [t]hreshhold: integer (default for 8 bpp: 7)
                set JPEG-LS encoding parameter threshold 2

         +t3  --threshold3  [t]hreshhold: integer (default for 8 bpp: 21)
                set JPEG-LS encoding parameter threshold 3

         +rs  --reset  [r]eset: integer (default: 64)
                set JPEG-LS encoding parameter reset

         +lm  --limit  [l]imit: integer (default: 0)
                set JPEG-LS encoding parameter limit

       JPEG-LS interleave:

         +il  --interleave-line
                force line-interleaved JPEG-LS images (default)

         # This flag forces line-interleaved mode for the resulting image.
         # In line-interleave mode each line from the source image is
         # compressed separately for each component and then the next line
         # is encoded.

         +is  --interleave-sample
                force sample-interleaved JPEG-LS images

         # This flag forces sample-interleaved mode for the resulting image.
         # In sample-interleave mode each pixel's components are encoded before
         # the next pixel is encoded.

         +in  --interleave-none
                force uninterleaved JPEG-LS images

         # This flag forces uninterleaved mode for the resulting image.
         # In this mode, each of the image's components are completely encoded
         # before the next component is handled.

         +iv  --interleave-default
                use the fastest possible interleave mode

         # This flag selects an interleave mode based on the source image's mode.
         # If possible, the image is not converted to a different interleave mode.

   encapsulated pixel data encoding options
       encapsulated pixel data fragmentation:

         +ff  --fragment-per-frame
                encode each frame as one fragment (default)

         # This option causes the creation of one compressed fragment for each
         # frame (recommended).

         +fs  --fragment-size  [s]ize: integer
                limit fragment size to s kbytes

         # This option limits the fragment size which may cause the creation of
         # multiple fragments per frame.

       basic offset table encoding:

         +ot  --offset-table-create
                create offset table (default)

         # This option causes the creation of a valid offset table for the
         # compressed JPEG fragments.

         -ot  --offset-table-empty
                leave offset table empty

         # This option causes the creation of an empty offset table
         # for the compressed JPEG fragments.

       SOP Class UID:

         +cd  --class-default
                keep SOP Class UID (default)

         # Keep the SOP Class UID of the source image.

         +cs  --class-sc
                convert to Secondary Capture Image (implies --uid-always)

         # Convert the image to Secondary Capture.  In addition to the SOP Class
         # UID, all attributes required for a valid secondary capture image are
         # added. A new SOP instance UID is always assigned.

       SOP Instance UID:

         +ud  --uid-default
                assign new UID if lossy compression (default)

         # Assigns a new SOP instance UID if the compression is lossy JPEG.

         +ua  --uid-always
                always assign new UID

         # Unconditionally assigns a new SOP instance UID.

         +un  --uid-never
                never assign new UID

         # Never assigns a new SOP instance UID.

   output options
       post-1993 value representations:

         +u   --enable-new-vr
                enable support for new VRs (UN/UT) (default)

         -u   --disable-new-vr
                disable support for new VRs, convert to OB

       group length encoding:

         +g=  --group-length-recalc
                recalculate group lengths if present (default)

         +g   --group-length-create
                always write with group length elements

         -g   --group-length-remove
                always write without group length elements

       length encoding in sequences and items:

         +e   --length-explicit
                write with explicit lengths (default)

         -e   --length-undefined
                write with undefined lengths

       data set trailing padding:

         -p=  --padding-retain
                do not change padding (default)

         -p   --padding-off
                no padding

         +p   --padding-create  [f]ile-pad [i]tem-pad: integer
                align file on multiple of f bytes
                and items on multiple of i bytes

NOTES

       The  dcmcjpls utility compresses DICOM images of all SOP classes. It processes all Pixel Data (7fe0,0010)
       elements in the dataset, i.e. compression is also performed on an icon image. However, dcmcjpls does  not
       attempt to ensure that the compressed image still complies with all restrictions of the object's IOD.

       The  user  is  responsible  for  making sure that the compressed images he creates are compliant with the
       DICOM standard. If in question, the dcmcjpls utility allows one to convert an image to secondary  capture
       - this SOP class does not pose restrictions as the ones mentioned above.

TRANSFER SYNTAXES

       dcmcjpls supports the following transfer syntaxes for input (dcmfile-in):

       LittleEndianImplicitTransferSyntax             1.2.840.10008.1.2
       LittleEndianExplicitTransferSyntax             1.2.840.10008.1.2.1
       DeflatedExplicitVRLittleEndianTransferSyntax   1.2.840.10008.1.2.1.99 (*)
       BigEndianExplicitTransferSyntax                1.2.840.10008.1.2.2

       (*) if compiled with zlib support enabled

       dcmcjpls supports the following transfer syntaxes for output (dcmfile-out):

       JPEGLSLosslessTransferSyntax                   1.2.840.10008.1.2.4.80
       JPEGLSLossyTransferSyntax                      1.2.840.10008.1.2.4.81

LOGGING

       The  level  of logging output of the various command line tools and underlying libraries can be specified
       by the user. By default, only errors and warnings are written to the standard error stream. Using  option
       --verbose also informational messages like processing details are reported. Option --debug can be used to
       get more details on the internal activity, e.g. for debugging  purposes.  Other  logging  levels  can  be
       selected  using  option  --log-level. In --quiet mode only fatal errors are reported. In such very severe
       error events, the application will usually terminate. For more details on the different  logging  levels,
       see documentation of module 'oflog'.

       In case the logging output should be written to file (optionally with logfile rotation), to syslog (Unix)
       or the event log (Windows) option --log-config can be used.  This  configuration  file  also  allows  for
       directing only certain messages to a particular output stream and for filtering certain messages based on
       the module or application where they  are  generated.  An  example  configuration  file  is  provided  in
       <etcdir>/logger.cfg.

COMMAND LINE

       All command line tools use the following notation for parameters: square brackets enclose optional values
       (0-1), three trailing dots indicate that multiple values are allowed (1-n), a combination of both means 0
       to n values.

       Command  line  options  are  distinguished  from  parameters  by a leading '+' or '-' sign, respectively.
       Usually, order and position of command line options  are  arbitrary  (i.e.  they  can  appear  anywhere).
       However,  if  options  are mutually exclusive the rightmost appearance is used. This behavior conforms to
       the standard evaluation rules of common Unix shells.

       In addition, one or more command files can be specified using an '@' sign as a  prefix  to  the  filename
       (e.g.  @command.txt).  Such  a command argument is replaced by the content of the corresponding text file
       (multiple whitespaces are treated as a single separator unless they appear between two  quotation  marks)
       prior  to  any  further  evaluation. Please note that a command file cannot contain another command file.
       This simple but effective approach allows one to summarize common combinations of options/parameters  and
       avoids longish and confusing command lines (an example is provided in file <datadir>/dumppat.txt).

ENVIRONMENT

       The  dcmcjpls  utility  will  attempt  to  load  DICOM  data  dictionaries  specified  in the DCMDICTPATH
       environment variable. By default, i.e. if the DCMDICTPATH environment  variable  is  not  set,  the  file
       <datadir>/dicom.dic  will  be  loaded  unless  the  dictionary is built into the application (default for
       Windows).

       The default behavior should be  preferred  and  the  DCMDICTPATH  environment  variable  only  used  when
       alternative  data  dictionaries are required. The DCMDICTPATH environment variable has the same format as
       the Unix shell PATH variable in that a colon (':') separates entries. On  Windows  systems,  a  semicolon
       (';')  is  used  as a separator. The data dictionary code will attempt to load each file specified in the
       DCMDICTPATH environment variable. It is an error if no data dictionary can be loaded.

SEE ALSO

       dcmdjpls(1)

COPYRIGHT

       Copyright (C) 2009-2018 by OFFIS e.V., Escherweg 2, 26121 Oldenburg, Germany.