Provided by: dcmtk_3.6.4-2.1ubuntu0.1_amd64 bug

NAME

       dcmdjpeg - Decode JPEG-compressed DICOM file

SYNOPSIS

       dcmdjpeg [options] dcmfile-in dcmfile-out

DESCRIPTION

       The  dcmdjpeg utility reads a JPEG-compressed DICOM image (dcmfile-in), decompresses the JPEG data (i. e.
       conversion to a native DICOM transfer syntax) and writes the converted image to an output file  (dcmfile-
       out).

PARAMETERS

       dcmfile-in   DICOM input filename to be converted

       dcmfile-out  DICOM output filename

OPTIONS

   general options
         -h    --help
                 print this help text and exit

               --version
                 print version information and exit

               --arguments
                 print expanded command line arguments

         -q    --quiet
                 quiet mode, print no warnings and errors

         -v    --verbose
                 verbose mode, print processing details

         -d    --debug
                 debug mode, print debug information

         -ll   --log-level  [l]evel: string constant
                 (fatal, error, warn, info, debug, trace)
                 use level l for the logger

         -lc   --log-config  [f]ilename: string
                 use config file f for the logger

   input options
       input file format:

         +f    --read-file
                 read file format or data set (default)

         +fo   --read-file-only
                 read file format only

         -f    --read-dataset
                 read data set without file meta information

         # This option allows one to decompress JPEG compressed DICOM objects that
         # have been stored as dataset without meta-header. Such a thing should
         # not exist since the transfer syntax cannot be reliably determined,
         # without meta-header but unfortunately it does.

   processing options
       color space conversion:

         +cp   --conv-photometric
                 convert if YCbCr photometric interpretation (default)

         # If the compressed image uses YBR_FULL or YBR_FULL_422 photometric
         # interpretation, convert to RGB during decompression.

         +cl   --conv-lossy
                 convert YCbCr to RGB if lossy JPEG

         # If the compressed image is encoded in lossy JPEG, assume YCbCr
         # color model and convert to RGB.

         +cg   --conv-guess
                 convert to RGB if YCbCr is guessed by library

         # If the underlying JPEG library "guesses" the color space of the
         # compressed image to be YCbCr, convert to RGB.

         +cgl  --conv-guess-lossy
                 convert to RGB if lossy JPEG and YCbCr is
                 guessed by the underlying JPEG library

         # If the compressed image is encoded in lossy JPEG and the underlying
         # JPEG library "guesses" the color space to be YCbCr, convert to RGB.

         +ca   --conv-always
                 always convert YCbCr to RGB

         # If the compressed image is a color image, assume YCbCr color model
         # and convert to RGB.

         +cn   --conv-never
                 never convert color space

         # Never convert color space during decompression.

       planar configuration:

         +pa   --planar-auto
                 automatically determine planar configuration
                 from SOP class and color space (default)

         # If the compressed image is a color image, store in color-by-plane
         # planar configuration if required by the SOP class and photometric
         # interpretation. Hardcopy Color images are always stored color-by-
         # plane, and the revised Ultrasound image objects are stored color-by-
         # plane if the color model is YBR_FULL.  Everything else is stored
         # color-by-pixel.

         +px   --color-by-pixel
                 always store color-by-pixel

         # If the compressed image is a color image, store in color-by-pixel
         # planar configuration.

         +pl   --color-by-plane
                 always store color-by-plane

         # If the compressed image is a color image, store in color-by-plane
         # planar configuration.

       SOP Instance UID:

         +ud   --uid-default
                 keep same SOP Instance UID (default)

         #  Never assigns a new SOP instance UID.

         +ua   --uid-always
                 always assign new UID

         # Always assigns a new SOP instance UID.

       workaround options for incorrect JPEG encodings:

         +w6   --workaround-pred6
                 enable workaround for JPEG lossless images
                 with overflow in predictor 6

         # DICOM images with 16 bits/pixel have been observed "in the wild"
         # that are compressed with lossless JPEG and need special handling
         # because the encoder produced an 16-bit integer overflow in predictor
         # 6, which needs to be compensated (reproduced) during decompression.
         # This flag enables a correct decompression of such faulty images, but
         # at the same time will cause an incorrect decompression of correctly
         # compressed images. Use with care.

         +wi   --workaround-incpl
                 enable workaround for incomplete JPEG data

         # This option causes dcmjpeg to ignore incomplete JPEG data
         # at the end of a compressed fragment and to start decompressing
         # the next frame from the next fragment (if any). This permits
         # images with incomplete JPEG data to be decoded.

         +wc   --workaround-cornell
                 enable workaround for 16-bit JPEG lossless
                 Cornell images with Huffman table overflow

         # One of the first open-source implementations of lossless JPEG
         # compression, the "Cornell" library, has a well-known bug that leads
         # to invalid values in the Huffmann table when images with 16 bit/sample
         # are compressed. This flag enables a workaround that permits such
         # images to be decoded correctly..fi

   output options
       output file format:

         +F    --write-file
                 write file format (default)

         -F    --write-dataset
                 write data set without file meta information

       output transfer syntax:

         +te   --write-xfer-little
                 write with explicit VR little endian (default)

         +tb   --write-xfer-big
                 write with explicit VR big endian TS

         +ti   --write-xfer-implicit
                 write with implicit VR little endian TS

       post-1993 value representations:

         +u    --enable-new-vr
                 enable support for new VRs (UN/UT) (default)

         -u    --disable-new-vr
                 disable support for new VRs, convert to OB

       group length encoding:

         +g=   --group-length-recalc
                 recalculate group lengths if present (default)

         +g    --group-length-create
                 always write with group length elements

         -g    --group-length-remove
                 always write without group length elements

       length encoding in sequences and items:

         +e    --length-explicit
                 write with explicit lengths (default)

         -e    --length-undefined
                 write with undefined lengths

       data set trailing padding (not with --write-dataset):

         -p=   --padding-retain
                 do not change padding (default if not --write-dataset)

         -p    --padding-off
                 no padding (implicit if --write-dataset)

         +p    --padding-create  [f]ile-pad [i]tem-pad: integer
                 align file on multiple of f bytes
                 and items on multiple of i bytes

TRANSFER SYNTAXES

       dcmdjpeg supports the following transfer syntaxes for input (dcmfile-in):

       LittleEndianImplicitTransferSyntax             1.2.840.10008.1.2
       LittleEndianExplicitTransferSyntax             1.2.840.10008.1.2.1
       DeflatedExplicitVRLittleEndianTransferSyntax   1.2.840.10008.1.2.1.99 (*)
       BigEndianExplicitTransferSyntax                1.2.840.10008.1.2.2
       JPEGProcess1TransferSyntax                     1.2.840.10008.1.2.4.50
       JPEGProcess2_4TransferSyntax                   1.2.840.10008.1.2.4.51
       JPEGProcess6_8TransferSyntax                   1.2.840.10008.1.2.4.53
       JPEGProcess10_12TransferSyntax                 1.2.840.10008.1.2.4.55
       JPEGProcess14TransferSyntax                    1.2.840.10008.1.2.4.57
       JPEGProcess14SV1TransferSyntax                 1.2.840.10008.1.2.4.70

       (*) if compiled with zlib support enabled

       dcmdjpeg supports the following transfer syntaxes for output (dcmfile-out):

       LittleEndianImplicitTransferSyntax             1.2.840.10008.1.2
       LittleEndianExplicitTransferSyntax             1.2.840.10008.1.2.1
       BigEndianExplicitTransferSyntax                1.2.840.10008.1.2.2

LOGGING

       The  level  of logging output of the various command line tools and underlying libraries can be specified
       by the user. By default, only errors and warnings are written to the standard error stream. Using  option
       --verbose also informational messages like processing details are reported. Option --debug can be used to
       get more details on the internal activity, e.g. for debugging  purposes.  Other  logging  levels  can  be
       selected  using  option  --log-level. In --quiet mode only fatal errors are reported. In such very severe
       error events, the application will usually terminate. For more details on the different  logging  levels,
       see documentation of module 'oflog'.

       In case the logging output should be written to file (optionally with logfile rotation), to syslog (Unix)
       or the event log (Windows) option --log-config can be used.  This  configuration  file  also  allows  for
       directing only certain messages to a particular output stream and for filtering certain messages based on
       the module or application where they  are  generated.  An  example  configuration  file  is  provided  in
       <etcdir>/logger.cfg.

COMMAND LINE

       All command line tools use the following notation for parameters: square brackets enclose optional values
       (0-1), three trailing dots indicate that multiple values are allowed (1-n), a combination of both means 0
       to n values.

       Command  line  options  are  distinguished  from  parameters  by a leading '+' or '-' sign, respectively.
       Usually, order and position of command line options  are  arbitrary  (i.e.  they  can  appear  anywhere).
       However,  if  options  are mutually exclusive the rightmost appearance is used. This behavior conforms to
       the standard evaluation rules of common Unix shells.

       In addition, one or more command files can be specified using an '@' sign as a  prefix  to  the  filename
       (e.g.  @command.txt).  Such  a command argument is replaced by the content of the corresponding text file
       (multiple whitespaces are treated as a single separator unless they appear between two  quotation  marks)
       prior  to  any  further  evaluation. Please note that a command file cannot contain another command file.
       This simple but effective approach allows one to summarize common combinations of options/parameters  and
       avoids longish and confusing command lines (an example is provided in file <datadir>/dumppat.txt).

ENVIRONMENT

       The  dcmdjpeg  utility  will  attempt  to  load  DICOM  data  dictionaries  specified  in the DCMDICTPATH
       environment variable. By default, i.e. if the DCMDICTPATH environment  variable  is  not  set,  the  file
       <datadir>/dicom.dic  will  be  loaded  unless  the  dictionary is built into the application (default for
       Windows).

       The default behavior should be  preferred  and  the  DCMDICTPATH  environment  variable  only  used  when
       alternative  data  dictionaries are required. The DCMDICTPATH environment variable has the same format as
       the Unix shell PATH variable in that a colon (':') separates entries. On  Windows  systems,  a  semicolon
       (';')  is  used  as a separator. The data dictionary code will attempt to load each file specified in the
       DCMDICTPATH environment variable. It is an error if no data dictionary can be loaded.

SEE ALSO

       dcmcjpeg(1)

COPYRIGHT

       Copyright (C) 2001-2018 by OFFIS e.V., Escherweg 2, 26121 Oldenburg, Germany.