Provided by: dcmtk_3.6.4-2.1ubuntu0.1_amd64 bug

NAME

       dcmicmp - Compare DICOM images and compute difference metrics

SYNOPSIS

       dcmicmp [options] dcmfile-in-1 dcmfile-in-2

DESCRIPTION

       The  dcmicmp  utility  reads  two  DICOM images, an original 'reference image' and a post-processed 'test
       image', to which some kind of processing such as a lossy image compression,  followed  by  decompression,
       has been applied. This tool requires that both images have the same resolution, the same number of frames
       and are either both color or monochrome. Compressed images are not supported.

       The dcmicmp utility then compares both images and computes and prints metrics that describe  how  similar
       or different both images are:

       • the  maximum absolute error is the largest difference between an pixel value in the reference image and
         the corresponding pixel value in the test image.

       • the mean absolute error (MAE) is the average difference between original pixel  value  and  test  image
         pixel value

       • the  root  mean  square  error  (RMSE) is computed by adding the squares of all difference values, then
         dividing by the number of values added, and then taking the square root.

       • The peak signal to noise ratio (PSNR) considers the reference image as a  signal  and  the  differences
         between  reference  and  test  image  as noise. PSNR is the maximum signal strength (i.e. maximum pixel
         value in the reference image) divided by the RMSE, expressed on a logarithmic scale in dB.

       • The signal to noise ratio (PSNR) also considers the reference image as a  signal  and  the  differences
         between  reference  and  test  image  as noise. SNR is the average signal strength divided by the RMSE,
         expressed on a logarithmic scale in dB.

       All metrics are computed as defined in R.C. Gonzalez and R.E. Woods, 'Digital Image Processing,' Prentice
       Hall 2008.

PARAMETERS

       dcmfile-in-1  Reference DICOM image file for comparison

       dcmfile-in-2  Test DICOM image file for comparison

OPTIONS

   general options
         -h    --help
                 print this help text and exit

               --version
                 print version information and exit

               --arguments
                 print expanded command line arguments

         -q    --quiet
                 quiet mode, print no warnings and errors

         -v    --verbose
                 verbose mode, print processing details

         -d    --debug
                 debug mode, print debug information

         -ll   --log-level  [l]evel: string constant
                 (fatal, error, warn, info, debug, trace)
                 use level l for the logger

         -lc   --log-config  [f]ilename: string
                 use config file f for the logger

   input options
       input file format:

         +f    --read-file
                 read file format or data set (default)

         +fo   --read-file-only
                 read file format only

         -f    --read-dataset
                 read data set without file meta information

       input transfer syntax:

         -t=   --read-xfer-auto
                 use TS recognition (default)

         -td   --read-xfer-detect
                 ignore TS specified in the file meta header

         -te   --read-xfer-little
                 read with explicit VR little endian TS

         -tb   --read-xfer-big
                 read with explicit VR big endian TS

         -ti   --read-xfer-implicit
                 read with implicit VR little endian TS

   image processing options
       modality LUT transformation:

         +M    --use-modality
                 use modality LUT transformation (default)

         -M    --no-modality
                 ignore stored modality LUT transformation

       VOI LUT transformation:

         -W    --no-windowing
                 no VOI windowing (default)

         +Wi   --use-window  [n]umber: integer
                 use the n-th VOI window from image file

         +Wl   --use-voi-lut  [n]umber: integer
                 use the n-th VOI look up table from image file

         +Wm   --min-max-window
                 compute VOI window using min-max algorithm
                 on both images separately

         +Wn   --min-max-window-n
                 compute VOI window using min-max algorithm
                 on both images separately, ignoring extremes

         +Wr   --min-max-ref
                 compute VOI window using min-max algorithm
                 and use same window for the test image

         +Wq   --min-max-n-ref
                 compute VOI window using min-max algorithm,
                 ignoring extreme values
                 and use same window for the test image

         +Ww   --set-window  [c]enter [w]idth: float
                 compute VOI window using center c and width w

         +Wfl  --linear-function
                 set VOI LUT function to LINEAR

         +Wfs  --sigmoid-function
                 set VOI LUT function to SIGMOID

       presentation LUT transformation:

         +Pid  --identity-shape
                 set presentation LUT shape to IDENTITY

         +Piv  --inverse-shape
                 set presentation LUT shape to INVERSE

         +Pod  --lin-od-shape
                 set presentation LUT shape to LIN OD

   image comparison metrics options
         +ce   --check-error  [l]imit: integer
                 check if max absolute error <= limit

         # Return exit code EXITCODE_LIMIT_EXCEEDED_MAX_ERROR if the computed
         # maximum absolute error is larger than the given limit.

         +cm   --check-mae  [l]imit: float
                 check if mean absolute error <= limit

         # Return exit code EXITCODE_LIMIT_EXCEEDED_MAE if the computed
         # mean absolute error is larger than the given limit.

         +cr   --check-rmse  [l]imit: float
                 check if root mean square error <= limit

         # Return exit code EXITCODE_LIMIT_EXCEEDED_RMSE if the computed
         # root mean square error is larger than the given limit.

         +cp   --check-psnr  [l]imit: float
                 check if PSNR >= limit

         # Return exit code EXITCODE_LIMIT_EXCEEDED_PSNR if the computed
         # peak signal to noise ratio is smaller than the given limit
         # (for PSNR, higher values mean better image quality)

         +cs   --check-snr  [l]imit: float
                 check if SNR >= limit

         # Return exit code EXITCODE_LIMIT_EXCEEDED_PSNR if the computed
         # signal to noise ratio is smaller than the given limit
         # (for SNR, higher values mean better image quality)

   output options
         +sd   --save-diff  [f]ilename: string
                 write secondary capture difference image

         # Create a Multiframe Secondary Capture image that contains a
         # difference image between reference and test image. For monochrome
         # images, one difference frame is created for each frame in the reference
         # image. For color images, three monochrome frames are created for each
         # frame in the reference image, corresponding to the differences in the
         # red, green and blue color plane. The difference image will have
         # BitsStored 8 or 16, depending on the properties of the reference image.

         +a    --amplify  [f]actor: float
                 multiply diff image pixel values by f

         # This option can be used to amplify the grayscale values in the
         # difference image by multiplying each value with the given factor.
         # Alternatively, a DICOM VOI LUT window may be used when visualizing
         # the difference image.

NOTES

   grayscale display pipeline
       Monochrome  DICOM  images require that a multi-stage display pipeline is executed in order to convert the
       raw pixel values to the  so-called  presentation  values  (p-values)  that  are  sent  to  the  (possibly
       calibrated)  display. When comparing the similarity of images before and after post-processing, it can be
       relevant to activate some stages of this display pipeline before calculating  the  difference  image  and
       metrics. The image processing options allow the caller to either activate or deactivate the Modality LUT,
       VOI LUT and Presentation LUT transformations. In any case, the same transformation  is  applied  to  both
       images,  although  possibly with different parameters if for example the 'first VOI LUT window' stored in
       each image is applied. This assumes that the post-processing algorithm (e.g. compression  algorithm)  has
       adapted  the  values  of  such  windows during compression such that the image display after applying the
       window is as close as possible to the reference. For images with  more  than  8  bits/sample  it  may  be
       important  to  known  which  VOI  LUT  transformation will be applied by the user when viewing the image,
       because this may affect the perceived image quality. Therefore, absolute Window parameters  can  also  be
       given with the --set-window option, which will then be applied to both images.

   suitability of images for diagnostic purposes
       The  user  should  also  note  that  the  metrics  computed  by  this tool cannot predict or estimate the
       suitability of lossy compressed image for diagnostic purposes. Much more complex image processing and  an
       understanding  of  the  image  content  (e.g.  body  part)  would be needed for this purpose. The metrics
       computed provide an estimation of the level of distortion caused by the post-processing - no more and  no
       less.

TRANSFER SYNTAXES

       dcmicmp supports the following transfer syntaxes for input:

       LittleEndianImplicitTransferSyntax             1.2.840.10008.1.2
       LittleEndianExplicitTransferSyntax             1.2.840.10008.1.2.1
       DeflatedExplicitVRLittleEndianTransferSyntax   1.2.840.10008.1.2.1.99 (*)
       BigEndianExplicitTransferSyntax                1.2.840.10008.1.2.2

       The difference image file is always written in Little Endian Implicit Transfer Syntax.

       (*) if compiled with zlib support enabled

LOGGING

       The  level  of logging output of the various command line tools and underlying libraries can be specified
       by the user. By default, only errors and warnings are written to the standard error stream. Using  option
       --verbose also informational messages like processing details are reported. Option --debug can be used to
       get more details on the internal activity, e.g. for debugging  purposes.  Other  logging  levels  can  be
       selected  using  option  --log-level. In --quiet mode only fatal errors are reported. In such very severe
       error events, the application will usually terminate. For more details on the different  logging  levels,
       see documentation of module 'oflog'.

       In case the logging output should be written to file (optionally with logfile rotation), to syslog (Unix)
       or the event log (Windows) option --log-config can be used.  This  configuration  file  also  allows  for
       directing only certain messages to a particular output stream and for filtering certain messages based on
       the module or application where they  are  generated.  An  example  configuration  file  is  provided  in
       <etcdir>/logger.cfg.

COMMAND LINE

       All command line tools use the following notation for parameters: square brackets enclose optional values
       (0-1), three trailing dots indicate that multiple values are allowed (1-n), a combination of both means 0
       to n values.

       Command  line  options  are  distinguished  from  parameters  by a leading '+' or '-' sign, respectively.
       Usually, order and position of command line options  are  arbitrary  (i.e.  they  can  appear  anywhere).
       However,  if  options  are mutually exclusive the rightmost appearance is used. This behavior conforms to
       the standard evaluation rules of common Unix shells.

       In addition, one or more command files can be specified using an '@' sign as a  prefix  to  the  filename
       (e.g.  @command.txt).  Such  a command argument is replaced by the content of the corresponding text file
       (multiple whitespaces are treated as a single separator unless they appear between two  quotation  marks)
       prior to any further evaluation. Please note that a command file cannot contain another command file.

EXIT CODES

       The  dcmicmp  utility  uses the following exit codes when terminating. This enables the user to check for
       the reason why the application terminated.

   general
       EXITCODE_NO_ERROR                         0
       EXITCODE_COMMANDLINE_SYNTAX_ERROR         1

   input/output file errors
       EXITCODE_INVALID_INPUT_FILE              22
       EXITCODE_CANNOT_WRITE_OUTPUT_FILE        40

   image processing errors
       EXITCODE_INITIALIZE_DIFF_IMAGE           80
       EXITCODE_DISPLAY_PIPELINE                81
       EXITCODE_IMAGE_COMPARISON                82

   error codes for exceeded limits
       EXITCODE_LIMIT_EXCEEDED_MAX_ERROR        90
       EXITCODE_LIMIT_EXCEEDED_MAE              91
       EXITCODE_LIMIT_EXCEEDED_RMSE             92
       EXITCODE_LIMIT_EXCEEDED_PSNR             93
       EXITCODE_LIMIT_EXCEEDED_SNR              94

ENVIRONMENT

       The dcmicmp utility will attempt to load DICOM data dictionaries specified in the DCMDICTPATH environment
       variable.   By   default,   i.e.   if   the  DCMDICTPATH  environment  variable  is  not  set,  the  file
       <datadir>/dicom.dic will be loaded unless the dictionary is  built  into  the  application  (default  for
       Windows).

       The  default  behavior  should  be  preferred  and  the  DCMDICTPATH  environment variable only used when
       alternative data dictionaries are required. The DCMDICTPATH environment variable has the same  format  as
       the  Unix  shell  PATH  variable in that a colon (':') separates entries. On Windows systems, a semicolon
       (';') is used as a separator. The data dictionary code will attempt to load each file  specified  in  the
       DCMDICTPATH environment variable. It is an error if no data dictionary can be loaded.

SEE ALSO

       dcm2pnm(1)

COPYRIGHT

       Copyright (C) 2018 by OFFIS e.V., Escherweg 2, 26121 Oldenburg, Germany.