Provided by: llvm-8_8.0.1-9_amd64 bug

NAME

       llvm-exegesis - LLVM Machine Instruction Benchmark

SYNOPSIS

       llvm-exegesis [options]

DESCRIPTION

       llvm-exegesis  is  a  benchmarking  tool  that uses information available in LLVM to measure host machine
       instruction characteristics like latency or port decomposition.

       Given an LLVM opcode name and a benchmarking mode, llvm-exegesis generates  a  code  snippet  that  makes
       execution  as  serial  (resp.  as  parallel)  as  possible  so that we can measure the latency (resp. uop
       decomposition) of the instruction.  The code snippet is jitted and executed on the  host  subtarget.  The
       time  taken (resp. resource usage) is measured using hardware performance counters. The result is printed
       out as YAML to the standard output.

       The main goal of this tool is to automatically (in)validate the LLVM’s  TableDef  scheduling  models.  To
       that end, we also provide analysis of the results.

       llvm-exegesis can also benchmark arbitrary user-provided code snippets.

EXAMPLE 1: BENCHMARKING INSTRUCTIONS

       Assume you have an X86-64 machine. To measure the latency of a single instruction, run:

          $ llvm-exegesis -mode=latency -opcode-name=ADD64rr

       Measuring the uop decomposition of an instruction works similarly:

          $ llvm-exegesis -mode=uops -opcode-name=ADD64rr

       The  output  is  a YAML document (the default is to write to stdout, but you can redirect the output to a
       file using -benchmarks-file):

          ---
          key:
            opcode_name:     ADD64rr
            mode:            latency
            config:          ''
          cpu_name:        haswell
          llvm_triple:     x86_64-unknown-linux-gnu
          num_repetitions: 10000
          measurements:
            - { key: latency, value: 1.0058, debug_string: '' }
          error:           ''
          info:            'explicit self cycles, selecting one aliasing configuration.
          Snippet:
          ADD64rr R8, R8, R10
          '
          ...

       To measure the latency of all instructions for the host architecture, run:

          #!/bin/bash
          readonly INSTRUCTIONS=$(($(grep INSTRUCTION_LIST_END build/lib/Target/X86/X86GenInstrInfo.inc | cut -f2 -d=) - 1))
          for INSTRUCTION in $(seq 1 ${INSTRUCTIONS});
          do
            ./build/bin/llvm-exegesis -mode=latency -opcode-index=${INSTRUCTION} | sed -n '/---/,$p'
          done

       FIXME: Provide an llvm-exegesis option to test all instructions.

EXAMPLE 2: BENCHMARKING A CUSTOM CODE SNIPPET

       To measure the latency/uops of a custom piece of code, you can specify the snippets-file option (-  reads
       from standard input).

          $ echo "vzeroupper" | llvm-exegesis -mode=uops -snippets-file=-

       Real-life  code snippets typically depend on registers or memory.  llvm-exegesis checks the liveliness of
       registers (i.e. any register use has a corresponding def or is a “live in”). If your code depends on  the
       value of some registers, you have two options:

       • Mark  the  register  as  requiring a definition. llvm-exegesis will automatically assign a value to the
         register. This can be done using the  directive  LLVM-EXEGESIS-DEFREG  <reg  name>  <hex_value>,  where
         <hex_value>  is  a  bit  pattern  used  to fill <reg_name>. If <hex_value> is smaller than the register
         width, it will be sign-extended.

       • Mark the register as a “live in”. llvm-exegesis  will  benchmark  using  whatever  value  was  in  this
         registers on entry. This can be done using the directive LLVM-EXEGESIS-LIVEIN <reg name>.

       For example, the following code snippet depends on the values of XMM1 (which will be set by the tool) and
       the memory buffer passed in RDI (live in).

          # LLVM-EXEGESIS-LIVEIN RDI
          # LLVM-EXEGESIS-DEFREG XMM1 42
          vmulps        (%rdi), %xmm1, %xmm2
          vhaddps       %xmm2, %xmm2, %xmm3
          addq $0x10, %rdi

EXAMPLE 3: ANALYSIS

       Assuming you have  a  set  of  benchmarked  instructions  (either  latency  or  uops)  as  YAML  in  file
       /tmp/benchmarks.yaml, you can analyze the results using the following command:

            $ llvm-exegesis -mode=analysis \
          -benchmarks-file=/tmp/benchmarks.yaml \
          -analysis-clusters-output-file=/tmp/clusters.csv \
          -analysis-inconsistencies-output-file=/tmp/inconsistencies.html

       This  will  group  the instructions into clusters with the same performance characteristics. The clusters
       will be written out to /tmp/clusters.csv in the following format:

          cluster_id,opcode_name,config,sched_class
          ...
          2,ADD32ri8_DB,,WriteALU,1.00
          2,ADD32ri_DB,,WriteALU,1.01
          2,ADD32rr,,WriteALU,1.01
          2,ADD32rr_DB,,WriteALU,1.00
          2,ADD32rr_REV,,WriteALU,1.00
          2,ADD64i32,,WriteALU,1.01
          2,ADD64ri32,,WriteALU,1.01
          2,MOVSX64rr32,,BSWAP32r_BSWAP64r_MOVSX64rr32,1.00
          2,VPADDQYrr,,VPADDBYrr_VPADDDYrr_VPADDQYrr_VPADDWYrr_VPSUBBYrr_VPSUBDYrr_VPSUBQYrr_VPSUBWYrr,1.02
          2,VPSUBQYrr,,VPADDBYrr_VPADDDYrr_VPADDQYrr_VPADDWYrr_VPSUBBYrr_VPSUBDYrr_VPSUBQYrr_VPSUBWYrr,1.01
          2,ADD64ri8,,WriteALU,1.00
          2,SETBr,,WriteSETCC,1.01
          ...

       llvm-exegesis will also analyze the clusters to point out inconsistencies in the scheduling  information.
       The  output  is  an  html  file.  For  example,  /tmp/inconsistencies.html will contain messages like the
       following : [image]

       Note that the scheduling class names will be resolved only when llvm-exegesis is compiled in debug  mode,
       else only the class id will be shown. This does not invalidate any of the analysis results though.

OPTIONS

       -help  Print a summary of command line options.

       -opcode-index=<LLVM opcode index>
              Specify  the  opcode  to  measure,  by  index.  See  example  1 for details.  Either opcode-index,
              opcode-name or snippets-file must be set.

       -opcode-name=<opcode name 1>,<opcode name 2>,...
              Specify the opcode to measure, by name. Several opcodes can  be  specified  as  a  comma-separated
              list. See example 1 for details.  Either opcode-index, opcode-name or snippets-file must be set.

              -snippets-file=<filename>
                     Specify   the  custom  code  snippet  to  measure.  See  example  2  for  details.   Either
                     opcode-index, opcode-name or snippets-file must be set.

       -mode=[latency|uops|analysis]
              Specify the run mode.

       -num-repetitions=<Number of repetition>
              Specify the number of repetitions of the  asm  snippet.   Higher  values  lead  to  more  accurate
              measurements but lengthen the benchmark.

       -benchmarks-file=</path/to/file>
              File  to  read  (analysis  mode)  or  write  (latency/uops  modes)  benchmark  results.  “-”  uses
              stdin/stdout.

       -analysis-clusters-output-file=</path/to/file>
              If provided, write the analysis clusters as CSV to this file. “-” prints to stdout.

       -analysis-inconsistencies-output-file=</path/to/file>
              If non-empty, write inconsistencies found during analysis to this file. - prints to stdout.

       -analysis-numpoints=<dbscan numPoints parameter>
              Specify the numPoints parameters to be used for DBSCAN clustering (analysis mode).

       -analysis-espilon=<dbscan epsilon parameter>
              Specify the numPoints parameters to be used for DBSCAN clustering (analysis mode).

       -ignore-invalid-sched-class=false
              If set, ignore instructions that do not have a sched class (class idx = 0).

              -mcpu=<cpu name>
                     If set, measure the cpu characteristics using the counters for this  CPU.  This  is  useful
                     when creating new sched models (the host CPU is unknown to LLVM).

EXIT STATUS

       llvm-exegesis  returns  0  on  success. Otherwise, an error message is printed to standard error, and the
       tool returns a non 0 value.

AUTHOR

       Maintained by the LLVM Team (https://llvm.org/).

COPYRIGHT

       2003-2020, LLVM Project