Provided by: mia-tools_2.4.6-5build3_amd64 bug

NAME

       mia-3drigidreg - Linear registration of 3D images.

SYNOPSIS

       mia-3drigidreg -i <in-image> -r <ref-image> -o <out-image> [options]

DESCRIPTION

       mia-3drigidreg  This  program implements the registration of two gray scale 3D images. The transformation
       is not penalized, therefore, one should only use translation, rigid, or affine transformations as  target
       and run mia-3dnonrigidreg of nonrigid registration is to be achieved.

OPTIONS

   File I/O
              -i --in-image=(input, required); io
                     test image
                      For supported file types see PLUGINS:3dimage/io

              -r --ref-image=(input, required); io
                     reference image
                      For supported file types see PLUGINS:3dimage/io

              -o --out-image=(output, required); io
                     registered output image
                      For supported file types see PLUGINS:3dimage/io

              -t --transformation=(output); io
                     transformation output file name
                      For supported file types see PLUGINS:3dtransform/io

              -c --cost=ssd
                     cost function
                      For supported plugins see PLUGINS:3dimage/cost

              -l --levels=3
                     multigrid levels

              -O --optimizer=gsl:opt=simplex,step=1.0
                     Optimizer used for minimization
                      For supported plugins see PLUGINS:minimizer/singlecost

              -f --transForm=rigid
                     transformation type
                      For supported plugins see PLUGINS:3dimage/transform

   Help & Info
              -V --verbose=warning
                     verbosity  of  output,  print  messages  of  given  level  and higher priorities. Supported
                     priorities starting at lowest level are:

                        trace ‐ Function call trace
                        debug ‐ Debug output
                        info ‐ Low level messages
                        message ‐ Normal messages
                        warning ‐ Warnings
                        fail ‐ Report test failures
                        error ‐ Report errors
                        fatal ‐ Report only fatal errors

                 --copyright
                     print copyright information

              -h --help
                     print this help

              -? --usage
                     print a short help

                 --version
                     print the version number and exit

   Processing
                 --threads=-1
                     Maxiumum number of threads to use for processing,This number should be lower  or  equal  to
                     the number of logical processor cores in the machine. (-1: automatic estimation).

PLUGINS: 1d/splinebc

       mirror    Spline interpolation boundary conditions that mirror on the boundary

                     (no parameters)

       repeat    Spline interpolation boundary conditions that repeats the value at the boundary

                     (no parameters)

       zero      Spline interpolation boundary conditions that assumes zero for values outside

                     (no parameters)

PLUGINS: 1d/splinekernel

       bspline   B-spline kernel creation , supported parameters are:

                     d = 3; int in [0, 5]
                       Spline degree.

       omoms     OMoms-spline kernel creation, supported parameters are:

                     d = 3; int in [3, 3]
                       Spline degree.

PLUGINS: 3dimage/cost

       lncc      local normalized cross correlation with masking support., supported parameters are:

                     w = 5; uint in [1, 256]
                       half width of the window used for evaluating the localized cross correlation.

       mi        Spline parzen based mutual information., supported parameters are:

                     cut = 0; float in [0, 40]
                       Percentage of pixels to cut at high and low intensities to remove outliers.

                     mbins = 64; uint in [1, 256]
                       Number of histogram bins used for the moving image.

                     mkernel = [bspline:d=3]; factory
                       Spline   kernel   for  moving  image  parzen  hinstogram.   For  supported  plug-ins  see
                       PLUGINS:1d/splinekernel

                     rbins = 64; uint in [1, 256]
                       Number of histogram bins used for the reference image.

                     rkernel = [bspline:d=0]; factory
                       Spline kernel  for  reference  image  parzen  hinstogram.   For  supported  plug-ins  see
                       PLUGINS:1d/splinekernel

       ncc       normalized cross correlation.

                     (no parameters)

       ngf       This  function  evaluates  the  image  similarity  based  on  normalized gradient fields. Given
                 normalized gradient fields $ _S$ of the src image and $ _R$ of the ref image various evaluators
                 are implemented., supported parameters are:

                     eval = ds; dict
                       plugin subtype (sq, ds,dot,cross).  Supported values are:
                           ds ‐ square of scaled difference
                           dot ‐ scalar product kernel
                           cross ‐ cross product kernel

       ssd       3D image cost: sum of squared differences, supported parameters are:

                     autothresh = 0; float in [0, 1000]
                       Use  automatic  masking of the moving image by only takeing intensity values into accound
                       that are larger than the given threshold.

                     norm = 0; bool
                       Set whether the metric should be normalized by the number of image pixels.

       ssd-automask
                 3D image cost: sum  of  squared  differences,  with  automasking  based  on  given  thresholds,
                 supported parameters are:

                     rthresh = 0; double
                       Threshold intensity value for reference image.

                     sthresh = 0; double
                       Threshold intensity value for source image.

PLUGINS: 3dimage/io

       analyze   Analyze 7.5 image

                     Recognized file extensions:  .HDR, .hdr

                     Supported element types:
                       unsigned  8  bit,  signed 16 bit, signed 32 bit, floating point 32 bit, floating point 64
                       bit

       datapool  Virtual IO to and from the internal data pool

                     Recognized file extensions:  .@

       dicom     Dicom image series as 3D

                     Recognized file extensions:  .DCM, .dcm

                     Supported element types:
                       signed 16 bit, unsigned 16 bit

       hdf5      HDF5 3D image IO

                     Recognized file extensions:  .H5, .h5

                     Supported element types:
                       binary data, signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit,
                       unsigned 32 bit, signed 64 bit, unsigned 64 bit, floating point 32 bit, floating point 64
                       bit

       inria     INRIA image

                     Recognized file extensions:  .INR, .inr

                     Supported element types:
                       signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned  32
                       bit, floating point 32 bit, floating point 64 bit

       mhd       MetaIO 3D image IO using the VTK implementation (experimental).

                     Recognized file extensions:  .MHA, .MHD, .mha, .mhd

                     Supported element types:
                       signed  8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32
                       bit, floating point 32 bit, floating point 64 bit

       nifti     NIFTI-1 3D image IO. The orientation is transformed in the  same  way  like  it  is  done  with
                 'dicomtonifti --no-reorder' from the vtk-dicom package.

                     Recognized file extensions:  .NII, .nii

                     Supported element types:
                       signed  8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32
                       bit, signed 64 bit, unsigned 64 bit, floating point 32 bit, floating point 64 bit

       vff       VFF Sun raster format

                     Recognized file extensions:  .VFF, .vff

                     Supported element types:
                       unsigned 8 bit, signed 16 bit

       vista     Vista 3D

                     Recognized file extensions:  .-, .V, .VISTA, .v, .vista

                     Supported element types:
                       binary data, signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit,
                       unsigned 32 bit, floating point 32 bit, floating point 64 bit

       vti       3D image VTK-XML in- and output (experimental).

                     Recognized file extensions:  .VTI, .vti

                     Supported element types:
                       signed  8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32
                       bit, floating point 32 bit, floating point 64 bit

       vtk       3D VTK image legacy in- and output (experimental).

                     Recognized file extensions:  .VTK, .VTKIMAGE, .vtk, .vtkimage

                     Supported element types:
                       signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned  32
                       bit, floating point 32 bit, floating point 64 bit

PLUGINS: 3dimage/transform

       affine    Affine transformation (12 degrees of freedom), supported parameters are:

                     imgboundary = mirror; factory
                       image interpolation boundary conditions.  For supported plug-ins see PLUGINS:1d/splinebc

                     imgkernel = [bspline:d=3]; factory
                       image interpolator kernel.  For supported plug-ins see PLUGINS:1d/splinekernel

       axisrot   Restricted  rotation transformation (1 degrees of freedom). The transformation is restricted to
                 the rotation around the given axis about the given rotation center, supported parameters are:

                     axis =(required, 3dfvector)
                       rotation axis.

                     imgboundary = mirror; factory
                       image interpolation boundary conditions.  For supported plug-ins see PLUGINS:1d/splinebc

                     imgkernel = [bspline:d=3]; factory
                       image interpolator kernel.  For supported plug-ins see PLUGINS:1d/splinekernel

                     origin =(required, 3dfvector)
                       center of the transformation.

       raffine   Restricted affine transformation (3 degrees of freedom). The transformation  is  restricted  to
                 the  rotation  around the given axis and shearing along the two axis perpendicular to the given
                 one, supported parameters are:

                     axis =(required, 3dfvector)
                       rotation axis.

                     imgboundary = mirror; factory
                       image interpolation boundary conditions.  For supported plug-ins see PLUGINS:1d/splinebc

                     imgkernel = [bspline:d=3]; factory
                       image interpolator kernel.  For supported plug-ins see PLUGINS:1d/splinekernel

                     origin =(required, 3dfvector)
                       center of the transformation.

       rigid     Rigid transformation, i.e. rotation  and  translation  (six  degrees  of  freedom).,  supported
                 parameters are:

                     imgboundary = mirror; factory
                       image interpolation boundary conditions.  For supported plug-ins see PLUGINS:1d/splinebc

                     imgkernel = [bspline:d=3]; factory
                       image interpolator kernel.  For supported plug-ins see PLUGINS:1d/splinekernel

                     origin = [[0,0,0]]; 3dfvector
                       Relative rotation center, i.e.  <0.5,0.5,0.5> corresponds to the center of the volume.

       rotation  Rotation transformation (three degrees of freedom)., supported parameters are:

                     imgboundary = mirror; factory
                       image interpolation boundary conditions.  For supported plug-ins see PLUGINS:1d/splinebc

                     imgkernel = [bspline:d=3]; factory
                       image interpolator kernel.  For supported plug-ins see PLUGINS:1d/splinekernel

                     origin = [[0,0,0]]; 3dfvector
                       Relative rotation center, i.e.  <0.5,0.5,0.5> corresponds to the center of the volume.

       rotbend   Restricted  transformation  (4  degrees  of  freedom).  The transformation is restricted to the
                 rotation around the x and y axis and a bending along the x axis, independedn in each direction,
                 with  the  bending  increasing  with  the  squared  distance from the rotation axis., supported
                 parameters are:

                     imgboundary = mirror; factory
                       image interpolation boundary conditions.  For supported plug-ins see PLUGINS:1d/splinebc

                     imgkernel = [bspline:d=3]; factory
                       image interpolator kernel.  For supported plug-ins see PLUGINS:1d/splinekernel

                     norot = 0; bool
                       Don't optimize the rotation.

                     origin =(required, 3dfvector)
                       center of the transformation.

       spline    Free-form transformation that can be described  by  a  set  of  B-spline  coefficients  and  an
                 underlying B-spline kernel., supported parameters are:

                     anisorate = [[0,0,0]]; 3dfvector
                       anisotropic  coefficient  rate  in  pixels, nonpositive values will be overwritten by the
                       'rate' value..

                     debug = 0; bool
                       enable additional debugging output.

                     imgboundary = mirror; factory
                       image interpolation boundary conditions.  For supported plug-ins see PLUGINS:1d/splinebc

                     imgkernel = [bspline:d=3]; factory
                       image interpolator kernel.  For supported plug-ins see PLUGINS:1d/splinekernel

                     kernel = [bspline:d=3]; factory
                       transformation spline kernel.  For supported plug-ins see PLUGINS:1d/splinekernel

                     penalty = ; factory
                       transformation    penalty    energy     term.      For     supported     plug-ins     see
                       PLUGINS:3dtransform/splinepenalty

                     rate = 10; float in [1, inf)
                       isotropic coefficient rate in pixels.

       translate Translation (three degrees of freedom), supported parameters are:

                     imgboundary = mirror; factory
                       image interpolation boundary conditions.  For supported plug-ins see PLUGINS:1d/splinebc

                     imgkernel = [bspline:d=3]; factory
                       image interpolator kernel.  For supported plug-ins see PLUGINS:1d/splinekernel

       vf        This  plug-in implements a transformation that defines a translation for each point of the grid
                 defining the domain of the transformation., supported parameters are:

                     imgboundary = mirror; factory
                       image interpolation boundary conditions.  For supported plug-ins see PLUGINS:1d/splinebc

                     imgkernel = [bspline:d=3]; factory
                       image interpolator kernel.  For supported plug-ins see PLUGINS:1d/splinekernel

PLUGINS: 3dtransform/io

       bbs       Binary (non-portable) serialized IO of 3D transformations

                     Recognized file extensions:  .bbs

       datapool  Virtual IO to and from the internal data pool

                     Recognized file extensions:  .@

       vista     Vista storage of 3D transformations

                     Recognized file extensions:  .v, .v3dt

       xml       XML serialized IO of 3D transformations

                     Recognized file extensions:  .x3dt

PLUGINS: 3dtransform/splinepenalty

       divcurl   divcurl penalty on the transformation, supported parameters are:

                     curl = 1; float in [0, inf)
                       penalty weight on curl.

                     div = 1; float in [0, inf)
                       penalty weight on divergence.

                     norm = 0; bool
                       Set to 1 if the penalty should be normalized with respect to the image size.

                     weight = 1; float in (0, inf)
                       weight of penalty energy.

PLUGINS: minimizer/singlecost

       gdas      Gradient descent with automatic step size correction., supported parameters are:

                     ftolr = 0; double in [0, inf)
                       Stop if the relative change of the criterion is below..

                     max-step = 2; double in (0, inf)
                       Maximal absolute step size.

                     maxiter = 200; uint in [1, inf)
                       Stopping criterion: the maximum number of iterations.

                     min-step = 0.1; double in (0, inf)
                       Minimal absolute step size.

                     xtola = 0.01; double in [0, inf)
                       Stop if the inf-norm of the change applied to x is below this value..

       gdsq      Gradient descent with quadratic step estimation, supported parameters are:

                     ftolr = 0; double in [0, inf)
                       Stop if the relative change of the criterion is below..

                     gtola = 0; double in [0, inf)
                       Stop if the inf-norm of the gradient is below this value..

                     maxiter = 100; uint in [1, inf)
                       Stopping criterion: the maximum number of iterations.

                     scale = 2; double in (1, inf)
                       Fallback fixed step size scaling.

                     step = 0.1; double in (0, inf)
                       Initial step size.

                     xtola = 0; double in [0, inf)
                       Stop if the inf-norm of x-update is below this value..

       gsl       optimizer plugin based  on  the  multimin  optimizers  of  the  GNU  Scientific  Library  (GSL)
                 https://www.gnu.org/software/gsl/, supported parameters are:

                     eps = 0.01; double in (0, inf)
                       gradient  based  optimizers:  stop  when  |grad| < eps, simplex: stop when simplex size <
                       eps..

                     iter = 100; uint in [1, inf)
                       maximum number of iterations.

                     opt = gd; dict
                       Specific optimizer to be used..  Supported values are:
                           simplex ‐ Simplex algorithm of Nelder and Mead
                           cg-fr ‐ Flecher-Reeves conjugate gradient algorithm
                           cg-pr ‐ Polak-Ribiere conjugate gradient algorithm
                           bfgs ‐ Broyden-Fletcher-Goldfarb-Shann
                           bfgs2 ‐ Broyden-Fletcher-Goldfarb-Shann (most efficient version)
                           gd ‐ Gradient descent.

                     step = 0.001; double in (0, inf)
                       initial step size.

                     tol = 0.1; double in (0, inf)
                       some tolerance parameter.

       nlopt     Minimizer algorithms using the NLOPT library, for a description of the  optimizers  please  see
                 'http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms', supported parameters are:

                     ftola = 0; double in [0, inf)
                       Stopping criterion: the absolute change of the objective value is below  this value.

                     ftolr = 0; double in [0, inf)
                       Stopping criterion: the relative change of the objective value is below  this value.

                     higher = inf; double
                       Higher boundary (equal for all parameters).

                     local-opt = none; dict
                       local  minimization  algorithm that may be required for the main minimization algorithm..
                       Supported values are:
                           gn-direct ‐ Dividing Rectangles
                           gn-direct-l ‐ Dividing Rectangles (locally biased)
                           gn-direct-l-rand ‐ Dividing Rectangles (locally biased, randomized)
                           gn-direct-noscal ‐ Dividing Rectangles (unscaled)
                           gn-direct-l-noscal ‐ Dividing Rectangles (unscaled, locally biased)
                           gn-direct-l-rand-noscale ‐ Dividing Rectangles (unscaled, locally biased, randomized)
                           gn-orig-direct ‐ Dividing Rectangles (original implementation)
                           gn-orig-direct-l ‐ Dividing Rectangles (original implementation, locally biased)
                           ld-lbfgs-nocedal ‐ None
                           ld-lbfgs ‐ Low-storage BFGS
                           ln-praxis ‐ Gradient-free Local Optimization via the Principal-Axis Method
                           ld-var1 ‐ Shifted Limited-Memory Variable-Metric, Rank 1
                           ld-var2 ‐ Shifted Limited-Memory Variable-Metric, Rank 2
                           ld-tnewton ‐ Truncated Newton
                           ld-tnewton-restart ‐ Truncated Newton with steepest-descent restarting
                           ld-tnewton-precond ‐ Preconditioned Truncated Newton
                           ld-tnewton-precond-restart ‐ Preconditioned Truncated  Newton  with  steepest-descent
                           restarting
                           gn-crs2-lm ‐ Controlled Random Search with Local Mutation
                           ld-mma ‐ Method of Moving Asymptotes
                           ln-cobyla ‐ Constrained Optimization BY Linear Approximation
                           ln-newuoa  ‐  Derivative-free  Unconstrained  Optimization by Iteratively Constructed
                           Quadratic Approximation
                           ln-newuoa-bound  ‐  Derivative-free  Bound-constrained  Optimization  by  Iteratively
                           Constructed Quadratic Approximation
                           ln-neldermead ‐ Nelder-Mead simplex algorithm
                           ln-sbplx ‐ Subplex variant of Nelder-Mead
                           ln-bobyqa ‐ Derivative-free Bound-constrained Optimization
                           gn-isres ‐ Improved Stochastic Ranking Evolution Strategy
                           none ‐ don't specify algorithm

                     lower = -inf; double
                       Lower boundary (equal for all parameters).

                     maxiter = 100; int in [1, inf)
                       Stopping criterion: the maximum number of iterations.

                     opt = ld-lbfgs; dict
                       main minimization algorithm.  Supported values are:
                           gn-direct ‐ Dividing Rectangles
                           gn-direct-l ‐ Dividing Rectangles (locally biased)
                           gn-direct-l-rand ‐ Dividing Rectangles (locally biased, randomized)
                           gn-direct-noscal ‐ Dividing Rectangles (unscaled)
                           gn-direct-l-noscal ‐ Dividing Rectangles (unscaled, locally biased)
                           gn-direct-l-rand-noscale ‐ Dividing Rectangles (unscaled, locally biased, randomized)
                           gn-orig-direct ‐ Dividing Rectangles (original implementation)
                           gn-orig-direct-l ‐ Dividing Rectangles (original implementation, locally biased)
                           ld-lbfgs-nocedal ‐ None
                           ld-lbfgs ‐ Low-storage BFGS
                           ln-praxis ‐ Gradient-free Local Optimization via the Principal-Axis Method
                           ld-var1 ‐ Shifted Limited-Memory Variable-Metric, Rank 1
                           ld-var2 ‐ Shifted Limited-Memory Variable-Metric, Rank 2
                           ld-tnewton ‐ Truncated Newton
                           ld-tnewton-restart ‐ Truncated Newton with steepest-descent restarting
                           ld-tnewton-precond ‐ Preconditioned Truncated Newton
                           ld-tnewton-precond-restart  ‐  Preconditioned  Truncated Newton with steepest-descent
                           restarting
                           gn-crs2-lm ‐ Controlled Random Search with Local Mutation
                           ld-mma ‐ Method of Moving Asymptotes
                           ln-cobyla ‐ Constrained Optimization BY Linear Approximation
                           ln-newuoa ‐ Derivative-free Unconstrained  Optimization  by  Iteratively  Constructed
                           Quadratic Approximation
                           ln-newuoa-bound  ‐  Derivative-free  Bound-constrained  Optimization  by  Iteratively
                           Constructed Quadratic Approximation
                           ln-neldermead ‐ Nelder-Mead simplex algorithm
                           ln-sbplx ‐ Subplex variant of Nelder-Mead
                           ln-bobyqa ‐ Derivative-free Bound-constrained Optimization
                           gn-isres ‐ Improved Stochastic Ranking Evolution Strategy
                           auglag ‐ Augmented Lagrangian algorithm
                           auglag-eq ‐ Augmented Lagrangian algorithm with equality constraints only
                           g-mlsl ‐ Multi-Level Single-Linkage (require local optimization and bounds)
                           g-mlsl-lds ‐  Multi-Level  Single-Linkage  (low-discrepancy-sequence,  require  local
                           gradient based optimization and bounds)
                           ld-slsqp ‐ Sequential Least-Squares Quadratic Programming

                     step = 0; double in [0, inf)
                       Initial step size for gradient free methods.

                     stop = -inf; double
                       Stopping criterion: function value falls below this value.

                     xtola = 0; double in [0, inf)
                       Stopping criterion: the absolute change of all x-values is below  this value.

                     xtolr = 0; double in [0, inf)
                       Stopping criterion: the relative change of all x-values is below  this value.

EXAMPLE

       Register  image  test.v  to  image  ref.v  affine  and  write  the  registered  image  to  reg.v. Use two
       multiresolution levels and ssd as cost function.

       mia-3drigidreg -i test.v -r ref.v -o reg.v -l 2 -f affine -c ssd

AUTHOR(s)

       Gert Wollny

COPYRIGHT

       This software is Copyright (c) 1999‐2015 Leipzig, Germany and Madrid, Spain.  It comes  with   ABSOLUTELY
       NO  WARRANTY   and   you  may redistribute it under the terms of the GNU GENERAL PUBLIC LICENSE Version 3
       (or later). For more information run the program with the option '--copyright'.