Provided by: mlpack-bin_3.2.2-3_amd64 

NAME
mlpack_adaboost - adaboost
SYNOPSIS
mlpack_adaboost [-m unknown] [-i int] [-l string] [-T string] [-e double] [-t string] [-V bool] [-w string] [-o string] [-M unknown] [-P string] [-h -v]
DESCRIPTION
This program implements the AdaBoost (or Adaptive Boosting) algorithm. The variant of AdaBoost implemented here is AdaBoost.MH. It uses a weak learner, either decision stumps or perceptrons, and over many iterations, creates a strong learner that is a weighted ensemble of weak learners. It runs these iterations until a tolerance value is crossed for change in the value of the weighted training error. For more information about the algorithm, see the paper "Improved Boosting Algorithms Using Confidence- Rated Predictions", by R.E. Schapire and Y. Singer. This program allows training of an AdaBoost model, and then application of that model to a test dataset. To train a model, a dataset must be passed with the '--training_file (-t)' option. Labels can be given with the ’--labels_file (-l)' option; if no labels are specified, the labels will be assumed to be the last column of the input dataset. Alternately, an AdaBoost model may be loaded with the '--input_model_file (-m)' option. Once a model is trained or loaded, it may be used to provide class predictions for a given test dataset. A test dataset may be specified with the ’--test_file (-T)' parameter. The predicted classes for each point in the test dataset are output to the '--predictions_file (-P)' output parameter. The AdaBoost model itself is output to the '--output_model_file (-M)' output parameter. Note: the following parameter is deprecated and will be removed in mlpack 4.0.0: '--output_file (-o)'. Use '--predictions_file (-P)' instead of '--output_file (-o)'. For example, to run AdaBoost on an input dataset 'data.csv' with perceptrons as the weak learner type, storing the trained model in 'model.bin', one could use the following command: $ mlpack_adaboost --training_file data.csv --output_model_file model.bin --weak_learner perceptron Similarly, an already-trained model in 'model.bin' can be used to provide class predictions from test data 'test_data.csv' and store the output in ’predictions.csv' with the following command: $ mlpack_adaboost --input_model_file model.bin --test_file test_data.csv --predictions_file predictions.csv
OPTIONAL INPUT OPTIONS
--help (-h) [bool] Default help info. --info [string] Print help on a specific option. Default value ''. --input_model_file (-m) [unknown] Input AdaBoost model. --iterations (-i) [int] The maximum number of boosting iterations to be run (0 will run until convergence.) Default value 1000. --labels_file (-l) [string] Labels for the training set. --test_file (-T) [string] Test dataset. --tolerance (-e) [double] The tolerance for change in values of the weighted error during training. Default value 1e-10. --training_file (-t) [string] Dataset for training AdaBoost. --verbose (-v) [bool] Display informational messages and the full list of parameters and timers at the end of execution. --version (-V) [bool] Display the version of mlpack. --weak_learner (-w) [string] The type of weak learner to use: 'decision_stump', or 'perceptron'. Default value 'decision_stump'.
OPTIONAL OUTPUT OPTIONS
--output_file (-o) [string] Predicted labels for the test set. --output_model_file (-M) [unknown] Output trained AdaBoost model. --predictions_file (-P) [string] Predicted labels for the test set.
ADDITIONAL INFORMATION
For further information, including relevant papers, citations, and theory, consult the documentation found at http://www.mlpack.org or included with your distribution of mlpack.