Provided by: mlpack-bin_3.2.2-3_amd64 bug

NAME

       mlpack_dbscan - dbscan clustering

SYNOPSIS

        mlpack_dbscan -i string [-e double] [-m int] [-N bool] [-s string] [-S bool] [-t string] [-V bool] [-a string] [-C string] [-h -v]

DESCRIPTION

       This  program  implements  the DBSCAN algorithm for clustering using accelerated tree-based range search.
       The type of tree that is used may be parameterized, or brute-force range search may also be used.

       The input dataset to be clustered may be specified with the '--input_file (-i)' parameter; the radius  of
       each range search may be specified with the ’--epsilon (-e)' parameters, and the minimum number of points
       in a cluster may be specified with the '--min_size (-m)' parameter.

       The '--assignments_file (-a)' and '--centroids_file (-C)' output parameters  may  be  used  to  save  the
       output  of  the clustering. '--assignments_file (-a)' contains the cluster assignments of each point, and
       '--centroids_file (-C)' contains the centroids of each cluster.

       The range search may be controlled with the '--tree_type (-t)', '--single_mode (-S)', and '--naive  (-N)'
       parameters.  '--tree_type  (-t)'  can  control  the  type  of tree used for range search; this can take a
       variety of values: 'kd', 'r', ’r-star', 'x', 'hilbert-r', 'r-plus', 'r-plus-plus', 'cover',  'ball'.  The
       ’--single_mode  (-S)'  parameter  will  force  single-tree  search  (as  opposed to the default dual-tree
       search), and ''--naive (-N)' will force brute-force range search.

       An example usage to run DBSCAN on the dataset in 'input.csv' with a radius of 0.5 and a  minimum  cluster
       size of 5 is given below:

       $ mlpack_dbscan --input_file input.csv --epsilon 0.5 --min_size 5

REQUIRED INPUT OPTIONS

       --input_file (-i) [string]
              Input dataset to cluster.

OPTIONAL INPUT OPTIONS

       --epsilon (-e) [double]
              Radius of each range search. Default value 1.

       --help (-h) [bool]
              Default help info.

       --info [string]
              Print help on a specific option. Default value ''.

       --min_size (-m) [int]
              Minimum number of points for a cluster. Default value 5.

       --naive (-N) [bool]
              If set, brute-force range search (not tree-based) will be used.

       --selection_type (-s) [string]
              If using point selection policy, the type of selection to use ('ordered', 'random'). Default value
              'ordered'.

       --single_mode (-S) [bool]
              If set, single-tree range search (not dual-tree) will be used.

       --tree_type (-t) [string]
              If using single-tree or dual-tree search, the type of tree  to  use  ('kd',  'r',  'r-star',  'x',
              'hilbert-r', 'r-plus', 'r-plus-plus', 'cover', 'ball'). Default value 'kd'.

       --verbose (-v) [bool]
              Display informational messages and the full list of parameters and timers at the end of execution.

       --version (-V) [bool]
              Display the version of mlpack.

OPTIONAL OUTPUT OPTIONS

       --assignments_file (-a) [string]
              Output matrix for assignments of each point.

       --centroids_file (-C) [string]
              Matrix to save output centroids to.

ADDITIONAL INFORMATION

       For  further  information,  including  relevant  papers, citations, and theory, consult the documentation
       found at http://www.mlpack.org or included with your distribution of mlpack.