Provided by: mlpack-bin_3.2.2-3_amd64 bug

NAME

       mlpack_lmnn - large margin nearest neighbors (lmnn)

SYNOPSIS

        mlpack_lmnn -i string [-b int] [-C bool] [-d string] [-k int] [-l string] [-L bool] [-n int] [-N bool] [-O string] [-p int] [-P bool] [-R int] [-A int] [-r double] [-s int] [-a double] [-t double] [-V bool] [-c string] [-o string] [-D string] [-h -v]

DESCRIPTION

       This  program  implements Large Margin Nearest Neighbors, a distance learning technique. The method seeks
       to improve k-nearest-neighbor classification on a dataset. The method employes the strategy  of  reducing
       distance  between  similar  labeled  data points (a.k.a target neighbors) and increasing distance between
       differently labeled points (a.k.a impostors) using standard optimization techniques over the gradient  of
       the distance between data points.

       To  work,  this  algorithm  needs  labeled  data.  It  can  be given as the last row of the input dataset
       (specified  with  '--input_file  (-i)'),  or  alternatively  as  a  separate   matrix   (specified   with
       '--labels_file  (-l)').  Additionally, a starting point for optimization (specified with '--distance_file
       (-d)'can be given, having (r x d) dimensionality. Here r should satisfy 1 <= r <= d, Consequently a  Low-
       Rank  matrix will be optimized. Alternatively, Low-Rank distance can be learned by specifying the '--rank
       (-A)'parameter (A Low-Rank matrix with uniformly distributed values will  be  used  as  initial  learning
       point).

       The  program  also  requires  number  of  targets  neighbors to work with ( specified with '--k (-k)'), A
       regularization parameter can also be passed, It acts as a trade of between the pulling and pushing  terms
       (specified  with  ’--regularization (-r)'), In addition, this implementation of LMNN includes a parameter
       to decide the interval after which impostors must be re-calculated (specified with '--range (-R)').

       Output can either  be  the  learned  distance  matrix  (specified  with  ’--output_file  (-o)'),  or  the
       transformed  dataset (specified with ’--transformed_data_file (-D)'), or both. Additionally mean-centered
       dataset (specified with '--centered_data_file (-c)') can be accessed given mean-centering (specified with
       '--center  (-C)') is performed on the dataset.  Accuracy on initial dataset and final transformed dataset
       can be printed by specifying the '--print_accuracy (-P)'parameter.

       This  implementation  of  LMNN  uses  AdaGrad,  BigBatch_SGD,  stochastic  gradient  descent,  mini-batch
       stochastic gradient descent, or the L_BFGS optimizer.

       AdaGrad,  specified  by  the  value  'adagrad' for the parameter '--optimizer (-O)', uses maximum of past
       squared gradients. It primarily on six parameters: the step size (specified with '--step_size (-a)'), the
       batch  size  (specified with '--batch_size (-b)'), the maximum number of passes (specified with ’--passes
       (-p)'). Inaddition, a normalized starting  point  can  be  used  by  specifying  the  '--normalize  (-N)'
       parameter.

       BigBatch_SGD,  specified  by the value 'bbsgd' for the parameter '--optimizer (-O)', depends primarily on
       four parameters: the step size (specified with  ’--step_size  (-a)'),  the  batch  size  (specified  with
       '--batch_size  (-b)'),  the  maximum  number  of  passes (specified with '--passes (-p)'). In addition, a
       normalized starting point can be used by specifying the '--normalize (-N)' parameter.

       Stochastic gradient descent, specified by the value 'sgd' for the parameter ’--optimizer  (-O)',  depends
       primarily  on  three  parameters:  the  step  size  (specified  with  '--step_size (-a)'), the batch size
       (specified with ’--batch_size (-b)'), and the maximum number of passes (specified with ’--passes  (-p)').
       In  addition,  a  normalized  starting  point can be used by specifying the '--normalize (-N)' parameter.
       Furthermore, mean-centering can be performed on the dataset by specifying the '--center (-C)'parameter.

       The L-BFGS optimizer, specified by the value 'lbfgs' for the parameter ’--optimizer (-O)', uses  a  back-
       tracking  line  search  algorithm  to  minimize  a function. The following parameters are used by L-BFGS:
       '--max_iterations (-n)', '--tolerance (-t)'(the optimization is terminated  when  the  gradient  norm  is
       below  this  value).  For  more  details  on  the  L-BFGS  optimizer,  consult  either  the mlpack L-BFGS
       documentation (in lbfgs.hpp) or the vast set of published literature on L-BFGS. In addition, a normalized
       starting point can be used by specifying the '--normalize (-N)' parameter.

       By default, the AMSGrad optimizer is used.

       Example  -  Let's  say  we  want  to  learn  distance  on  iris dataset with number of targets as 3 using
       BigBatch_SGD optimizer. A simple call for the same will look like:

       $  mlpack_mlpack_lmnn  --input_file  iris.csv  --labels_file  iris_labels.csv  --k  3  --optimizer  bbsgd
       --output_file output.csv

       An another program call making use of range & regularization parameter with dataset having labels as last
       column can be made as:

       $  mlpack_mlpack_lmnn  --input_file  letter_recognition.csv  --k  5  --range  10   --regularization   0.4
       --output_file output.csv

REQUIRED INPUT OPTIONS

       --input_file (-i) [string]
              Input dataset to run LMNN on.

OPTIONAL INPUT OPTIONS

       --batch_size (-b) [int]
              Batch size for mini-batch SGD. Default value 50.

       --center (-C) [bool]
              Perform  mean-centering on the dataset. It is useful when the centroid of the data is far from the
              origin.

       --distance_file (-d) [string]
              Initial distance matrix to be used as starting point

       --help (-h) [bool]
              Default help info.

       --info [string]
              Print help on a specific option. Default value ''.

       --k (-k) [int]
              Number of target neighbors to use for each datapoint. Default value 1.

       --labels_file (-l) [string]
              Labels for input dataset.

       --linear_scan (-L) [bool]
              Don't shuffle the order in which data points are visited for SGD or mini-batch SGD.

       --max_iterations (-n) [int]
              Maximum number of iterations for L-BFGS (0 indicates no limit). Default value 100000.

       --normalize (-N) [bool]
              Use a normalized starting point for optimization. Itis useful for when points are  far  apart,  or
              when SGD is returning NaN.

       --optimizer (-O) [string]
              Optimizer to use; 'amsgrad', 'bbsgd', 'sgd', or 'lbfgs'. Default value 'amsgrad'.

       --passes (-p) [int]
              Maximum  number  of  full  passes  over  dataset  for  AMSGrad,  BB_SGD and SGD. Default value 50.
              --print_accuracy (-P) [bool] Print accuracies on initial and transformed dataset

       --range (-R) [int]
              Number of iterations after which impostors needs to be recalculated Default value 1.

       --rank (-A) [int]
              Rank of distance matrix to be optimized.  Default value 0.

       --regularization (-r) [double]
              Regularization for LMNN objective function  Default value 0.5.

       --seed (-s) [int]
              Random seed. If 0, 'std::time(NULL)' is used.  Default value 0.

       --step_size (-a) [double]
              Step size for AMSGrad, BB_SGD and SGD (alpha).  Default value 0.01.

       --tolerance (-t) [double]
              Maximum tolerance for termination of AMSGrad, BB_SGD, SGD or L-BFGS. Default value 1e-07.

       --verbose (-v) [bool]
              Display informational messages and the full list of parameters and timers at the end of execution.

       --version (-V) [bool]
              Display the version of mlpack.

OPTIONAL OUTPUT OPTIONS

       --centered_data_file (-c) [string]
              Output matrix for mean-centered dataset.

       --output_file (-o) [string]
              Output matrix for learned distance matrix.

       --transformed_data_file (-D) [string]
              Output matrix for transformed dataset.

ADDITIONAL INFORMATION

       For further information, including relevant papers, citations,  and  theory,  consult  the  documentation
       found at http://www.mlpack.org or included with your distribution of mlpack.