Provided by: otb-bin-qt_6.6.1+dfsg-2_amd64
NAME
otbgui_TrainDimensionalityReduction - OTB TrainDimensionalityReduction application
DESCRIPTION
This is the Train Dimensionality Reduction (TrainDimensionalityReduction) application, version 6.6.0 Train a dimensionality reduction model Parameters: -io <group> Input and output data -io.vd <string> Input Vector Data (mandatory) -io.out <string> Output model (mandatory) -io.stats <string> Input XML image statistics file (optional, off by default) -feat <string list> Field names to be used for training. (mandatory) -algorithm <string> algorithm to use for the training [som/autoencoder/pca] (mandatory, default value is som) -algorithm.som.s <string list> Map size (optional, off by default, default value is 10 10 ) -algorithm.som.n <string list> Neighborhood sizes (optional, off by default, default value is 3 3 ) -algorithm.som.ni <int32> NumberIteration (optional, off by default, default value is 5) -algorithm.som.bi <float> BetaInit (optional, off by default, default value is 1) -algorithm.som.bf <float> BetaFinal (optional, off by default, default value is 0.1) -algorithm.som.iv <float> InitialValue (optional, off by default, default value is 10) -algorithm.autoencoder.nbiter <int32> Maximum number of iterations during training (mandatory, default value is 100) -algorithm.autoencoder.nbiterfinetuning <int32> Maximum number of iterations during training (mandatory, default value is 0) -algorithm.autoencoder.epsilon <float> Epsilon (mandatory, default value is 0) -algorithm.autoencoder.initfactor <float> Weight initialization factor (mandatory, default value is 1) -algorithm.autoencoder.nbneuron <string list> Size (mandatory) -algorithm.autoencoder.regularization <string list> Strength of the regularization (mandatory) -algorithm.autoencoder.noise <string list> Strength of the noise (mandatory) -algorithm.autoencoder.rho <string list> Sparsity parameter (mandatory) -algorithm.autoencoder.beta <string list> Sparsity regularization strength (mandatory) -algorithm.autoencoder.learningcurve <string> Learning curve (optional, off by default) -algorithm.pca.dim <int32> Dimension of the output of the pca transformation (mandatory, default value is 10) -ram <int32> Available RAM (Mb) (optional, off by default, default value is 128) -inxml <string> Load otb application from xml file (optional, off by default) -progress <boolean> Report progress -help <string list> Display long help (empty list), or help for given parameters keys Use -help param1 [... paramN] to see detailed documentation of those parameters.
EXAMPLES
otbgui_TrainDimensionalityReduction -io.vd cuprite_samples.sqlite -io.out mode.ae -algorithm pca -algorithm.pca.dim 8 -feat value_0 value_1 value_2 value_3 value_4 value_5 value_6 value_7 value_8 value_9