Provided by: grass-doc_7.8.2-1build3_all bug

NAME

       r.drain  - Traces a flow through an elevation model or cost surface on a raster map.

KEYWORDS

       raster, hydrology, cost surface

SYNOPSIS

       r.drain
       r.drain --help
       r.drain        [-cand]        input=name         [direction=name]         output=name        [drain=name]
       [start_coordinates=east,north[,east,north,...]]       [start_points=name[,name,...]]        [--overwrite]
       [--help]  [--verbose]  [--quiet]  [--ui]

   Flags:
       -c
           Copy input cell values on output

       -a
           Accumulate input values along the path

       -n
           Count cell numbers along the path

       -d
           The input raster map is a cost surface (direction surface must also be specified)

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name [required]
           Name of input elevation or cost surface raster map

       direction=name
           Name of input movement direction map associated with the cost surface
           Direction in degrees CCW from east

       output=name [required]
           Name for output raster map

       drain=name
           Name for output drain vector map
           Recommended for cost surface made using knight’s move

       start_coordinates=east,north[,east,north,...]
           Coordinates of starting point(s) (E,N)

       start_points=name[,name,...]
           Name of starting vector points map(s)

DESCRIPTION

       r.drain traces a flow through a least-cost path in an elevation model or cost surface. For cost surfaces,
       a movement direction map must be specified with the direction option and the -d flag to trace a flow path
       following  the  given  directions.  Such  a  movement direction map can be generated with r.walk, r.cost,
       r.slope.aspect or r.watershed provided that the direction is in degrees, measured  counterclockwise  from
       east.

       The  output  raster map will show one or more least-cost paths between each user-provided location(s) and
       the minima (low category values) in the raster input map. If the -d flag is used  the  output  least-cost
       paths  will  be found using the direction raster map.  By default, the output will be an integer CELL map
       with category 1 along the least cost path, and null cells elsewhere.

       With the -c (copy) flag, the input raster map cell values are copied verbatim along the path. With the -a
       (accumulate)  flag,  the accumulated cell value from the starting point up to the current cell is written
       on output. With either the -c or the -a flags, the output map is created with the same cell type  as  the
       input  raster  map  (integer,  float  or  double).   With  the  -n  (number) flag, the cells are numbered
       consecutively from the starting point to the final  point.   The  -c,  -a,  and  -n  flags  are  mutually
       incompatible.

       For  an elevation surface, the path is calculated by choosing the steeper "slope" between adjacent cells.
       The slope calculation accurately accounts for the variable scale  in  lat-lon  projections.  For  a  cost
       surface, the path is calculated by following the movement direction surface back to the start point given
       in r.walk or r.cost. The path search stops as soon as a region border  or  a  neighboring  NULL  cell  is
       encountered,  because in these cases the direction can not be determined (the path could continue outside
       the current region).

       The start_coordinates parameter consists of map E and N grid coordinates of a starting  point.  Each  x,y
       pair is the easting and northing (respectively) of a starting point from which a least-cost corridor will
       be developed.  The start_points parameter can take multiple vector maps  containing  additional  starting
       points.   Up  to  1024  starting  points  can  be  input  from a combination of the start_coordinates and
       start_points parameters.

   Explanation of output values
       Consider the following example:
       Input:                          Output:
         ELEVATION SURFACE               LEAST COST PATH
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 19. 20. 18. 19. 16. 15. 15.    .   .   .   .   .   .   .   .
       . .  ---  . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 20| 19| 17. 16. 17. 16. 16.    .   . 1 . 1 . 1 .   .   .   .
       . .  ---  . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 18. 18. 24. 18. 15. 12. 11.    .   .   .   .   . 1 .   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 22. 16. 16. 18. 10. 10. 10.    .   .   .   .   . 1 .   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 17. 15. 15. 15. 10. 8 . 8 .    .   .   .   .   .   . 1 .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 24. 16. 8 . 7 . 8 . 0 . 12.    .   .   .   .   .   . 1 .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 17. 9 . 8 . 7 . 8 . 6 . 12.    .   .   .   .   .   .   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .

       The user-provided starting location in the above example is the boxed 19 in the left-hand map.  The  path
       in  the  output  shows  the least-cost corridor for moving from the starting box to the lowest (smallest)
       possible point. This is the path a raindrop would take in this landscape.

       With the -c (copy) flag, you get the following result:
       Input:                          Output:
         ELEVATION SURFACE               LEAST COST PATH
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 19. 20. 18. 19. 16. 15. 15.    .   .   .   .   .   .   .   .
       . .  ---  . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 20| 19| 17. 16. 17. 16. 16.    .   . 19. 17. 16.   .   .   .
       . .  ---  . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 18. 18. 24. 18. 15. 12. 11.    .   .   .   .   . 15.   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 22. 16. 16. 18. 10. 10. 10.    .   .   .   .   . 10.   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 17. 15. 15. 15. 10. 8 . 8 .    .   .   .   .   .   . 8 .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 24. 16. 8 . 7 . 8 . 0 .12 .    .   .   .   .   .   . 0 .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 17. 9 . 8 . 7 . 8 . 6 .12 .    .   .   .   .   .   .   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       Note that the last 0 will not be put in the null values map.

       With the -a (accumulate) flag, you get the following result:
       Input:                          Output:
         ELEVATION SURFACE               LEAST COST PATH
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 19. 20. 18. 19. 16. 15. 15.    .   .   .   .   .   .   .   .
       . .  ---  . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 20| 19| 17. 16. 17. 16. 16.    .   . 19. 36. 52.   .   .   .
       . .  ---  . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 18. 18. 24. 18. 15. 12. 11.    .   .   .   .   . 67.   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 22. 16. 16. 18. 10. 10. 10.    .   .   .   .   . 77.   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 17. 15. 15. 15. 10. 8 . 8 .    .   .   .   .   .   . 85.   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 24. 16. 8 . 7 . 8 . 0 .12 .    .   .   .   .   .   . 85.   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 17. 9 . 8 . 7 . 8 . 6 .12 .    .   .   .   .   .   .   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .

       With the -n (number) flag, you get the following result:
       Input:                          Output:
         ELEVATION SURFACE               LEAST COST PATH
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 19. 20. 18. 19. 16. 15. 15.    .   .   .   .   .   .   .   .
       . .  ---  . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 20| 19| 17. 16. 17. 16. 16.    .   . 1 . 2 . 3 .   .   .   .
       . .  ---  . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 18. 18. 24. 18. 15. 12. 11.    .   .   .   .   . 4 .   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 22. 16. 16. 18. 10. 10. 10.    .   .   .   .   . 5 .   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 17. 15. 15. 15. 10. 8 . 8 .    .   .   .   .   .   . 6 .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 24. 16. 8 . 7 . 8 . 0 .12 .    .   .   .   .   .   . 7 .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       . 17. 9 . 8 . 7 . 8 . 6 .12 .    .   .   .   .   .   .   .   .
       . . . . . . . . . . . . . . .    . . . . . . . . . . . . . . .
       With the -d (direction) flag, the direction raster is used for  the  input,  rather  than  the  elevation
       surface. The output is then created according to one of the -can flags.
       The directions are recorded as degrees CCW from East:
              112.5     67.5         i.e. a cell with the value 135
       157.5  135   90  45   22.5    means the next cell is to the North-West
              180   x   0
       202.5  225  270  315  337.5
              247.5     292.5

NOTES

       If  no  direction  input map is given, r.drain currently finds only the lowest point (the cell having the
       smallest category value) in the input file that can be reached through directly adjacent cells  that  are
       less  than  or  equal  in  value  to  the  cell  reached  immediately prior to it; therefore, it will not
       necessarily reach the lowest point in the input file. It currently finds pits in the  data,  rather  than
       the  lowest  point in the entire input map. The r.fill.dir, r.terraflow, and r.basins.fill modules can be
       used to fill in subbasins prior to processing with r.drain.

       r.drain will not give sane results at the region boundary. On outer rows and columns bordering  the  edge
       of  the  region,  the  flow direction is always directly out of the map. In this case, the user could try
       adjusting the region extents slightly with g.region to allow additional outlet paths for r.drain.

EXAMPLES

   Path to the lowest point
       In this example we compute drainage paths from two given points following decreasing elevation values  to
       the  lowest  point.  We are using the full North Carolina sample dataset.  First we create the two points
       from a text file using v.in.ascii module (here the text file is CSV  and  we  are  using  unix  here-file
       syntax with EOF, in GUI just enter the values directly for the parameter input):
       v.in.ascii input=- output=start format=point separator=comma <<EOF
       638667.15686275,220610.29411765
       638610.78431373,220223.03921569
       EOF
       Now we compute the drainage path:
       r.drain input=elev_lid792_1m output=drain_path drain=drain start_points=start
       Before  we  visualize  the  result,  we  set a color table for the elevation we are using and we create a
       shaded relief map:
       r.colors map=elev_lid792_1m color=elevation
       r.relief input=elev_lid792_1m output=relief
       Finally we visualize all the input and output data:
       d.shade shade=relief color=elev_lid792_1m
       d.vect map=drain_path color=0:0:61 width=4 legend_label="drainage paths"
       d.vect map=start color=none fill_color=224:0:0 icon=basic/circle size=15 legend_label=origins
       d.legend.vect -b
       Figure: Drainage paths from two points flowing into the points with lowest values

   Path following directions
       To continue flow even after it hits a depression, we need to supply a direction  raster  map  which  will
       tell  the  r.drain  module  how  to  continue  from  the  depression. To get these directions, we use the
       r.watershed module:
       r.watershed elevation=elev_lid792_1m accumulation=accum drainage=drain_dir
       The directions are categorical and we convert them to degrees using raster algebra:
       r.mapcalc "drain_deg = if(drain_dir != 0, 45. * abs(drain_dir), null())"
       Together with directions, we need to provide the r.drain module with cost values. We don’t have any  cost
       to assign to specific cells, so we create a constant surface:
       r.mapcalc "const1 = 1"
       Now we are ready to compute the drainage paths.  We are using the two points from the previous example.
       r.drain -d input=const1 direction=drain_deg output=drain_path_2 drain=drain_2 start_points=start
       We visualize the result in the same way as in the previous example.
       Figure: Drainage paths from two points where directions from r.watershed were used

KNOWN ISSUES

       Sometimes,  when the differences among integer cell category values in the r.cost cumulative cost surface
       output are small, this cumulative cost output cannot accurately be used as input to r.drain (r.drain will
       output  bad  results).   This problem can be circumvented by making the differences between cell category
       values in the cumulative cost output bigger. It is recommended that if the output from r.cost  is  to  be
       used  as  input to r.drain, the user multiply the r.cost input cost surface map by the value of the map’s
       cell resolution, before running r.cost. This can be done using r.mapcalc. The map resolution can be found
       using g.region.  This problem doesn’t arise with floating point maps.

SEE ALSO

        g.region, r.cost, r.fill.dir, r.basins.fill, r.watershed, r.terraflow, r.mapcalc, r.walk

AUTHORS

       Completely rewritten by Roger S. Miller, 2001
       July  2004 at WebValley 2004, error checking and vector points added by Matteo Franchi (Liceo Leonardo Da
       Vinci, Trento) and Roberto Flor (ITC-irst, Trento, Italy)

SOURCE CODE

       Available at: r.drain source code (history)

       Main index | Raster index | Topics index | Keywords index | Graphical index | Full index

       © 2003-2019 GRASS Development Team, GRASS GIS 7.8.2 Reference Manual