Provided by: grass-doc_7.8.2-1build3_all bug

NAME

       t.rast.what   -  Sample  a  space  time raster dataset at specific vector point coordinates and write the
       output to stdout using different layouts

KEYWORDS

       temporal, sampling, raster, time

SYNOPSIS

       t.rast.what
       t.rast.what --help
       t.rast.what    [-niv]     [points=name]       [coordinates=east,north]      strds=name      [output=name]
       [where=sql_query]       [null_value=string]       [separator=character]       [order=string[,string,...]]
       [layout=string]   [nprocs=integer]   [--overwrite]  [--help]  [--verbose]  [--quiet]  [--ui]

   Flags:
       -n
           Output header row

       -i
           Use stdin as input and ignore coordinates and point option

       -v
           Show the category for vector points map

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       points=name
           Name of input vector map
           Or data source for direct OGR access

       coordinates=east,north
           Comma separated list of coordinates

       strds=name [required]
           Name of the input space time raster dataset

       output=name
           Name for the output file or "-" in case stdout should be used
           Default: -

       where=sql_query
           WHERE conditions of SQL statement without ’where’ keyword used in the temporal GIS framework
           Example: start_time > ’2001-01-01 12:30:00’

       null_value=string
           String representing NULL value

       separator=character
           Field separator
           Special characters: pipe, comma, space, tab, newline
           Default: pipe

       order=string[,string,...]
           Sort the maps by category
           Options: id,  name,  creator,  mapset,  creation_time,   modification_time,   start_time,   end_time,
           north,  south,  west,  east,  min,  max
           Default: start_time

       layout=string
           The  layout  of  the output. One point per row (row), one point per column (col), all timsteps in one
           row (timerow)
           Options: row,  col,  timerow
           Default: row

       nprocs=integer
           Number of r.what processes to run in parallel
           Default: 1

DESCRIPTION

       t.rast.what is designed to sample space time raster datasets at specific point coordinates  using  r.what
       internally.  The  output of r.what is transformed to different output layouts.  The output layouts can be
       specified using the layout option.

       Three layouts can be specified:

           •   row - Row order, one vector sample point value per row

           •   col - Column order, create a column for each vector sample point of  a  single  time  step/raster
               layer

           •   timerow  -  Time  order,  create  a  column for each time step, this order is the original r.what
               output, except that the column names are the timestamps
       Please have a look at the example to see the supported layouts.

       This module is designed to run several instances of r.what to sample  subsets  of  a  space  time  raster
       dataset  in  parallel. Several intermediate text files will be created that are merged into a single file
       at the end of the processing.

       Coordinates can be provided as vector map using the points option or as comma separated  coordinate  list
       with the coordinates option.

       An  output  file can be specified using the output option.  Stdout will be used if no output is specified
       or if the output option is set to "-".

EXAMPLES

   Data preparation
       In the following examples we sample a space time raster dataset that contains 4 raster map layers.  First
       we create the STRDS that will be sampled with t.rast.what.
       g.region s=0 n=80 w=0 e=120 b=0 t=50 res=10
       # Generate data
       r.mapcalc expression="a_1 = 1" -s
       r.mapcalc expression="a_2 = 2" -s
       r.mapcalc expression="a_3 = 3" -s
       r.mapcalc expression="a_4 = 4" -s
       t.create type=strds output=A title="A test" descr="A test"
       t.register -i type=raster input=A maps=a_1,a_2,a_3,a_4 \
           start=’1990-01-01’ increment="1 month"

   Example 1
       The   first  approach  uses  text  coordinates  as  input  and  stdout  as  output,  the  layout  is  one
       coordinate(point per column:
       t.rast.what strds=A coordinates="115,36,79,45" layout=col -n
       start|end|115.0000000000;36.0000000000|79.0000000000;45.0000000000
       1990-01-01 00:00:00|1990-02-01 00:00:00|1|1
       1990-02-01 00:00:00|1990-03-01 00:00:00|2|2
       1990-03-01 00:00:00|1990-04-01 00:00:00|3|3
       1990-04-01 00:00:00|1990-05-01 00:00:00|4|4

   Example 2
       A vector map layer can be used as input to sample the STRDS. All three available layouts are demonstrated
       using the vector map for sampling.
       # First create the vector map layer based on random points
       v.random output=points n=3 seed=1
       # Row layout using a text file as output
       t.rast.what strds=A points=points output=result.txt layout=row -n
       cat result.txt
       115.0043586274|36.3593955783|1990-01-01 00:00:00|1990-02-01 00:00:00|1
       115.0043586274|36.3593955783|1990-02-01 00:00:00|1990-03-01 00:00:00|2
       115.0043586274|36.3593955783|1990-03-01 00:00:00|1990-04-01 00:00:00|3
       115.0043586274|36.3593955783|1990-04-01 00:00:00|1990-05-01 00:00:00|4
       79.6816763826|45.2391522853|1990-01-01 00:00:00|1990-02-01 00:00:00|1
       79.6816763826|45.2391522853|1990-02-01 00:00:00|1990-03-01 00:00:00|2
       79.6816763826|45.2391522853|1990-03-01 00:00:00|1990-04-01 00:00:00|3
       79.6816763826|45.2391522853|1990-04-01 00:00:00|1990-05-01 00:00:00|4
       97.4892579600|79.2347263950|1990-01-01 00:00:00|1990-02-01 00:00:00|1
       97.4892579600|79.2347263950|1990-02-01 00:00:00|1990-03-01 00:00:00|2
       97.4892579600|79.2347263950|1990-03-01 00:00:00|1990-04-01 00:00:00|3
       97.4892579600|79.2347263950|1990-04-01 00:00:00|1990-05-01 00:00:00|4
       # Column layout order using stdout as output
       t.rast.what strds=A points=points layout=col -n
       start|end|115.0043586274;36.3593955783|79.6816763826;45.2391522853|97.4892579600;79.2347263950
       1990-01-01 00:00:00|1990-02-01 00:00:00|1|1|1
       1990-02-01 00:00:00|1990-03-01 00:00:00|2|2|2
       1990-03-01 00:00:00|1990-04-01 00:00:00|3|3|3
       1990-04-01 00:00:00|1990-05-01 00:00:00|4|4|4
       # Timerow layout, one time series per row
       # using the where statement to select a subset of the STRDS
       # and stdout as output
       t.rast.what strds=A points=points \
           where="start_time >= ’1990-03-01’" layout=timerow -n
       x|y|1990-03-01 00:00:00;1990-04-01 00:00:00|1990-04-01 00:00:00;1990-05-01 00:00:00
       115.004358627375|36.3593955782903|3|4
       79.681676382576|45.2391522852909|3|4
       97.4892579600048|79.2347263950131|3|4

SEE ALSO

        g.region, r.mask r.neighbors, r.what, t.info, t.rast.aggregate.ds, t.rast.extract, v.what.strds

AUTHOR

       Sören Gebbert, Thünen Institute of Climate-Smart Agriculture

SOURCE CODE

       Available at: t.rast.what source code (history)

       Main index | Temporal index | Topics index | Keywords index | Graphical index | Full index

       © 2003-2019 GRASS Development Team, GRASS GIS 7.8.2 Reference Manual