Provided by: pdl_2.020-3_amd64 bug

NAME

       PDL::GSL::INTEG - PDL interface to numerical integration routines in GSL

DESCRIPTION

       This is an interface to the numerical integration package present in the GNU Scientific Library, which is
       an implementation of QUADPACK.

       Functions are named gslinteg_{algorithm} where {algorithm} is the QUADPACK naming convention. The
       available functions are:

       gslinteg_qng: Non-adaptive Gauss-Kronrod integration
       gslinteg_qag: Adaptive integration
       gslinteg_qags: Adaptive integration with singularities
       gslinteg_qagp: Adaptive integration with known singular points
       gslinteg_qagi: Adaptive integration on infinite interval of the form (-\infty,\infty)
       gslinteg_qagiu: Adaptive integration on infinite interval of the form (la,\infty)
       gslinteg_qagil: Adaptive integration on infinite interval of the form (-\infty,lb)
       gslinteg_qawc: Adaptive integration for Cauchy principal values
       gslinteg_qaws: Adaptive integration for singular functions
       gslinteg_qawo: Adaptive integration for oscillatory functions
       gslinteg_qawf: Adaptive integration for Fourier integrals

       Each  algorithm  computes  an approximation to the integral, I, of the function f(x)w(x), where w(x) is a
       weight function (for general integrands w(x)=1). The user provides absolute  and  relative  error  bounds
       (epsabs,epsrel) which specify the following accuracy requirement:

       |RESULT - I|  <= max(epsabs, epsrel |I|)

       The  routines  will  fail  to  converge if the error bounds are too stringent, but always return the best
       approximation obtained up to that stage

       All functions return the result, and estimate of the absolute error and an error flag (which is  zero  if
       there  were no problems).  You are responsible for checking for any errors, no warnings are issued unless
       the option {Warn => 'y'} is specified in which case the reason of failure will be printed.

       You can nest integrals up to 20 levels. If you find yourself in the  unlikely  situation  that  you  need
       more,  you  can  change  the  value  of 'max_nested_integrals' in the first line of the file 'FUNC.c' and
       recompile.

NOMENCLATURE

       Throughout this documentation we strive to use the same variables that are present in  the  original  GSL
       documentation  (see  See Also). Oftentimes those variables are called "a" and "b". Since good Perl coding
       practices discourage the use of Perl variables $a and $b, here we refer to Parameters "a" and "b" as  $pa
       and $pb, respectively, and Limits (of domain or integration) as $la and $lb.

       Please check the GSL documentation for more information.

SYNOPSIS

          use PDL;
          use PDL::GSL::INTEG;

          my $la = 1.2;
          my $lb = 3.7;
          my $epsrel = 0;
          my $epsabs = 1e-6;

          # Non adaptive integration
          my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&myf,$la,$lb,$epsrel,$epsabs);
          # Warnings on
          my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&myf,$la,$lb,$epsrel,$epsabs,{Warn=>'y'});

          # Adaptive integration with warnings on
          my $limit = 1000;
          my $key = 5;
          my ($res,$abserr,$ierr) = gslinteg_qag(\&myf,$la,$lb,$epsrel,
                                            $epsabs,$limit,$key,{Warn=>'y'});

          sub myf{
            my ($x) = @_;
            return exp(-$x**2);
          }

FUNCTIONS

   qng_meat
         Signature: (double a(); double b(); double epsabs();
                          double epsrel(); double [o] result(); double [o] abserr();
                          int [o] neval(); int [o] ierr(); int gslwarn(); SV* function)

       info not available

       qng_meat  does  not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qag_meat
         Signature: (double a(); double b(); double epsabs();double epsrel(); int limit();
                          int key(); double [o] result(); double [o] abserr();int n();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qag_meat does not process bad values.  It will set the bad-value flag of all output piddles if  the  flag
       is set for any of the input piddles.

   qags_meat
         Signature: (double a(); double b(); double epsabs();double epsrel(); int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qags_meat  does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qagp_meat
         Signature: (double pts(l); double epsabs();double epsrel();int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qagp_meat does not process bad values.  It will set the bad-value flag of all output piddles if the  flag
       is set for any of the input piddles.

   qagi_meat
         Signature: (double epsabs();double epsrel(); int limit();
                          double [o] result(); double [o] abserr(); int n(); int [o] ierr();int gslwarn();; SV* function)

       info not available

       qagi_meat  does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qagiu_meat
         Signature: (double a(); double epsabs();double epsrel();int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qagiu_meat does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qagil_meat
         Signature: (double b(); double epsabs();double epsrel();int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qagil_meat does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qawc_meat
         Signature: (double a(); double b(); double c(); double epsabs();double epsrel();int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qawc_meat does not process bad values.  It will set the bad-value flag of all output piddles if the  flag
       is set for any of the input piddles.

   qaws_meat
         Signature: (double a(); double b();double epsabs();double epsrel();int limit();
                        double [o] result(); double [o] abserr();int n();
                        double alpha(); double beta(); int mu(); int nu();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qaws_meat  does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qawo_meat
         Signature: (double a(); double b();double epsabs();double epsrel();int limit();
                        double [o] result(); double [o] abserr();int n();
                        int sincosopt(); double omega(); double L(); int nlevels();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qawo_meat does not process bad values.  It will set the bad-value flag of all output piddles if the  flag
       is set for any of the input piddles.

   qawf_meat
         Signature: (double a(); double epsabs();int limit();
                        double [o] result(); double [o] abserr();int n();
                        int sincosopt(); double omega(); int nlevels();int [o] ierr();int gslwarn();; SV* function)

       info not available

       qawf_meat  does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   gslinteg_qng
       Non-adaptive Gauss-Kronrod integration

       This function applies the Gauss-Kronrod 10-point, 21-point, 43-point and 87-point  integration  rules  in
       succession  until an estimate of the integral of f over ($la,$lb) is achieved within the desired absolute
       and relative error limits, $epsabs and $epsrel.  It is meant for fast integration of smooth functions. It
       returns an array with the result, an estimate of the absolute error, an error  flag  and  the  number  of
       function evaluations performed.

       Usage:

         ($res,$abserr,$ierr,$neval) = gslinteg_qng($function_ref,$la,$lb,
                                                    $epsrel,$epsabs,[{Warn => $warn}]);

       Example:

          my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&f,0,1,0,1e-9);
          # with warnings on
          my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&f,0,1,0,1e-9,{Warn => 'y'});

          sub f{
            my ($x) = @_;
            return ($x**2.6)*log(1.0/$x);
          }

   gslinteg_qag
       Adaptive integration

       This  function  applies  an  integration  rule  adaptively  until  an  estimate of the integral of f over
       ($la,$lb) is achieved within the desired absolute and relative error limits, $epsabs and $epsrel. On each
       iteration the adaptive integration strategy bisects the interval with the  largest  error  estimate;  the
       maximum  number  of  allowed  subdivisions  is  given  by  the parameter $limit.  The integration rule is
       determined by the value of $key, which has to be one of (1,2,3,4,5,6) and correspond to the 15,  21,  31,
       41,  51 and 61  point Gauss-Kronrod rules respectively.  It returns an array with the result, an estimate
       of the absolute error and an error flag.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qag($function_ref,$la,$lb,$epsrel,
                                             $epsabs,$limit,$key,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qag(\&f,0,1,0,1e-10,1000,1);
         # with warnings on
         my ($res,$abserr,$ierr) = gslinteg_qag(\&f,0,1,0,1e-10,1000,1,{Warn => 'y'});

         sub f{
            my ($x) = @_;
            return ($x**2.6)*log(1.0/$x);
          }

   gslinteg_qags
       Adaptive integration with singularities

       This function applies the Gauss-Kronrod 21-point integration rule adaptively until  an  estimate  of  the
       integral  of  f over ($la,$lb) is achieved within the desired absolute and relative error limits, $epsabs
       and $epsrel. The algorithm is such that it accelerates the convergence of the integral in the presence of
       discontinuities and integrable singularities.  The maximum number of allowed  subdivisions  done  by  the
       adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qags($function_ref,$la,$lb,$epsrel,
                                              $epsabs,$limit,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qags(\&f,0,1,0,1e-10,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qags(\&f,0,1,0,1e-10,1000,{Warn => 'y'});

         sub f{
            my ($x) = @_;
            return ($x)*log(1.0/$x);
          }

   gslinteg_qagp
       Adaptive integration with known singular points

       This  function  applies  the adaptive integration algorithm used by gslinteg_qags taking into account the
       location of singular points until an estimate of the integral of f over ($la,$lb) is achieved within  the
       desired  absolute  and  relative  error limits, $epsabs and $epsrel.  Singular points are supplied in the
       piddle $points, whose endpoints determine the integration range.  So, for example, if  the  function  has
       singular  points  at  x_1  and x_2 and the integral is desired from a to b (a < x_1 < x_2 < b), $points =
       pdl(a,x_1,x_2,b).  The maximum number of allowed subdivisions done by  the  adaptive  algorithm  must  be
       supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qagp($function_ref,$points,$epsabs,
                                              $epsrel,$limit,[{Warn => $warn}])

       Example:

         my $points = pdl(0,1,sqrt(2),3);
         my ($res,$abserr,$ierr) = gslinteg_qagp(\&f,$points,0,1e-3,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qagp(\&f,$points,0,1e-3,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           my $x2 = $x**2;
           my $x3 = $x**3;
           return $x3 * log(abs(($x2-1.0)*($x2-2.0)));
         }

   gslinteg_qagi
       Adaptive integration on infinite interval

       This  function  estimates  the  integral  of  the function f over the infinite interval (-\infty,+\infty)
       within the desired absolute and relative error limits, $epsabs and $epsrel.  After a transformation,  the
       algorithm  of  gslinteg_qags  with  a 15-point Gauss-Kronrod rule is used.  The maximum number of allowed
       subdivisions done by the adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qagi($function_ref,$epsabs,
                                              $epsrel,$limit,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qagi(\&myfn,1e-7,0,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qagi(\&myfn,1e-7,0,1000,{Warn => 'y'});

         sub myfn{
           my ($x) = @_;
           return exp(-$x - $x*$x) ;
         }

   gslinteg_qagiu
       Adaptive integration on infinite interval

       This function estimates the integral of the function f over the infinite interval (la,+\infty) within the
       desired absolute and relative error limits, $epsabs and $epsrel.  After a transformation,  the  algorithm
       of  gslinteg_qags with a 15-point Gauss-Kronrod rule is used.  The maximum number of allowed subdivisions
       done by the adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qagiu($function_ref,$la,$epsabs,
                                               $epsrel,$limit,[{Warn => $warn}]);

       Example:

         my $alfa = 1;
         my ($res,$abserr,$ierr) = gslinteg_qagiu(\&f,99.9,1e-7,0,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qagiu(\&f,99.9,1e-7,0,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           if (($x==0) && ($alfa == 1)) {return 1;}
           if (($x==0) && ($alfa > 1)) {return 0;}
           return ($x**($alfa-1))/((1+10*$x)**2);
         }

   gslinteg_qagil
       Adaptive integration on infinite interval

       This function estimates the integral of the function f over the infinite interval (-\infty,lb) within the
       desired absolute and relative error limits, $epsabs and $epsrel.  After a transformation,  the  algorithm
       of  gslinteg_qags with a 15-point Gauss-Kronrod rule is used.  The maximum number of allowed subdivisions
       done by the adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qagl($function_ref,$lb,$epsabs,
                                              $epsrel,$limit,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qagil(\&myfn,1.0,1e-7,0,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qagil(\&myfn,1.0,1e-7,0,1000,{Warn => 'y'});

         sub myfn{
           my ($x) = @_;
           return exp($x);
         }

   gslinteg_qawc
       Adaptive integration for Cauchy principal values

       This function computes the Cauchy principal value of the integral of f over (la,lb), with  a  singularity
       at  c,  I  =  \int_{la}^{lb}  dx  f(x)/(x - c). The integral is estimated within the desired absolute and
       relative error limits, $epsabs and $epsrel.  The maximum number  of  allowed  subdivisions  done  by  the
       adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qawc($function_ref,$la,$lb,$c,$epsabs,$epsrel,$limit)

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qawc(\&f,-1,5,0,0,1e-3,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qawc(\&f,-1,5,0,0,1e-3,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           return 1.0 / (5.0 * $x * $x * $x + 6.0) ;
         }

   gslinteg_qaws
       Adaptive integration for singular functions

       The algorithm in gslinteg_qaws is designed for integrands with algebraic-logarithmic singularities at the
       end-points  of  an  integration  region.   Specifically, this function computes the integral given by I =
       \int_{la}^{lb} dx f(x) (x-la)^alpha (lb-x)^beta log^mu (x-la) log^nu (lb-x).  The integral  is  estimated
       within  the  desired  absolute  and  relative  error  limits, $epsabs and $epsrel.  The maximum number of
       allowed subdivisions done by the adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) =
             gslinteg_qawc($function_ref,$alpha,$beta,$mu,$nu,$la,$lb,
                           $epsabs,$epsrel,$limit,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qaws(\&f,0,0,1,0,0,1,0,1e-7,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qaws(\&f,0,0,1,0,0,1,0,1e-7,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           if($x==0){return 0;}
           else{
             my $u = log($x);
             my $v = 1 + $u*$u;
             return 1.0/($v*$v);
           }
         }

   gslinteg_qawo
       Adaptive integration for oscillatory functions

       This function uses an adaptive algorithm to compute the integral  of  f  over  (la,lb)  with  the  weight
       function  sin(omega*x)  or cos(omega*x) -- which of sine or cosine is used is determined by the parameter
       $opt ('cos' or 'sin').  The integral is estimated within the desired absolute and relative error  limits,
       $epsabs  and  $epsrel.  The maximum number of allowed subdivisions done by the adaptive algorithm must be
       supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qawo($function_ref,$omega,$sin_or_cos,
                                       $la,$lb,$epsabs,$epsrel,$limit,[opt])

       Example:

         my $PI = 3.14159265358979323846264338328;
         my ($res,$abserr,$ierr) = PDL::GSL::INTEG::gslinteg_qawo(\&f,10*$PI,'sin',0,1,0,1e-7,1000);
         # with warnings on
         ($res,$abserr,$ierr) = PDL::GSL::INTEG::gslinteg_qawo(\&f,10*$PI,'sin',0,1,0,1e-7,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           if($x==0){return 0;}
           else{ return log($x);}
         }

   gslinteg_qawf
       Adaptive integration for Fourier integrals

       This function attempts to compute a Fourier integral of the function f over  the  semi-infinite  interval
       [la,+\infty).  Specifically,  it  attempts  tp compute I = \int_{la}^{+\infty} dx f(x)w(x), where w(x) is
       sin(omega*x) or cos(omega*x) -- which of sine or cosine is used  is  determined  by  the  parameter  $opt
       ('cos'  or  'sin').   The  integral  is  estimated  within the desired absolute error limit $epsabs.  The
       maximum number of allowed subdivisions done by the adaptive algorithm must be supplied in  the  parameter
       $limit.

       Please check the GSL documentation for more information.

       Usage:

         gslinteg_qawf($function_ref,$omega,$sin_or_cos,$la,$epsabs,$limit,[opt])

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qawf(\&f,$PI/2.0,'cos',0,1e-7,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qawf(\&f,$PI/2.0,'cos',0,1e-7,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           if ($x == 0){return 0;}
           return 1.0/sqrt($x)
         }

BUGS

       Feedback   is  welcome.  Log  bugs  in  the  PDL  bug  database  (the  database  is  always  linked  from
       <http://pdl.perl.org>).

SEE ALSO

       PDL

       The      GSL      documentation      for       numerical       integration       is       online       at
       <https://www.gnu.org/software/gsl/doc/html/integration.html>

AUTHOR

       This  file  copyright  (C)  2003,2005  Andres  Jordan  <ajordan@eso.org> All rights reserved. There is no
       warranty. You are allowed to redistribute this  software  documentation  under  certain  conditions.  For
       details,  see  the  file  COPYING  in  the  PDL  distribution.  If  this  file  is separated from the PDL
       distribution, the copyright notice should be included in the file.

       The GSL integration routines were written by Brian Gough. QUADPACK  was  written  by  Piessens,  Doncker-
       Kapenga, Uberhuber and Kahaner.

perl v5.30.0                                       2020-01-18                                         INTEG(3pm)