Provided by: librheolef-dev_7.1-1_amd64
NAME
csr - distributed compressed sparse matrix (rheolef-7.1)
DESCRIPTION
Sparse matrix are compressed by rows. In a distributed environment, the distribution follows the row distributor(4).
ALGEBRA
This class supports the standard linear algebra. Adding or subtracting two matrices simply writes a+b and a-b, respectively. Multiplying a matrix by a scalar writes lambda*a and the matrix-matrix product also writes a*b. Matrix-vector product expresses a*x where x is a vector described by the vec(4) class. By extension, trans(a) returns the transpose. Multiplying a vector by the transpose matrix writes a.trans_mult(x) and do not requires to build the transpose matrix.
IMPLEMENTATION
This documentation has been generated from file linalg/lib/csr.h The csr class is a template class with both the floating type and the memory model as parameters. Here is the interface for the sequential memory model. The distributed case presents a similar interface. template<class T> class csr<T,sequential> : public smart_pointer<csr_rep<T,sequential> > { public: // typedefs: typedef csr_rep<T,sequential> rep; typedef smart_pointer<rep> base; typedef typename rep::memory_type memory_type; typedef typename rep::size_type size_type; typedef typename rep::element_type element_type; typedef typename rep::iterator iterator; typedef typename rep::const_iterator const_iterator; typedef typename rep::data_iterator data_iterator; typedef typename rep::const_data_iterator const_data_iterator; // allocators/deallocators: csr() : base(new_macro(rep())) {} template<class A> explicit csr(const asr<T,sequential,A>& a) : base(new_macro(rep(a))) {} void resize (size_type loc_nrow1 = 0, size_type loc_ncol1 = 0, size_type loc_nnz1 = 0) { base::data().resize(loc_nrow1, loc_ncol1, loc_nnz1); } void resize (const distributor& row_ownership, const distributor& col_ownership, size_type nnz1 = 0) { base::data().resize(row_ownership, col_ownership, nnz1); } // allocators from initializer list csr (const std::initializer_list<details::csr_concat_value<T,sequential> >& init_list); csr (const std::initializer_list<details::csr_concat_line<T,sequential> >& init_list); // accessors: // global sizes const distributor& row_ownership() const { return base::data().row_ownership(); } const distributor& col_ownership() const { return base::data().col_ownership(); } size_type dis_nrow () const { return row_ownership().dis_size(); } size_type dis_ncol () const { return col_ownership().dis_size(); } size_type dis_nnz () const { return base::data().nnz(); } size_type dis_ext_nnz () const { return 0; } bool is_symmetric() const { return base::data().is_symmetric(); } void set_symmetry (bool is_symm) const { base::data().set_symmetry(is_symm); } void set_symmetry_by_check (const T& tol = std::numeric_limits<T>::epsilon()) const { base::data().set_symmetry_by_check(); } bool is_definite_positive() const { return base::data().is_definite_positive(); } void set_definite_positive (bool is_defpos) const { base::data().set_definite_positive(is_defpos); } size_type pattern_dimension() const { return base::data().pattern_dimension(); } void set_pattern_dimension(size_type dim) const { base::data().set_pattern_dimension(dim); } T max_abs () const { return base::data().max_abs(); } // local sizes size_type nrow () const { return base::data().nrow(); } size_type ncol () const { return base::data().ncol(); } size_type nnz () const { return base::data().nnz(); } // range on local memory size_type row_first_index () const { return base::data().row_first_index(); } size_type row_last_index () const { return base::data().row_last_index(); } size_type col_first_index () const { return base::data().col_first_index(); } size_type col_last_index () const { return base::data().col_last_index(); } const_iterator begin() const { return base::data().begin(); } const_iterator end() const { return base::data().end(); } iterator begin_nonconst() { return base::data().begin(); } iterator end_nonconst() { return base::data().end(); } // accessors, only for distributed (for interface compatibility) size_type ext_nnz() const { return 0; } const_iterator ext_begin() const { return const_iterator(); } const_iterator ext_end() const { return const_iterator(); } iterator ext_begin_nonconst() { return iterator(); } iterator ext_end_nonconst() { return iterator(); } size_type jext2dis_j (size_type jext) const { return 0; } int constraint_process_rank() const; // algebra: // y := a*x void mult (const vec<element_type,sequential>& x, vec<element_type,sequential>& y) const { base::data().mult (x,y); } vec<element_type,sequential> operator* (const vec<element_type,sequential>& x) const { vec<element_type,sequential> y (row_ownership(), element_type()); mult (x, y); return y; } void trans_mult (const vec<element_type,sequential>& x, vec<element_type,sequential>& y) const { base::data().trans_mult (x,y); } vec<element_type,sequential> trans_mult (const vec<element_type,sequential>& x) const { vec<element_type,sequential> y (col_ownership(), element_type()); trans_mult (x, y); return y; } // a+b, a-b, a*b csr<T,sequential> operator+ (const csr<T,sequential>& b) const; csr<T,sequential> operator- (const csr<T,sequential>& b) const; csr<T,sequential> operator* (const csr<T,sequential>& b) const; // lambda*a csr<T,sequential>& operator*= (const T& lambda) { base::data().operator*= (lambda); return *this; } // output: void dump (const std::string& name) const { base::data().dump(name); } };
AUTHOR
Pierre Saramito <Pierre.Saramito@imag.fr>
COPYRIGHT
Copyright (C) 2000-2018 Pierre Saramito <Pierre.Saramito@imag.fr> GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>. This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.