Provided by: librheolef-dev_7.0-3_amd64
NAME
uzawa -- Uzawa algorithm.
SYNOPSIS
template <class Matrix, class Vector, class Preconditioner, class Real> int uzawa (const Matrix &A, Vector &x, const Vector &b, const Preconditioner &M, const solver_option& sopt)
EXAMPLE
The simplest call to 'uzawa' has the folling form: solver_option sopt; sopt.max_iter = 100; sopt.tol = 1e-7; int status = uzawa(A, x, b, eye(), sopt);
DESCRIPTION
uzawa solves the linear system A*x=b using the Uzawa method. The Uzawa method is a descent method in the direction opposite to the gradient, with a constant step length 'rho'. The convergence is assured when the step length 'rho' is small enough. If matrix A is symmetric positive definite, please uses 'cg' that computes automatically the optimal descdnt step length at each iteration. The return value indicates convergence within max_iter (input) iterations (0), or no convergence within max_iter iterations (1). Upon successful return, output arguments have the following values: x approximate solution to Ax = b sopt.n_iter the number of iterations performed before the tolerance was reached sopt.residue the residual after the final iteration See also the solver_option(2).
IMPLEMENTATION
template<class Matrix, class Vector, class Preconditioner, class Real2> int uzawa (const Matrix &A, Vector &x, const Vector &Mb, const Preconditioner &M, const Real2& rho, const solver_option& sopt = solver_option()) { typedef typename Vector::size_type Size; typedef typename Vector::float_type Real; std::string label = (sopt.label != "" ? sopt.label : "uzawa"); Vector b = M.solve(Mb); Real norm2_b = dot(Mb,b); Real norm2_r = norm2_b; if (sopt.absolute_stopping || norm2_b == Real(0)) norm2_b = 1; if (sopt.p_err) (*sopt.p_err) << "[" << label << "] #iteration residue" << std::endl; for (sopt.n_iter = 0; sopt.n_iter <= sopt.max_iter; sopt.n_iter++) { Vector Mr = A*x - Mb; Vector r = M.solve(Mr); norm2_r = dot(Mr, r); sopt.residue = sqrt(norm2_r/norm2_b); if (sopt.p_err) (*sopt.p_err) << "[" << label << "] " << sopt.n_iter << " " << sopt.residue << std::endl; if (sopt.residue <= sopt.tol) return 0; x -= rho*r; } return 1; }
SEE ALSO
solver_option(2)
COPYRIGHT
Copyright (C) 2000-2018 Pierre Saramito <Pierre.Saramito@imag.fr> GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>. This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.