Provided by: freebsd-manpages_12.0-1_all bug

NAME

     tcp_functions — Alternate TCP Stack Framework

SYNOPSIS

     #include <netinet/tcp.h>
     #include <netinet/tcp_var.h>

     int
     register_tcp_functions(struct tcp_function_block *blk, int wait);

     int
     register_tcp_functions_as_name(struct tcp_function_block *blk, const char *name, int wait);

     register_tcp_functions_as_names(struct tcp_function_block *blk, int wait, const char *names[],
         int *num_names);

     int
     deregister_tcp_functions(struct tcp_function_block *blk);

DESCRIPTION

     The tcp_functions framework allows a kernel developer to implement alternate TCP stacks.  The alternate
     stacks can be compiled in the kernel or can be implemented in loadable kernel modules.  This functionality
     is intended to encourage experimentation with the TCP stack and to allow alternate behaviors to be deployed
     for different TCP connections on a single system.

     A system administrator can set a system default stack.  By default, all TCP connections will use the system
     default stack.  Additionally, users can specify a particular stack to use on a per-connection basis.  (See
     tcp(4) for details on setting the system default stack, or selecting a specific stack for a given
     connection.)

     This man page treats "TCP stacks" as synonymous with "function blocks".  This is intentional.  A "TCP
     stack" is a collection of functions that implement a set of behavior.  Therefore, an alternate "function
     block" defines an alternate "TCP stack".

     The register_tcp_functions(), register_tcp_functions_as_name(), and register_tcp_functions_as_names()
     functions request that the system add a specified function block and register it for use with a given name.
     Modules may register the same function block multiple times with different names.  However, names must be
     globally unique among all registered function blocks.  Also, modules may not ever modify the contents of
     the function block (including the name) after it has been registered, unless the module first successfully
     de-registers the function block.

     The register_tcp_functions() function requests that the system register the function block with the name
     defined in the function block's tfb_tcp_block_name field.  Note that this is the only one of the three
     registration functions that automatically registers the function block using the name defined in the
     function block's tfb_tcp_block_name field.  If a module uses one of the other registration functions, it
     may request that the system register the function block using the name defined in the function block's
     tfb_tcp_block_name field by explicitly providing that name.

     The register_tcp_functions_as_name() function requests that the system register the function block with the
     name provided in the name argument.

     The register_tcp_functions_as_names() function requests that the system register the function block with
     all the names provided in the names argument.  The num_names argument provides a pointer to the number of
     names.  This function will either succeed in registering all of the names in the array, or none of the
     names in the array.  On failure, the num_names argument is updated with the index number of the entry in
     the names array which the system was processing when it encountered the error.

     The deregister_tcp_functions() function requests that the system remove a specified function block from the
     system.  If this call succeeds, it will completely deregister the function block, regardless of the number
     of names used to register the function block.  If the call fails because sockets are still using the
     specified function block, the system will mark the function block as being in the process of being removed.
     This will prevent additional sockets from using the specified function block.  However, it will not impact
     sockets that are already using the function block.

     tcp_functions modules must call one or more of the registration functions during initialization and
     successfully call the deregister_tcp_functions() function prior to allowing the module to be unloaded.

     The blk argument is a pointer to a struct tcp_function_block, which is explained below (see Function Block
     Structure).  The wait argument is used as the flags argument to malloc(9), and must be set to one of the
     valid values defined in that man page.

   Function Block Structure
     The blk argument is a pointer to a struct tcp_function_block, which has the following members:

           struct tcp_function_block {
                   char    tfb_tcp_block_name[TCP_FUNCTION_NAME_LEN_MAX];
                   int     (*tfb_tcp_output)(struct tcpcb *);
                   void    (*tfb_tcp_do_segment)(struct mbuf *, struct tcphdr *,
                                       struct socket *, struct tcpcb *,
                                       int, int, uint8_t,
                                       int);
                   int     (*tfb_tcp_ctloutput)(struct socket *so,
                                       struct sockopt *sopt,
                                       struct inpcb *inp, struct tcpcb *tp);
                   /* Optional memory allocation/free routine */
                   void    (*tfb_tcp_fb_init)(struct tcpcb *);
                   void    (*tfb_tcp_fb_fini)(struct tcpcb *, int);
                   /* Optional timers, must define all if you define one */
                   int     (*tfb_tcp_timer_stop_all)(struct tcpcb *);
                   void    (*tfb_tcp_timer_activate)(struct tcpcb *,
                                       uint32_t, u_int);
                   int     (*tfb_tcp_timer_active)(struct tcpcb *, uint32_t);
                   void    (*tfb_tcp_timer_stop)(struct tcpcb *, uint32_t);
                   /* Optional functions */
                   void    (*tfb_tcp_rexmit_tmr)(struct tcpcb *);
                   void    (*tfb_tcp_handoff_ok)(struct tcpcb *);
                   /* System use */
                   volatile uint32_t tfb_refcnt;
                   uint32_t  tfb_flags;
           };

     The tfb_tcp_block_name field identifies the unique name of the TCP stack, and should be no longer than
     TCP_FUNCTION_NAME_LEN_MAX-1 characters in length.

     The tfb_tcp_output, tfb_tcp_do_segment, and tfb_tcp_ctloutput fields are pointers to functions that perform
     the equivalent actions as the default tcp_output(), tcp_do_segment(), and tcp_default_ctloutput()
     functions, respectively.  Each of these function pointers must be non-NULL.

     If a TCP stack needs to initialize data when a socket first selects the TCP stack (or, when the socket is
     first opened), it should set a non-NULL pointer in the tfb_tcp_fb_init field.  Likewise, if a TCP stack
     needs to cleanup data when a socket stops using the TCP stack (or, when the socket is closed), it should
     set a non-NULL pointer in the tfb_tcp_fb_fini field.

     If the tfb_tcp_fb_fini argument is non-NULL, the function to which it points is called when the kernel is
     destroying the TCP control block or when the socket is transitioning to use a different TCP stack.  The
     function is called with arguments of the TCP control block and an integer flag.  The flag will be zero if
     the socket is transitioning to use another TCP stack or one if the TCP control block is being destroyed.

     If the TCP stack implements additional timers, the TCP stack should set a non-NULL pointer in the
     tfb_tcp_timer_stop_all, tfb_tcp_timer_activate, tfb_tcp_timer_active, and tfb_tcp_timer_stop fields.  These
     fields should all be NULL or should all contain pointers to functions.  The tfb_tcp_timer_activate,
     tfb_tcp_timer_active, and tfb_tcp_timer_stop functions will be called when the tcp_timer_activate(),
     tcp_timer_active(), and tcp_timer_stop() functions, respectively, are called with a timer type other than
     the standard types.  The functions defined by the TCP stack have the same semantics (both for arguments and
     return values) as the normal timer functions they supplement.

     Additionally, a stack may define its own actions to take when the retransmit timer fires by setting a non-
     NULL function pointer in the tfb_tcp_rexmit_tmr field.  This function is called very early in the process
     of handling a retransmit timer.  However, care must be taken to ensure the retransmit timer leaves the TCP
     control block in a valid state for the remainder of the retransmit timer logic.

     A user may select a new TCP stack before calling connect(2) or listen(2).  Optionally, a TCP stack may also
     allow a user to begin using the TCP stack for a connection that is in a later state by setting a non-NULL
     function pointer in the tfb_tcp_handoff_ok field.  If this field is non-NULL and a user attempts to select
     that TCP stack after calling connect(2) or listen(2) for that socket, the kernel will call the function
     pointed to by the tfb_tcp_handoff_ok field.  The function should return 0 if the user is allowed to switch
     the socket to use the TCP stack. Otherwise, the function should return an error code, which will be
     returned to the user.  If the tfb_tcp_handoff_ok field is NULL and a user attempts to select the TCP stack
     after calling connect(2) or listen(2) for that socket, the operation will fail and the kernel will return
     EINVAL.

     The tfb_refcnt and tfb_flags fields are used by the kernel's TCP code and will be initialized when the TCP
     stack is registered.

   Requirements for Alternate TCP Stacks
     If the TCP stack needs to store data beyond what is stored in the default TCP control block, the TCP stack
     can initialize its own per-connection storage.  The t_fb_ptr field in the struct tcpcb control block
     structure has been reserved to hold a pointer to this per-connection storage.  If the TCP stack uses this
     alternate storage, it should understand that the value of the t_fb_ptr pointer may not be initialized to
     NULL.  Therefore, it should use a tfb_tcp_fb_init function to initialize this field.  Additionally, it
     should use a tfb_tcp_fb_fini function to deallocate storage when the socket is closed.

     It is understood that alternate TCP stacks may keep different sets of data.  However, in order to ensure
     that data is available to both the user and the rest of the system in a standardized format, alternate TCP
     stacks must update all fields in the TCP control block to the greatest extent practical.

RETURN VALUES

     The register_tcp_functions(), register_tcp_functions_as_name(), register_tcp_functions_as_names(), and
     deregister_tcp_functions() functions return zero on success and non-zero on failure.  In particular, the
     deregister_tcp_functions() will return EBUSY until no more connections are using the specified TCP stack.
     A module calling deregister_tcp_functions() must be prepared to wait until all connections have stopped
     using the specified TCP stack.

ERRORS

     The register_tcp_functions() function will fail if:

     [EINVAL]           Any of the members of the blk argument are set incorrectly.

     [ENOMEM]           The function could not allocate memory for its internal data.

     [EALREADY]         A function block is already registered with the same name.
     The deregister_tcp_functions() function will fail if:

     [EPERM]            The blk argument references the kernel's compiled-in default function block.

     [EBUSY]            The function block is still in use by one or more sockets, or is defined as the current
                        default function block.

     [ENOENT]           The blk argument references a function block that is not currently registered.

SEE ALSO

     connect(2), listen(2), tcp(4), malloc(9)

HISTORY

     This framework first appeared in FreeBSD 11.0.

AUTHORS

     The tcp_functions framework was written by Randall Stewart <rrs@FreeBSD.org>.

     This manual page was written by Jonathan Looney <jtl@FreeBSD.org>.