Provided by: libvolpack1-dev_1.0b3-9_amd64
NAME
vpIdentity3, vpIdentity4, vpNormalize3, vpMatrixVectorMult4, vpMatrixMult4, vpCrossProduct, vpSolveSystem4, vpSetVector3, vpSetVector4 - linear algebra routines
SYNOPSIS
#include <volpack.h> void vpIdentity3(m_dst) vpMatrix3 m_dst; void vpIdentity4(m_dst) vpMatrix4 m_dst; vpResult vpNormalize3(v_src1) vpVector3 v_src1; void vpMatrixVectorMult4(v_dst, m_src1, v_src1) vpVector4 v_dst; vpMatrix4 m_src1; vpVector4 v_src1; void vpMatrixMult4(m_dst, m_src1, m_src2) vpVector4 m_dst, m_src1, m_src2; void vpCrossProduct(v_dst, v_src1, v_src2) vpVector3 v_dst, v_src1, v_src2; vpResult vpSolveSystem4(m_src1, b, count) vpMatrix4 m_src1; vpVector4 b[]; int count; void vpSetVector3(v_dst, x, y, z) vpVector3 v_dst; double x, y, z; void vpSetVector4(v_dst, x, y, z, w) vpVector4 v_dst; double x, y, z, w;
ARGUMENTS
m_src1, m_src2, m_dst Source and destination matrices. v_src1, v_src2, v_dst Source and destination vectors. b Array of right-hand-side vectors. count Number of right-hand-side vectors. x, y, z, w Vector components.
DESCRIPTION
These routines form a simple linear algebra package used internally by VolPack. The routines are also available as utility routines for use by the application. vpIdentity3 assigns the identity matrix to a 3-by-3 matrix. vpIdentity4 assigns the identity matrix to a 4-by-4 matrix. vpNormalize3 normalizes a 3-element vector (so the magnitude is 1.0). The result overwrites the source vector. vpMatrixVectorMult4 multiplies a 4-by-4 matrix by a 4-element column vector and stores the result in the destination vector (v_dst = m . v_src). vpMatrixMult4 multiplies two 4-by-4 matrices and stores the result in the destination matrix (m_dst = m_src1 . m_src2). vpCrossProduct computes the cross product of two 3-element vectors and stores the result in the destination vector (v_dst = v_src1 x v_src2). vpSolveSystem4 solves the linear system m . x = b for each right-hand-side vector in the b array. The solution vectors overwrite the vectors in the b array. The solution is computed using Gauss-Jordan elimination with partial pivoting and implicit scaling. vpSetVector3 initializes the components of a 3-element vector (v_dst = [x, y, z]). It is a macro. vpSetVector4 initializes the components of a 4-element vector (v_dst = [x, y, z, w]). It is a macro.
ERRORS
vpNormalize3 and vpSolveSystem4 normally return VP_OK. The following error return value is possible: VPERROR_SINGULAR The vector is a 0 vector (vpNormalize3 only), or the matrix is singular (vpSolveSystem4 only).
SEE ALSO
VolPack(3)