Provided by: libsnmp-info-perl_3.81-1_all bug

NAME

       SNMP::Info - OO Interface to Network devices and MIBs through SNMP

VERSION

       SNMP::Info - Version 3.81

AUTHOR

       SNMP::Info is maintained by team of Open Source authors headed by Eric Miller, Bill
       Fenner, Max Baker, Jeroen van Ingen and Oliver Gorwits.

       Please visit <https://github.com/netdisco/snmp-info/> for the most up-to-date list of
       developers.

       SNMP::Info was originally created at UCSC for the Netdisco project <http://netdisco.org>
       by Max Baker.

DEVICES SUPPORTED

       There are now generic classes for most types of device and so the authors recommend
       loading SNMP::Info with AutoSpecify, and then reporting to the mail list any missing
       functionality (such as neighbor discovery tables).

SYNOPSIS

        use SNMP::Info;

        my $info = new SNMP::Info(
                                   # Auto Discover more specific Device Class
                                   AutoSpecify => 1,
                                   Debug       => 1,
                                   # The rest is passed to SNMP::Session
                                   DestHost    => 'router',
                                   Community   => 'public',
                                   Version     => 2
                                 ) or die "Can't connect to device.\n";

        my $err = $info->error();
        die "SNMP Community or Version probably wrong connecting to device. $err\n" if defined $err;

        my $name  = $info->name();
        my $class = $info->class();
        print "SNMP::Info is using this device class : $class\n";

        # Find out the Duplex status for the ports
        my $interfaces = $info->interfaces();
        my $i_duplex   = $info->i_duplex();

        # Get CDP Neighbor info
        my $c_if       = $info->c_if();
        my $c_ip       = $info->c_ip();
        my $c_port     = $info->c_port();

        # Print out data per port
        foreach my $iid (keys %$interfaces){
           my $duplex = $i_duplex->{$iid};
           # Print out physical port name, not snmp iid
           my $port  = $interfaces->{$iid};

           print "$port: ";
           print "$duplex duplex" if defined $duplex;

           # The CDP Table has table entries different than the interface tables.
           # So we use c_if to get the map from cdp table to interface table.

           my %c_map = reverse %$c_if;
           my $c_key = $c_map{$iid};
           unless (defined $c_key) {
                print "\n\n";
                next;
            }
           my $neighbor_ip   = $c_ip->{$c_key};
           my $neighbor_port = $c_port->{$c_key};

           print " connected to $neighbor_ip / $neighbor_port\n" if defined $neighbor_ip;
           print "\n";

        }

SUPPORT

       Please direct all support, help, and bug requests to the snmp-info-users Mailing List at
       <http://lists.sourceforge.net/lists/listinfo/snmp-info-users>.

DESCRIPTION

       SNMP::Info gives an object oriented interface to information obtained through SNMP.

       This module is geared towards network devices.  Subclasses exist for a number of network
       devices and common MIBs.

       The idea behind this module is to give a common interface to data from network devices,
       leaving the device-specific hacks behind the scenes in subclasses.

       In the SYNOPSIS example we fetch the name of all the ports on the device and the duplex
       setting for that port with two methods -- interfaces() and i_duplex().

       The information may be coming from any number of MIB files and is very vendor specific.
       SNMP::Info provides you a common method for all supported devices.

       Adding support for your own device is easy, and takes little SNMP knowledge.

       The module is not limited to network devices. Any MIB or device can be given an objected
       oriented front-end by making a module that consists of a couple hashes.  See EXTENDING
       SNMP::INFO.

REQUIREMENTS

       1. Net-SNMP
           To use this module, you must have Net-SNMP installed on your system.  More
           specifically you need the Perl modules that come with it.

           DO NOT INSTALL SNMP:: or Net::SNMP from CPAN!

           The SNMP module is matched to an install of net-snmp, and must be installed from the
           net-snmp source tree.

           The Perl module "SNMP" is found inside the net-snmp distribution.  Go to the perl/
           directory of the distribution to install it, or run "./configure --with-perl-modules"
           from the top directory of the net-snmp distribution.

           Net-SNMP can be found at http://net-snmp.sourceforge.net

           Version 5.3.2 or greater is recommended.

           Versions 5.0.1, 5.0301 and 5.0203 have issues with bulkwalk and are not supported.

           Redhat Users: Some versions that come with certain versions of Redhat/Fedora don't
           have the Perl library installed.  Uninstall the RPM and install by hand.

       2. MIBS
           SNMP::Info operates on textual descriptors found in MIBs.

           If you are using SNMP::Info separate from Netdisco, download the Netdisco MIB package
           at <https://github.com/netdisco/netdisco-mibs/releases/latest/>

           Make sure that your snmp.conf is updated to point to your MIB directory and that the
           MIBs are world-readable.

DESIGN GOALS

       1. Use of textual MIB leaf identifier and enumerated values
           •   All values are retrieved via MIB Leaf node names

               For example SNMP::Info has an entry in its %GLOBALS hash for ``sysName'' instead
               of 1.3.6.1.2.1.1.5.

           •   Data returned is in the enumerated value form.

               For Example instead of looking up 1.3.6.1.2.1.2.2.1.3 and getting back 23

               SNMP::Info will ask for "RFC1213-MIB::ifType" and will get back "ppp".

       2. SNMP::Info is easily extended to new devices
           You can create a new subclass for a device by providing four hashes : %GLOBALS, %MIBS,
           %FUNCS, and %MUNGE.

           Or you can override any existing methods from a parent class by making a short
           subroutine.

           See the section EXTENDING SNMP::INFO for more details.

           When you make a new subclass for a device, please be sure to send it back to the
           developers (via a github pull request or the mailing list) for inclusion in the next
           version.

SUBCLASSES

       These are the subclasses that implement MIBs and support devices:

       Required MIBs not included in the install instructions above are noted here.

   MIB Subclasses
       These subclasses implement method to access one or more MIBs.  These are not used
       directly, but rather inherited from device subclasses.

       For more info run "perldoc" on any of the following module names.

       SNMP::Info::AdslLine
           SNMP Interface to the ADSL-LINE-MIB for ADSL interfaces.

           Requires the ADSL-LINE-MIB, down loadable from Cisco.

           See documentation in SNMP::Info::AdslLine for details.

       SNMP::Info::Aggregate
           SNMP Interface to IF-MIB "ifStackTable" Aggregated Links

           See documentation in SNMP::Info::Aggregate for details.

       SNMP::Info::Airespace
           AIRESPACE-WIRELESS-MIB and AIRESPACE-SWITCHING-MIB.  Inherited by devices based on the
           Airespace wireless platform.

           See documentation in SNMP::Info::Airespace for details.

       SNMP::Info::AMAP
           ALCATEL-IND1-INTERSWITCH-PROTOCOL-MIB.  Alcatel Mapping Adjacency Protocol (AMAP)
           Support.

           See documentation in SNMP::Info::AMAP for details.

       SNMP::Info::Bridge
           BRIDGE-MIB (RFC1286).  Q-BRIDGE-MIB. Inherited by devices with Layer2 support.

           See documentation in SNMP::Info::Bridge for details.

       SNMP::Info::CDP
           CISCO-CDP-MIB.  Cisco Discovery Protocol (CDP) Support.  Inherited by Cisco,
           Enterasys, and HP devices.

           See documentation in SNMP::Info::CDP for details.

       SNMP::Info::CiscoAgg
           SNMP Interface to Cisco Aggregated Links

           See documentation in SNMP::Info::CiscoAgg for details.

       SNMP::Info::CiscoConfig
           CISCO-CONFIG-COPY-MIB, CISCO-FLASH-MIB, and OLD-CISCO-SYS-MIB.  These OIDs facilitate
           the writing of configuration files.

           See documentation in SNMP::Info::CiscoConfig for details.

       SNMP::Info::CiscoPortSecurity
           CISCO-PORT-SECURITY-MIB and CISCO-PAE-MIB.

           See documentation in SNMP::Info::CiscoPortSecurity for details.

       SNMP::Info::CiscoPower
           CISCO-POWER-ETHERNET-EXT-MIB.

           See documentation in SNMP::Info::CiscoPower for details.

       SNMP::Info::CiscoQOS
           CISCO-CLASS-BASED-QOS-MIB. A collection of OIDs providing information about a Cisco
           device's QOS config.

           See documentation in SNMP::Info::CiscoQOS for details.

       SNMP::Info::CiscoRTT
           CISCO-RTTMON-MIB. A collection of OIDs providing information about a Cisco device's
           RTT values.

           See documentation in SNMP::Info::CiscoRTT for details.

       SNMP::Info::CiscoStack
           CISCO-STACK-MIB.

           See documentation in SNMP::Info::CiscoStack for details.

       SNMP::Info::CiscoStats
           OLD-CISCO-CPU-MIB, CISCO-PROCESS-MIB, and CISCO-MEMORY-POOL-MIB.  Provides common
           interfaces for memory, cpu, and os statistics for Cisco devices.

           See documentation in SNMP::Info::CiscoStats for details.

       SNMP::Info::CiscoStpExtensions
           CISCO-STP-EXTENSIONS-MIB

           See documentation in SNMP::Info::CiscoStpExtensions for details.

       SNMP::Info::CiscoVTP
           CISCO-VTP-MIB, CISCO-VLAN-MEMBERSHIP-MIB, CISCO-VLAN-IFTABLE-RELATIONSHIP-MIB

           See documentation in SNMP::Info::CiscoVTP for details.

       SNMP::Info::DocsisCM
           SNMP Interface for DOCSIS Cable Modems

           See documentation in SNMP::Info::DocsisCM for details.

       SNMP::Info::DocsisHE
           SNMP Interface for DOCSIS CMTS

           See documentation in SNMP::Info::DocsisHE for details.

       SNMP::Info::EDP
           Extreme Discovery Protocol.  EXTREME-EDP-MIB

           See documentation in SNMP::Info::EDP for details.

       SNMP::Info::Entity
           ENTITY-MIB.  Used for device info in Cisco and other vendors.

           See documentation in SNMP::Info::Entity for details.

       SNMP::Info::EtherLike
           EtherLike-MIB (RFC1398) - Some Layer3 devices implement this MIB, as well as some
           Aironet Layer 2 devices (non Cisco).

           See documentation in SNMP::Info::EtherLike for details.

       SNMP::Info::FDP
           Foundry (Brocade) Discovery Protocol.  FOUNDRY-SN-SWITCH-GROUP-MIB

           See documentation in SNMP::Info::FDP for details.

       SNMP::Info::IEEE802_Bridge
           SNMP Interface to data available through the IEEE8021-Q-BRIDGE-MIB

           See documentation in SNMP::Info::IEEE802_Bridge for details.

       SNMP::Info::IEEE802dot11
           IEEE802dot11-MIB.  A collection of OIDs providing information about standards based
           802.11 wireless devices.

           See documentation in SNMP::Info::IEEE802dot11 for details.

       SNMP::Info::IEEE802dot3ad
           SNMP Interface to IEEE Aggregated Links.  IEEE8023-LAG-MIB

           See documentation in SNMP::Info::IEEE802dot3ad for details.

       SNMP::Info::IPv6
           SNMP Interface for obtaining configured IPv6 addresses and mapping IPv6 addresses to
           MAC addresses and interfaces, using information from IP-MIB, IPV6-MIB and/or CISCO-
           IETF-IP-MIB.

           See documentation in SNMP::Info::IPv6 for details.

       SNMP::Info::LLDP
           LLDP-MIB, LLDP-EXT-DOT1-MIB, and LLDP-EXT-DOT3-MIB.  Link Layer Discovery Protocol
           (LLDP) Support.

           See documentation in SNMP::Info::LLDP for details.

       SNMP::Info::MAU
           MAU-MIB (RFC2668).  Some Layer2 devices use this for extended Ethernet (Medium
           Attachment Unit) interface information.

           See documentation in SNMP::Info::MAU for details.

       SNMP::Info::MRO
           Method resolution introspection for SNMP::Info

           See documentation in SNMP::Info::MRO for details.

       SNMP::Info::NortelStack
           S5-AGENT-MIB, S5-CHASSIS-MIB.

           See documentation in SNMP::Info::NortelStack for details.

       SNMP::Info::PowerEthernet
           POWER-ETHERNET-MIB

           See documentation in SNMP::Info::PowerEthernet for details.

       SNMP::Info::RapidCity
           RAPID-CITY.  Inherited by Avaya switches for duplex and VLAN information.

           See documentation in SNMP::Info::RapidCity for details.

       SNMP::Info::SONMP
           SynOptics Network Management Protocol (SONMP) SYNOPTICS-ROOT-MIB,
           S5-ETH-MULTISEG-TOPOLOGY-MIB.  Inherited by Avaya/Nortel/Bay/Synoptics switches and
           hubs.

           See documentation in SNMP::Info::SONMP for details.

   Device Subclasses
       These subclasses inherit from one or more classes to provide a common interface to data
       obtainable from network devices.

       All the required MIB files are included in the netdisco-mib package.  (See Above).

       SNMP::Info::Layer1
           Generic Layer1 Device subclass.

           See documentation in SNMP::Info::Layer1 for details.

           SNMP::Info::Layer1::Allied
               Subclass for Allied Telesis Repeaters / Hubs.

               Requires ATI-MIB

               See documentation in SNMP::Info::Layer1::Allied for details.

           SNMP::Info::Layer1::Asante
               Subclass for Asante 1012 Hubs.

               Requires ASANTE-HUB1012-MIB

               See documentation in SNMP::Info::Layer1::Asante for details.

           SNMP::Info::Layer1::Bayhub
               Subclass for Nortel/Bay hubs.  This includes System 5000, 100 series, 200 series,
               and probably more.

               See documentation in SNMP::Info::Layer1::Bayhub for details.

           SNMP::Info::Layer1::Cyclades
               Subclass for Cyclades/Avocent terminal servers.

               See documentation in SNMP::Info::Layer1::Cyclades for details.

           SNMP::Info::Layer1::S3000
               Subclass for Bay/Synoptics hubs.  This includes System 3000, 281X, and probably
               more.

               See documentation in SNMP::Info::Layer1::S3000 for details.

       SNMP::Info::Layer2
           Generic Layer2 Device subclass.

           See documentation in SNMP::Info::Layer2 for details.

           SNMP::Info::Layer2::3Com
               Subclass for L2 3Com Switches.

               See documentation in SNMP::Info::Layer2::3Com for details.

           SNMP::Info::Layer2::Adtran
               Subclass for Adtran devices.

               See documentation in SNMP::Info::Layer2::Adtran for details.

           SNMP::Info::Layer2::Aerohive
               Subclass for Aerohive / Extreme access points.

               See documentation in SNMP::Info::Layer2::Aerohive for details.

           SNMP::Info::Layer2::Airespace
               Subclass for Cisco (Airespace) wireless controllers.

               See documentation in SNMP::Info::Layer2::Airespace for details.

           SNMP::Info::Layer2::Aironet
               Class for Cisco Aironet wireless devices that run IOS.  See also
               SNMP::Info::Layer3::Aironet for Aironet devices that don't run IOS.

               See documentation in SNMP::Info::Layer2::Aironet for details.

           SNMP::Info::Layer2::Allied
               Allied Telesis switches.

               See documentation in SNMP::Info::Layer2::Allied for details.

           SNMP::Info::Layer2::Atmedia
               Subclass for atmedia encryptors.

               See documentation in SNMP::Info::Layer2::Atmedia for details.

           SNMP::Info::Layer2::Baystack
               Subclass for Avaya/Nortel/Bay Ethernet Switch/Baystack switches.  This includes
               303, 304, 350, 380, 410, 420, 425, 450, 460, 470 series, 2500 series, 4000 series,
               5000 series, Business Ethernet Switch (BES), Business Policy Switch (BPS), VSP
               7000 series, and probably others.

               See documentation in SNMP::Info::Layer2::Baystack for details.

           SNMP::Info::Layer2::C1900
               Subclass for Cisco Catalyst 1900 and 1900c Devices running CatOS.

               See documentation in SNMP::Info::Layer2::C1900 for details.

           SNMP::Info::Layer2::C2900
               Subclass for Cisco Catalyst 2900, 2950, 3500XL, and 3548 devices running IOS.

               See documentation in SNMP::Info::Layer2::C2900 for details.

           SNMP::Info::Layer2::Catalyst
               Subclass for Cisco Catalyst switches running CatOS.  These switches usually report
               a model number that starts with "wsc".   Note that this class does not support
               everything that has the name Catalyst.

               See documentation in SNMP::Info::Layer2::Catalyst for details.

           SNMP::Info::Layer2::Centillion
               Subclass for Nortel/Bay Centillion and 5000BH ATM switches.

               See documentation in SNMP::Info::Layer2::Centillion for details.

           SNMP::Info::Layer2::Cisco
               Generic Cisco subclass for layer 2 devices that are not yet supported in more
               specific subclasses and the base layer 2 Cisco class for other device specific
               layer 2 Cisco classes.

               See documentation in SNMP::Info::Layer2::Cisco for details.

           SNMP::Info::Layer2::CiscoSB
               Subclass for Cisco's "Small Business" product line, acquired from Linksys.  This
               currently comprises the Sx300/500 line of switches.

               See documentation in SNMP::Info::Layer2::CiscoSB for details.

           SNMP::Info::Layer2::Exinda
               Subclass for Exinda / GFI Network Orchestrator traffic shapers.

               See documentation in SNMP::Info::Layer2::Exinda for details.

           SNMP::Info::Layer2::HP
               Subclass for more recent HP Procurve Switches.

               Requires HP-ICF-OID and ENTITY-MIB downloaded from HP.

               See documentation in SNMP::Info::Layer2::HP for details.

           SNMP::Info::Layer2::HP4000
               Subclass for older HP Procurve Switches

               Requires HP-ICF-OID and ENTITY-MIB downloaded from HP.

               See documentation in SNMP::Info::Layer2::HP4000 for details.

           SNMP::Info::Layer2::HPVC
               Subclass for HP Virtual Connect Switches

               See documentation in SNMP::Info::Layer2::HPVC for details.

           SNMP::Info::Layer2::Kentrox
               Class for Kentrox DataSMART DSU/CSU.

               See documentation in SNMP::Info::Layer2::Kentrox for details.

           SNMP::Info::Layer2::N2270
               Subclass for Nortel 2270 wireless switches.

               See documentation in SNMP::Info::Layer2::N2270 for details.

           SNMP::Info::Layer2::NAP222x
               Subclass for Nortel 222x series wireless access points.

               See documentation in SNMP::Info::Layer2::NAP222x for details.

           SNMP::Info::Layer2::Netgear
               Subclass for Netgear switches

               See documentation in SNMP::Info::Layer2::Netgear for details.

           SNMP::Info::Layer2::Nexans
               Subclass for Nexans switches

               See documentation in SNMP::Info::Layer2::Nexans for details.

           SNMP::Info::Layer2::NWSS2300
               SNMP Interface to Avaya (Trapeze) Wireless Controllers

               See documentation in SNMP::Info::Layer2::NWSS2300 for details.

           SNMP::Info::Layer2::Orinoco
               Subclass for Orinoco/Proxim wireless access points.

               See documentation in SNMP::Info::Layer2::Orinoco for details.

           SNMP::Info::Layer2::Trapeze
               SNMP Interface to Juniper (Trapeze) Wireless Controllers

               See documentation in SNMP::Info::Layer2::Trapeze for details.

           SNMP::Info::Layer2::Sixnet
               SNMP Interface to Sixnet industrial switches

               See documentation in SNMP::Info::Layer2::Sixnet for details.

           SNMP::Info::Layer2::Ubiquiti
               SNMP Interface to Ubiquiti Access Points and other devices

               See documentation in SNMP::Info::Layer2::Ubiquiti for details.

           SNMP::Info::Layer2::ZyXEL_DSLAM
               Zyxel DSLAMs.  Need I say more?

               See documentation in SNMP::Info::Layer2::ZyXEL_DSLAM for details.

       SNMP::Info::Layer3
           Generic Layer3 and Layer2+3 Device subclass.

           See documentation in SNMP::Info::Layer3 for details.

           SNMP::Info::Layer3::Aironet
               Subclass for Cisco Aironet wireless access points (AP) not running IOS. These are
               usually older devices.

               Note SNMP::Info::Layer2::Aironet

               See documentation in SNMP::Info::Layer3::Aironet for details.

           SNMP::Info::Layer3::AlcatelLucent
               Alcatel-Lucent OmniSwitch Class.

               See documentation in SNMP::Info::Layer3::AlcatelLucent for details.

           SNMP::Info::Layer3::AlteonAD
               Subclass for Radware Alteon Series ADC switches and Nortel BladeCenter Layer2-3
               GbE Switch Modules.

               See documentation in SNMP::Info::Layer3::AlteonAD for details.

           SNMP::Info::Layer3::Altiga
               See documentation in SNMP::Info::Layer3::Altiga for details.

           SNMP::Info::Layer3::Arista
               See documentation in SNMP::Info::Layer3::Arista for details.

           SNMP::Info::Layer3::Aruba
               Subclass for Aruba wireless switches.

               See documentation in SNMP::Info::Layer3::Aruba for details.

           SNMP::Info::Layer3::ArubaCX
               SNMP Interface to L3 Devices running ArubaOS-CX

               See documentation in SNMP::Info::Layer3::ArubaCX for details.

           SNMP::Info::Layer3::BayRS
               Subclass for Avaya/Nortel/Bay Multiprotocol/BayRS routers.  This includes BCN,
               BLN, ASN, ARN, AN, 2430, and 5430 routers.

               See documentation in SNMP::Info::Layer3::BayRS for details.

           SNMP::Info::Layer3::BlueCoatSG
               Subclass for BlueCoat SG series proxy devices.

               See documentation in SNMP::Info::Layer3::BlueCoatSG for details.

           SNMP::Info::Layer3::C3550
               Subclass for Cisco Catalyst 3550,3540,3560 2/3 switches running IOS.

               See documentation in SNMP::Info::Layer3::C3550 for details.

           SNMP::Info::Layer3::C4000
               This class covers Catalyst 4000s and 4500s.

               See documentation in SNMP::Info::Layer3::C4000 for details.

           SNMP::Info::Layer3::C6500
               This class covers Catalyst 6500 series running CatOS or IOS, as well as Catalyst
               2960, 2970, 3750 and 3850 series, including blade switches CBS30x0 and CBS31x0
               series, all running IOS.

               See documentation in SNMP::Info::Layer3::C6500 for details.

           SNMP::Info::Layer3::CheckPoint
               Subclass for CheckPoint devices.

               See documentation in SNMP::Info::Layer3::CheckPoint for details.

           SNMP::Info::Layer3::Ciena
               Subclass for Ciena devices.

               See documentation in SNMP::Info::Layer3::Ciena for details.

           SNMP::Info::Layer3::Cisco
               This is a simple wrapper around layer 3 for IOS devices and the base layer 3 Cisco
               class for other device specific layer 3 Cisco classes.

               See documentation in SNMP::Info::Layer3::Cisco for details.

           SNMP::Info::Layer3::CiscoASA
               Subclass for Cisco Adaptive Security Appliances.

               See documentation in SNMP::Info::Layer3::CiscoASA for details.

           SNMP::Info::Layer3::CiscoFWSM
               Subclass for Cisco Firewall Services Modules.

               See documentation in SNMP::Info::Layer3::CiscoFWSM for details.

           SNMP::Info::Layer3::CiscoSwitch
               Base class for L3 Cisco switches.  See documentation in
               SNMP::Info::Layer3::CiscoSwitch for details.

           SNMP::Info::Layer3::Contivity
               Subclass for Avaya/Nortel Contivity/VPN Routers.

               See documentation in SNMP::Info::Layer3::Contivity for details.

           SNMP::Info::Layer3::Cumulus
               Subclass for Cumulus Networks Routers.

               See documentation in SNMP::Info::Layer3::Cumulus for details.

           SNMP::Info::Layer3::Dell
               Subclass for Dell PowerConnect switches. The IBM BladeCenter Gigabit Ethernet
               Switch Module and some Linksys switches also use this module based upon MIB
               support.

               See documentation in SNMP::Info::Layer3::Dell for details.

           SNMP::Info::Layer3::DLink
               Subclass for DLink devices.

               See documentation in SNMP::Info::Layer3::DLink for details.

           SNMP::Info::Layer3::Enterasys
               Subclass for Enterasys devices.

               See documentation in SNMP::Info::Layer3::Enterasys for details.

           SNMP::Info::Layer3::ERX
               Subclass for Juniper ERX switches.

               See documentation in SNMP::Info::Layer3::ERX for details.

           SNMP::Info::Layer3::Extreme
               Subclass for Extreme Networks switches.

               See documentation in SNMP::Info::Layer3::Extreme for details.

           SNMP::Info::Layer3::F5
               Subclass for F5 devices.

               See documentation in SNMP::Info::Layer3::F5 for details.

           SNMP::Info::Layer3::Force10
               Subclass for Force10 devices.

               See documentation in SNMP::Info::Layer3::Force10 for details.

           SNMP::Info::Layer3::Fortinet
               Subclass for Fortinet devices.

               See documentation in SNMP::Info::Layer3::Fortinet for details.

           SNMP::Info::Layer3::Foundry
               Subclass for Brocade (Foundry) Network devices.

               See documentation in SNMP::Info::Layer3::Foundry for details.

           SNMP::Info::Layer3::Genua
               Subclass for Genua security devices.

               See documentation in SNMP::Info::Layer3::Genua for details.

           SNMP::Info::Layer3::H3C
               SNMP Interface to Layer 3 Devices, H3C & HP A-series.

               See documentation in SNMP::Info::Layer3::H3C for details.

           SNMP::Info::Layer3::HP9300
               Subclass for HP network devices which Foundry Networks was the Original Equipment
               Manufacturer (OEM) such as the HP ProCurve 9300 and 6300 series.

               See documentation in SNMP::Info::Layer3::HP9300 for details.

           SNMP::Info::Layer3::Huawei
               SNMP Interface to Huawei Layer 3 switches and routers.

               See documentation in SNMP::Info::Layer3::Huawei for details.

           SNMP::Info::Layer3::IBMGbTor
               SNMP Interface to IBM Rackswitch (formerly Blade Network Technologies) network
               devices. Lenovo acquired these from IBM and is now selling them under the Lenovo
               brand.

               See documentation in SNMP::Info::Layer3::IBMGbTor for details.

           SNMP::Info::Layer3::Juniper
               Subclass for Juniper devices.

               See documentation in SNMP::Info::Layer3::Juniper for details.

           SNMP::Info::Layer3::Lantronix
               Subclass for Lantronix devices.

               See documentation in SNMP::Info::Layer3::Lantronix for details.

           SNMP::Info::Layer3::Lenovo
               Subclass for Lenovo switches running CNOS.

               See documentation in SNMP::Info::Layer3::Lenovo for details.

           SNMP::Info::Layer3::Microsoft
               Subclass for Generic Microsoft Routers running Microsoft Windows OS.

               See documentation in SNMP::Info::Layer3::Microsoft for details.

           SNMP::Info::Layer3::Mikrotik
               Subclass for Mikrotik devices running RouterOS.

               See documentation in SNMP::Info::Layer3::Mikrotik for details.

           SNMP::Info::Layer3::N1600
               Subclass for Avaya/Nortel Ethernet Routing Switch 1600 series.

               See documentation in SNMP::Info::Layer3::N1600 for details.

           SNMP::Info::Layer3::NetSNMP
               Subclass for host systems running Net-SNMP.

               See documentation in SNMP::Info::Layer3::NetSNMP for details.

           SNMP::Info::Layer3::Netscreen
               Subclass for Juniper NetScreen.

               See documentation in SNMP::Info::Layer3::Netscreen for details.

           SNMP::Info::Layer3::Nexus
               Subclass for Cisco Nexus devices running NX-OS.

               See documentation in SNMP::Info::Layer3::Nexus for details.

           SNMP::Info::Layer3::OneAccess
               Subclass for OneAccess routers.

               See documentation in SNMP::Info::Layer3::OneAccess for details.

           SNMP::Info::Layer3::PacketFront
               Subclass for PacketFront DRG series CPE.

               See documentation in SNMP::Info::Layer3::PacketFront for details.

           SNMP::Info::Layer3::PaloAlto
               Subclass for Palo Alto firewalls.

               See documentation in SNMP::Info::Layer3::PaloAlto for details.

           SNMP::Info::Layer3::Passport
               Subclass for Avaya/Nortel Ethernet Routing Switch/Passport 8000 series, Accelar,
               and VSP 9000 series switches.

               See documentation in SNMP::Info::Layer3::Passport for details.

           SNMP::Info::Layer3::Pf
               Subclass for FreeBSD-Based Firewalls using Pf /Pf Sense

               See documentation in SNMP::Info::Layer3::Pf for details.

           SNMP::Info::Layer3::Pica8
               Subclass for Pica8 devices.

               See documentation in SNMP::Info::Layer3::Pica8 for details.

           SNMP::Info::Layer3::Redlion
               Subclass for redlion routers.

               See documentation in SNMP::Info::Layer3::Redlion for details.

           SNMP::Info::Layer3::Scalance
               Subclass for Siemens Scalance devices.

               See documentation in SNMP::Info::Layer3::Scalance for details.

           SNMP::Info::Layer3::SonicWALL
               Subclass for generic SonicWALL devices.

               See documentation in SNMP::Info::Layer3::SonicWALL for details.

           SNMP::Info::Layer3::Steelfusion
               Subclass for Riverbed Steelfusion WAN optimization appliances.

               See documentation in SNMP::Info::Layer3::Steelfusion for details.

           SNMP::Info::Layer3::Steelhead
               Subclass for Riverbed Steelhead WAN optimization appliances.

               See documentation in SNMP::Info::Layer3::Steelhead for details.

           SNMP::Info::Layer3::SteelheadEx
               Subclass for Riverbed SteelheadEx WAN optimization appliances.

               See documentation in SNMP::Info::Layer3::SteelheadEx for details.

           SNMP::Info::Layer3::Sun
               Subclass for Generic Sun Routers running SunOS.

               See documentation in SNMP::Info::Layer3::Sun for details.

           SNMP::Info::Layer3::Tasman
               Subclass for Avaya Secure Routers.

               See documentation in SNMP::Info::Layer3::Tasman for details.

           SNMP::Info::Layer3::Teltonika
               Subclass for Teltonika RUT9xx series routers.

               See documentation in SNMP::Info::Layer3::Teltonika for details.

           SNMP::Info::Layer3::Timetra
               Alcatel-Lucent SR Class.

               See documentation in SNMP::Info::Layer3::Timetra for details.

           SNMP::Info::Layer3::VyOS
               Subclass for VyOS routers.

               See documentation in SNMP::Info::Layer3::VyOS for details.

           SNMP::Info::Layer3::VMware
               Subclass for VMware ESXi hosts.

               See documentation in SNMP::Info::Layer3::VMware for details.

           SNMP::Info::Layer3::Whiterabbit
               Subclass for whiterabbit devices.

               See documentation in SNMP::Info::Layer3::Whiterabbit for details.

       SNMP::Info::Layer7
           Generic Layer7 Devices.

           See documentation in SNMP::Info::Layer7 for details.

           SNMP::Info::Layer7::APC
               Subclass for APC UPS devices.

               See documentation in SNMP::Info::Layer7::APC for details.

           SNMP::Info::Layer7::Arbor
               Subclass for Arbor appliances.

               See documentation in SNMP::Info::Layer7::Arbor for details.

           SNMP::Info::Layer7::CiscoIPS
               Subclass for Cisco IPS devices.

               See documentation in SNMP::Info::Layer7::CiscoIPS for details.

           SNMP::Info::Layer7::Gigamon
               Subclass for Gigamon devices.

               See documentation in SNMP::Info::Layer7::Gigamon for details.

           SNMP::Info::Layer7::Liebert
               Subclass for Liebert devices.

               See documentation in SNMP::Info::Layer7::Liebert for details.

           SNMP::Info::Layer7::Neoteris
               Subclass for Pulse Secure / Juniper SSL VPN appliances.

               See documentation in SNMP::Info::Layer7::Neoteris for details.

           SNMP::Info::Layer7::Netscaler
               Subclass for Citrix Netscaler appliances.

               See documentation in SNMP::Info::Layer7::Netscaler for details.

Thanks

       Thanks for testing and coding help (in no particular order) to : Alexander Barthel, Andy
       Ford, Alexander Hartmaier, Andrew Herrick, Alex Kramarov, Bernhard Augenstein, Bradley
       Baetz, Brian Chow, Brian Wilson, Carlos Vicente, Dana Watanabe, David Pinkoski, David
       Sieborger, Douglas McKeown, Greg King, Ivan Auger, Jean-Philippe Luiggi, Jeroen van Ingen,
       Justin Hunter, Kent Hamilton, Matthew Tuttle, Michael Robbert, Mike Hunter, Nicolai Petri,
       Ralf Gross, Robert Kerr, Nick Nauwelaerts and people listed on the Netdisco README!

USAGE

   Constructor
       new()
           Creates a new object and connects via SNMP::Session.

            my $info = new SNMP::Info( 'Debug'             => 1,
                                       'AutoSpecify'       => 1,
                                       'BigInt'            => 1,
                                       'BulkWalk'          => 1,
                                       'BulkRepeaters'     => 20,
                                       'IgnoreNetSNMPConf' => 1,
                                       'LoopDetect'        => 1,
                                       'DestHost'          => 'myrouter',
                                       'Community'         => 'public',
                                       'Version'           => 2,
                                       'MibDirs'           => ['dir1','dir2','dir3'],
                                     ) or die;

           SNMP::Info Specific Arguments :

           AutoSpecify
               Returns an object of a more specific device class

               (default 0, which means "off")

           BigInt
               Return Math::BigInt objects for 64 bit counters.  Sets on a global scope, not
               object.

               (default 0, which means "off")

           BulkWalk
               Set to 0 to turn off BULKWALK commands for SNMPv2 connections.

               Note that BULKWALK is turned off for Net-SNMP versions 5.1.x because of a bug.

               (default 1, which means "on")

           BulkRepeaters
               Set number of MaxRepeaters for BULKWALK operation.  See "perldoc SNMP" ->
               bulkwalk() for more info.

               (default 20)

           LoopDetect
               Detects looping during getnext table column walks by comparing IIDs for each
               instance.  A loop is detected if the same IID is seen more than once and the walk
               is aborted.  Note:  This will not detect loops during a bulkwalk operation, Net-
               SNMP's internal bulkwalk function must detect the loop.

               Set to 0 to turn off loop detection.

               (default 1, which means "on")

           IgnoreNetSNMPConf
               Net-SNMP version 5.0 and higher read configuration files, snmp.conf or
               snmp.local.conf, from /etc/snmp, /usr/share/snmp, /usr/lib(64)/snmp, or
               $HOME/.snmp and uses those settings to automatically parse MIB files, etc.

               Set to 1 "on" to ignore Net-SNMP configuration files by overriding the
               "SNMPCONFPATH" environmental variable during object initialization. Note: MibDirs
               must be defined or Net-SNMP will not be able to load MIBs and initialize the
               object.

               (default 0, which means "off")

           Debug
               Prints Lots of debugging messages.  Pass 2 to print even more debugging messages.

               (default 0, which means "off")

           DebugSNMP
               Set $SNMP::debugging level for Net-SNMP.

               See SNMP for more details.

           MibDirs
               Array ref to list of directories in which to look for MIBs.  Note this will be in
               addition to the ones setup in snmp.conf at the system level.

               (default use net-snmp settings only)

           RetryNoSuch
               When using SNMP Version 1, try reading values even if they come back as "no such
               variable in this MIB".  Set to false if so desired.  This feature lets you read
               SNMPv2 data from an SNMP version 1 connection, and should probably be left on.

               (default 1, which means "on")

           Session
               SNMP::Session object to use instead of connecting on own.

               (default creates session automatically)

           Offline
               Causes SNMP::Info to avoid network activity and return data only from its cache.
               If you ask for something not in the cache, an error is thrown.  See also the
               "cache()" and "offline()" methods.

               (default 0, which means "online")

           Cache
               Pass in a HashRef to prime the cache of retrieved data. Useful for creating an
               instance in "Offline" mode from a previously dumped cache. See also the "cache()"
               method to retrieve a cache after running actial queries.

           OTHER
               All other arguments are passed to SNMP::Session.

               See SNMP::Session for a list of other possible arguments.

           A Note about the wrong Community string or wrong SNMP Version:

           If a connection is using the wrong community string or the wrong SNMP version, the
           creation of the object will not fail.  The device still answers the call on the SNMP
           port, but will not return information.  Check the error() method after you create the
           device object to see if there was a problem in connecting.

           A note about SNMP Versions :

           Some older devices don't support SNMP version 2, and will not return anything when a
           connection under Version 2 is attempted.

           Some newer devices will support Version 1, but will not return all the data they might
           have if you had connected under Version 1.

           When trying to get info from a new device, you may have to try version 2 and then
           fallback to version 1.

       update()
           Replace the existing session with a new one with updated values, without re-
           identifying the device.  The only supported changes are to Community or Context.

           Clears the object cache.

           This is useful, e.g., when a device supports multiple contexts (via changes to the
           Community string, or via the SNMPv3 Context parameter), but a context that you want to
           access does not support the objects (e.g., "sysObjectID", "sysDescr") that we use to
           identify the device.

   Data is Cached
       Methods and subroutines requesting data from a device will only load the data once, and
       then return cached versions of that data.

       Run $info->load_METHOD() where method is something like 'i_name' to reload data from a
       method.

       Run $info->clear_cache() to clear the cache to allow reload of both globals and table
       methods.

       The cache can be retrieved or set using the $info->cache() method. This works together
       with the "Offline" option.

   Object Scalar Methods
       These are for package related data, not directly supplied from SNMP.

       $info->clear_cache()
           Clears the cached data.  This includes GLOBALS data and TABLE METHOD data.

       $info->debug(1)
           Returns current debug status, and optionally toggles debugging info for this object.

       $info->offline([1|0])
           Returns if offline mode is currently turned on for this object.

           Optionally sets the Offline parameter.

       $info->cache([new_cache])
           Returns a HashRef of all cached data in this object. There will be a "store" key for
           table data and then one key for each leaf.

           Optionally sets the cache parameters if passed a HashRef.

       $info->bulkwalk([1|0])
           Returns if bulkwalk is currently turned on for this object.

           Optionally sets the bulkwalk parameter.

       $info->loopdetect([1|0])
           Returns if loopdetect is currently turned on for this object.

           Optionally sets the loopdetect parameter.

       $info->device_type()
           Returns the Subclass name for this device.  "SNMP::Info" is returned if no more
           specific class is available.

           First the device is checked for Layer 3 support and a specific subclass, then Layer 2
           support and subclasses are checked.

           This means that Layer 2 / 3  switches and routers will fall under the
           SNMP::Info::Layer3 subclasses.

           If the device still can be connected to via SNMP::Info, then SNMP::Info is returned.

       $info->error(no_clear)
           Returns Error message if there is an error, or undef if there is not.

           Reading the error will clear the error unless you set the no_clear flag.

       $info->has_layer(3)
           Returns non-zero if the device has the supplied layer in the OSI Model

           Returns if the device doesn't support the layers() call.

       $info->snmp_comm()
           Returns SNMP Community string used in connection.

       $info->snmp_ver()
           Returns SNMP Version used for this connection

       $info->specify()
           Returns an object of a more-specific subclass.

            my $info = new SNMP::Info(...);
            # Returns more specific object type
            my $specific = $info->specify();

           Usually this method is called internally from new(AutoSpecify => 1)

           See device_type() entry for how a subclass is chosen.

       $info->cisco_comm_indexing()
           Returns 0.  Is an overridable method used for vlan indexing for snmp calls on certain
           Cisco devices.

           See <ftp://ftp.cisco.com/pub/mibs/supportlists/wsc5000/wsc5000-communityIndexing.html>

   GLOBALS (Scalar Methods)
       These are methods to return scalar data from RFC1213.

       Some subset of these is probably available for any network device that speaks SNMP.

       $info->uptime()
           Uptime in hundredths of seconds since device became available.

           ("sysUpTime")

       $info->contact()
           ("sysContact")

       $info->name()
           ("sysName")

       $info->location()
           ("sysLocation")

       $info->layers()
           This returns a binary encoded string where each digit represents a layer of the OSI
           model served by the device.

               eg: 01000010  means layers 2 (physical) and 7 (Application)
                             are served.

           Note:  This string is 8 digits long.

           See $info->has_layer()

           ("sysServices")

       $info->ports()
           Number of interfaces available on this device.

           Not too useful as the number of SNMP interfaces usually does not correspond with the
           number of physical ports

           ("ifNumber")

       $info->ipforwarding()
           The indication of whether the entity is acting as an IP gateway

           Returns either forwarding or not-forwarding

           ("ipForwarding")

   Table Methods
       Each of these methods returns a hash_reference to a hash keyed on the interface index in
       SNMP.

       Example : $info->interfaces() might return

           { '1.12' => 'FastEthernet/0',
             '2.15' => 'FastEthernet/1',
             '9.99' => 'FastEthernet/2'
           }

       The key is what you would see if you were to do an snmpwalk, and in some cases changes
       between reboots of the network device.

   Partial Table Fetches
       If you want to get only a part of an SNMP table or a single instance from the table and
       you know the IID for the part of the table that you want, you can specify it in the call:

           $local_routes = $info->ipr_route('192.168.0');

       This will only fetch entries in the table that start with 192.168.0, which in this case
       are routes on the local network.

       Remember that you must supply the partial IID (a numeric OID).

       Partial table results are not cached.

   Interface Information
       $info->interfaces()
           This methods is overridden in each subclass to provide a mapping between the Interface
           Table Index (iid) and the physical port name.

       $info->if_ignore()
           Returns a reference to a hash where key values that exist are interfaces to ignore.

           Ignored interfaces are ones that are usually not physical ports or Virtual Lans
           (VLANs) such as the Loopback interface, or the CPU interface.

       $info->bulkwalk_no()
           Returns 0.  Is an overridable method used for turn off bulkwalk for the device class.

       $info->i_index()
           Default SNMP IID to Interface index.

           ("ifIndex")

       $info->i_description()
           Description of the interface. Usually a little longer single word name that is both
           human and machine friendly.  Not always.

           ("ifDescr")

       $info->i_type()
           Interface type, such as Vlan, Ethernet, Serial

           ("ifType")

       $info->i_mtu()
           INTEGER. Interface MTU value.

           ("ifMtu")

       $info->i_speed()
           Speed of the link, human format.  See munge_speed() later in document for details.

           ("ifSpeed", "ifHighSpeed" if necessary)

       $info->i_speed_raw()
           Speed of the link in bits per second without munging.  If i_speed_high is available it
           will be used and multiplied by 1_000_000.

           ("ifSpeed", "ifHighSpeed" if necessary)

       $info->i_speed_high()
           Speed of a high-speed link, human format.  See munge_highspeed() later in document for
           details.  You should not need to call this directly, as i_speed() will call it if it
           needs to.

           ("ifHighSpeed")

       $info->i_mac()
           MAC address of the interface.  Note this is just the MAC of the port, not anything
           connected to it.

           ("ifPhysAddress")

       $info->i_up()
           Link Status of the interface.  Typical values are 'up' and 'down'.

           ("ifOperStatus")

       $info->i_up_admin()
           Administrative status of the port.  Typical values are 'enabled' and 'disabled'.

           ("ifAdminStatus")

       $info->i_lastchange()
           The value of "sysUpTime" when this port last changed states (up,down).

           ("ifLastChange")

       $info->i_name()
           Interface Name field.  Supported by a smaller subset of devices, this fields is often
           human set.

           ("ifName")

       $info->i_alias()
           Interface Name field.  For certain devices this is a more human friendly form of
           i_description().  For others it is a human set field like i_name().

           ("ifAlias")

   Interface Statistics
       $info->i_octet_in(), $info->i_octets_out(), $info->i_octet_in64(), $info->i_octets_out64()
           Bandwidth.

           Number of octets sent/received on the interface including framing characters.

           64 bit version may not exist on all devices.

           NOTE: To manipulate 64 bit counters you need to use Math::BigInt, since the values are
           too large for a normal Perl scalar.   Set the global $SNMP::Info::BIGINT to 1 , or
           pass the BigInt value to new() if you want SNMP::Info to do it for you.

           ("ifInOctets") ("ifOutOctets") ("ifHCInOctets") ("ifHCOutOctets")

       $info->i_errors_in(), $info->i_errors_out()
           Number of packets that contained an error preventing delivery.  See "IF-MIB" for more
           info.

           ("ifInErrors") ("ifOutErrors")

       $info->i_pkts_ucast_in(), $info->i_pkts_ucast_out(), $info->i_pkts_ucast_in64(),
       $info->i_pkts_ucast_out64()
           Number of packets not sent to a multicast or broadcast address.

           64 bit version may not exist on all devices.

           ("ifInUcastPkts") ("ifOutUcastPkts") ("ifHCInUcastPkts") ("ifHCOutUcastPkts")

       $info->i_pkts_nucast_in(), $info->i_pkts_nucast_out(),
           Number of packets sent to a multicast or broadcast address.

           These methods are deprecated by i_pkts_multi_in() and i_pkts_bcast_in() according to
           "IF-MIB".  Actual device usage may vary.

           ("ifInNUcastPkts") ("ifOutNUcastPkts")

       $info->i_pkts_multi_in() $info->i_pkts_multi_out(), $info->i_pkts_multi_in64(),
       $info->i_pkts_multi_out64()
           Number of packets sent to a multicast address.

           64 bit version may not exist on all devices.

           ("ifInMulticastPkts") ("ifOutMulticastPkts") ("ifHCInMulticastPkts")
           ("ifHCOutMulticastPkts")

       $info->i_pkts_bcast_in() $info->i_pkts_bcast_out(), $info->i_pkts_bcast_in64()
       $info->i_pkts_bcast_out64()
           Number of packets sent to a broadcast address on an interface.

           64 bit version may not exist on all devices.

           ("ifInBroadcastPkts") ("ifOutBroadcastPkts") ("ifHCInBroadcastPkts")
           ("ifHCOutBroadcastPkts")

       $info->i_discards_in() $info->i_discards_out()
           "The number of inbound packets which were chosen to be discarded even though no errors
           had been detected to prevent their being deliverable to a higher-layer protocol.  One
           possible reason for discarding such a packet could be to free up buffer space."
           ("IF-MIB")

           ("ifInDiscards") ("ifOutDiscards")

       $info->i_bad_proto_in()
           "For packet-oriented interfaces, the number of packets received via the interface
           which were discarded because of an unknown or unsupported protocol.  For character-
           oriented or fixed-length interfaces that support protocol multiplexing the number of
           transmission units received via the interface which were discarded because of an
           unknown or unsupported protocol.  For any interface that does not support protocol
           multiplexing, this counter will always be 0."

           ("ifInUnknownProtos")

       $info->i_qlen_out()
           "The length of the output packet queue (in packets)."

           ("ifOutQLen")

       $info->i_specific()
           See "IF-MIB" for full description

           ("ifSpecific")

   IPv4 Address Table
       Each entry in this table is an IPv4 address in use on this device.  Usually this is
       implemented in Layer3 Devices. These methods try the deprecated IPv4 address table
       "IP-MIB::ipAddrTable" first due to its prevalence and will try the current
       "IP-MIB::ipAddressTable" if it doesn't return any results.  "IP-MIB::ipAddressTable"
       results are filtered to only return IPv4 unicast addresses and modified to match the
       return format of the older table for backwards compatibility.

       See documentation in SNMP::Info::IPv6 for IPv6 Address Table.

       $info->ip_index()
           Maps the IPv4 addresses to the interface index

           ("ipAdEntIfIndex") or filtered and index modified ("ipAddressIfIndex")

       $info->ip_table()
           Maps the Table to the IPv4 address

           ("ipAdEntAddr") or address extracted from ("ipAddressIfIndex")

       $info->ip_netmask()
           Gives netmask setting for IPv4 table entry.

           ("ipAdEntNetMask") or netmask calculated from ("ipAddressPrefix")

       $info->ip_broadcast()
           Gives the value of the least-significant bit in the IPv4 broadcast address either 1 or
           0.

           ("ipAdEntBcastAddr"), there is no equivalent from the "IP-MIB::ipAddressTable"

   IP Routing Table
       $info->ipr_route()
           The route in question.  A value of 0.0.0.0 is the default gateway route.

           ("ipRouteDest")

       $info->ipr_if()
           The interface (IID) that the route is on.  Use interfaces() to map.

           ("ipRouteIfIndex")

       $info->ipr_1()
           Primary routing metric for this route.

           ("ipRouteMetric1")

       $info->ipr_2()
           If metrics are not used, they should be set to -1

           ("ipRouteMetric2")

       $info->ipr_3()
           ("ipRouteMetric3")

       $info->ipr_4()
           ("ipRouteMetric4")

       $info->ipr_5()
           ("ipRouteMetric5")

       $info->ipr_dest()
           From RFC1213:

             "The IP address of the next hop of this route.
             (In the case of a route bound to an interface
             which is realized via a broadcast media, the value
             of this field is the agent's IP address on that
             interface.)"

           ("ipRouteNextHop")

       $info->ipr_type()
           From RFC1213:

               other(1),        -- none of the following
               invalid(2),      -- an invalidated route
                                -- route to directly
               direct(3),       -- connected (sub-)network
                                -- route to a non-local
               indirect(4)      -- host/network/sub-network

                 "The type of route.  Note that the values
                 direct(3) and indirect(4) refer to the notion of
                 direct and indirect routing in the IP
                 architecture.

                 Setting this object to the value invalid(2) has
                 the effect of invalidating the corresponding entry
                 in the ipRouteTable object.  That is, it
                 effectively disassociates the destination
                 identified with said entry from the route
                 identified with said entry.  It is an
                 implementation-specific matter as to whether the
                 agent removes an invalidated entry from the table.
                 Accordingly, management stations must be prepared
                 to receive tabular information from agents that
                 corresponds to entries not currently in use.
                 Proper interpretation of such entries requires
                 examination of the relevant ipRouteType object."

           ("ipRouteType")

       $info->ipr_proto()
           From RFC1213:

               other(1),       -- none of the following
                               -- non-protocol information,
                               -- e.g., manually configured
               local(2),       -- entries
                               -- set via a network
               netmgmt(3),     -- management protocol
                               -- obtained via ICMP,
               icmp(4),        -- e.g., Redirect
                               -- the remaining values are
                               -- all gateway routing
                               -- protocols
               egp(5),
               ggp(6),
               hello(7),
               rip(8),
               is-is(9),
               es-is(10),
               ciscoIgrp(11),
               bbnSpfIgp(12),
               ospf(13),
               bgp(14)

           ("ipRouteProto")

       $info->ipr_age()
           Seconds since route was last updated or validated.

           ("ipRouteAge")

       $info->ipr_mask()
           Subnet Mask of route. 0.0.0.0 for default gateway.

           ("ipRouteMask")

       $info->ipr_info()
           Reference to MIB definition specific to routing protocol.

           ("ipRouteInfo")

   Topology Information
       Based upon the manufacturer and software version devices may support some combination of
       Layer 2 topology protocol information.  SNMP::Info supports querying Link Layer Discovery
       Protocol (LLDP), Cisco Discovery Protocol (CDP), SynOptics/Bay/Nortel/Avaya Network
       Management Protocol (SONMP), Foundry/Brocade Discovery Protocol (FDP), Extreme Discovery
       Protocol (EDP), and Alcatel Mapping Adjacency Protocol (AMAP).

       For protocol specific information and implementation:

       AMAP: See SNMP::Info::AMAP for details.
       CDP: See SNMP::Info::CDP for details.
       EDP: See SNMP::Info::EDP for details.
       FDP: See SNMP::Info::FDP for details.
       LLDP: See SNMP::Info::LLDP for details.
       SONMP: See SNMP::Info::SONMP for details.

       Topology Capabilities

       $info->has_topo()
           Reports Layer 2 topology protocols which are supported and running on a device.

           Returns either a reference to an array of protocols, possible values being: "lldp",
           "cdp", "sonmp", "fdp", "edp", "amap" or "undef" if no protocols are supported or
           running.

       Common Topology Table Information

       The common topology table methods below will query the device for information from the
       specified topology protocols and return a single hash combining all information. As a
       result, there may be identical topology information returned from the two protocols
       causing duplicate entries.  It is the calling program's responsibility to identify any
       duplicate entries and remove duplicates if necessary.  If it is necessary to understand
       which protocol provided the information, utilize the protocol specific methods directly
       rather than the generic methods.

       The methods support partial table fetches by providing a partial as the first argument.

       If a reference to an array is provided as the second argument, those protocols will be
       queried for information.  The supported array values are: "lldp", "cdp", "sonmp", "fdp",
       "edp", "amap".

       If nothing is passed in as the second argument, the methods will call has_topo() to
       determine supported and running topology protocols on the device.

       $info->c_ip(partial, topology_protocol_arrayref)
           Returns reference to hash.  Key: iid, Value: remote IPv4 address

           If multiple entries exist with the same local port, c_if(), with the same IPv4
           address, c_ip(), it may be a duplicate entry.

           If multiple entries exist with the same local port, c_if(), with different IPv4
           addresses, c_ip(), there is either a device in between two or more devices utilizing a
           different topology protocol or multiple devices which are not directly connected.

           Use the protocol specific methods to dig deeper.

       $info->c_if(partial, topology_protocol_arrayref)
           Returns reference to hash.  Key: iid, Value: local device port (interfaces)

       $info->c_port(partial, topology_protocol_arrayref)
           Returns reference to hash. Key: iid, Value: remote port (interfaces)

       $info->c_id(partial, topology_protocol_arrayref)
           Returns reference to hash. Key: iid, Value: string value used to identify the chassis
           component associated with the remote system.

           Note: SONMP does not return this information.

       $info->c_platform(partial, topology_protocol_arrayref)
           Returns reference to hash.  Key: iid, Value: Remote Device Type

           Note:  EDP does not provide this information.  LLDP uses ("lldpRemSysDesc") or
           "lldp_rem_sysname" as the closest match.

       $info->c_cap(partial, topology_protocol_arrayref)
           Returns reference to hash of arrays.  Key: iid, Value: Array of capabilities supported
           by the device.  See the specific protocol class for string values which could be
           elements within the array.

           Note:  Only CDP and LLDP support this method.

SETTING DATA VIA SNMP

       This section explains how to use SNMP::Info to do SNMP Set operations.

       $info->set_METHOD($value)
           Sets the global METHOD to value.  Assumes that iid is .0

           Returns if failed, or the return value from SNMP::Session::set() (snmp_errno)

            $info->set_location("Here!");

       $info->set_METHOD($value,$iid)
           Table Methods. Set iid of method to value.

           Returns if failed, or the return value from SNMP::Session::set() (snmp_errno)

            # Disable a port administratively
            my %if_map = reverse %{$info->interfaces()}
            $info->set_i_up_admin('down', $if_map{'FastEthernet0/0'})
               or die "Couldn't disable the port. ",$info->error(1);

       NOTE: You must be connected to your device with a "ReadWrite" community string in order
       for set operations to work.

       NOTE: This will only set data listed in %FUNCS and %GLOBALS.  For data acquired from
       overridden methods (subroutines) specific set_METHOD() subroutines will need to be added
       if they haven't been already.

Quiet Mode

       SNMP::Info will not chirp anything to STDOUT unless there is a serious error (in which
       case it will probably die).

       To get lots of debug info, set the Debug flag when calling new() or call $info->debug(1);

       When calling a method check the return value.  If the return value is undef then check
       $info->error()

       Beware, calling $info->error() clears the error.

        my $name = $info->name() or die "Couldn't get sysName!" . $name->error();

EXTENDING SNMP::INFO

       To support a new class (vendor or platform) of device, add a Perl package with the data
       structures and methods listed below.

       If this seems a little scary, then the SNMP::Info developers are usually happy to accept
       the SNMP data from your device and make an attempt at the class themselves. Usually a
       "beta" release will go to CPAN for you to verify the implementation.

   Gathering MIB data for SNMP::Info Developers
       The preference is to open a pull request in the github project. This allows all developers
       to have visibility into the request.  Please include pointers to the applicable platform
       MIBs.  For development we will need an "snmpwalk" of the device.  There is a tool now
       included in the SNMP::Info distribution to help with this task, although you'll most
       likely need to download the distribution from CPAN as it's included in the
       ""contrib/util"" directory.

       The utility is named "make_snmpdata.pl". Run it with a command line like:

        ./make_snmpdata.pl -c community -i -d device_ip \
         -m /home/netdisco-mibs/rfc:/home/netdisco-mibs/net-snmp:/home/netdisco-mibs/dir3 \
         SNMPv2-MIB IF-MIB EtherLike-MIB BRIDGE-MIB Q-BRIDGE-MIB ENTITY-MIB \
         POWER-ETHERNET-MIB IPV6-MIB LLDP-MIB DEVICE-SPECIFIC-MIB-NAME(s) > output.txt

       This will print to the file every MIB entry with data in a format that the developers can
       use to emulate read operations without needing access to the device.  Preference would be
       to mask any sensitive data in the output, zip the file, and attach it to the github pull
       request. However, if you do not feel comfortable uploading the output to the tracker you
       could e-mail it to the developer that has claimed the ticket.

   Data Structures required in new Subclass
       A class inheriting this class must implement these data structures :

       $INIT
           Used to flag if the MIBs have been loaded yet.

       %GLOBALS
           Contains a hash in the form ( method_name => SNMP MIB leaf name ) These are scalar
           values such as name, uptime, etc.

           To resolve MIB leaf name conflicts between private MIBs, you may prefix the leaf name
           with the MIB replacing each - (dash) and : (colon) with an _ (underscore).  For
           example, ALTEON_TIGON_SWITCH_MIB__agSoftwareVersion would be used as the hash value
           instead of the net-snmp notation ALTEON-TIGON-SWITCH-MIB::agSoftwareVersion.

           When choosing the name for the methods, be aware that other new Sub Modules might
           inherit this one to get it's features.  Try to choose a prefix for methods that will
           give it's own name space inside the SNMP::Info methods.

       %FUNCS
           Contains a hash in the form ( method_name => SNMP MIB leaf name) These are table
           entries, such as the "ifIndex"

           To resolve MIB leaf name conflicts between private MIBs, you may prefix the leaf name
           with the MIB replacing each - (dash) and : (colon) with an _ (underscore).  For
           example, ALTEON_TS_PHYSICAL_MIB__agPortCurCfgPortName would be used as the hash value
           instead of the net-snmp notation ALTEON-TS-PHYSICAL-MIB::agPortCurCfgPortName.

       %MIBS
           A list of each mib needed.

               ('MIB-NAME' => 'itemToTestForPresence')

           The value for each entry should be a MIB object to check for to make sure that the MIB
           is present and has loaded correctly.

           $info->init() will throw an exception if a MIB does not load.

       %MUNGE
           A map between method calls (from %FUNCS or %GLOBALS) and subroutine methods.  The
           subroutine called will be passed the data as it gets it from SNMP and it should return
           that same data in a more human friendly format.

           Sample %MUNGE:

            (my_ip     => \&munge_ip,
             my_mac    => \&munge_mac,
             my_layers => \&munge_dec2bin
            )

   Sample Subclass
       Let's make a sample Layer 2 Device subclass.  This class will inherit the Cisco Vlan
       module as an example.

       ----------------------- snip --------------------------------

        # SNMP::Info::Layer2::Sample

        package SNMP::Info::Layer2::Sample;

        $VERSION = 0.1;

        use strict;
        use warnings;

        use Exporter;
        use SNMP::Info::Layer2;
        use SNMP::Info::CiscoVTP;

        @SNMP::Info::Layer2::Sample::ISA = qw/SNMP::Info::Layer2
                                              SNMP::Info::CiscoVTP Exporter/;
        @SNMP::Info::Layer2::Sample::EXPORT_OK = qw//;

        our ($VERSION, %FUNCS, %GLOBALS, %MIBS, %MUNGE, $AUTOLOAD, $INIT, $DEBUG);

        %MIBS    = (%SNMP::Info::Layer2::MIBS,
                    %SNMP::Info::CiscoVTP::MIBS,
                    'SUPER-DOOPER-MIB'  => 'supermibobject',
                   );

        %GLOBALS = (%SNMP::Info::Layer2::GLOBALS,
                    %SNMP::Info::CiscoVTP::GLOBALS,
                    'name'              => 'supermib_supername',
                    'favorite_color'    => 'supermib_fav_color_object',
                    'favorite_movie'    => 'supermib_fav_movie_val',
                    );

        %FUNCS   = (%SNMP::Info::Layer2::FUNCS,
                    %SNMP::Info::CiscoVTP::FUNCS,
                    # Super Dooper MIB - Super Hero Table
                    'super_hero_index'  => 'SuperHeroIfIndex',
                    'super_hero_name'   => 'SuperHeroIfName',
                    'super_hero_powers' => 'SuperHeroIfPowers',
                   );

        %MUNGE   = (%SNMP::Info::Layer2::MUNGE,
                    %SNMP::Info::CiscoVTP::MUNGE,
                    'super_hero_powers' => \&munge_powers,
                   );

        # Override uptime() method from %SNMP::Info::GLOBALS
        sub uptime {
            my $sample = shift;

            my $name   = $sample->name();

            # this is silly but you get the idea
            return '600' if defined $name ;
        }

        # Create our own munge function
        sub munge_powers {
            my $power = shift;

            # Take the returned obscure value and return something useful.
            return 'Fire' if $power =~ /reallyhot/i;
            return 'Ice'  if $power =~ /reallycold/i;

            # Else
            return $power;
        }

        # Copious Documentation here!!!
        =head1 NAME
        =head1 AUTHOR
        =head1 SYNOPSIS
        =head1 DESCRIPTION
        =head2 Inherited Classes
        =head2 Required MIBs
        =head1 GLOBALS
        =head2 Overrides
        =head1 TABLE METHODS
        =head2 Overrides
        =cut

        1; # don't forget this line
       ----------------------- snip --------------------------------

SNMP::INFO INTERNALS

   Object Namespace
       Internal data is stored with bareword keys. For example $info->{debug}

       SNMP Data is stored or marked cached with keys starting with an underscore.  For example
       $info->{_name} is the cache for $info->name().

       Cached Table data is stored in $info->store() and marked cached per above.

   Package Globals
       These set the default value for an object upon creation.

       $DEBUG
           Default 0.  Sends copious debug info to stdout.  This global sets the object's debug
           status in new() unless 'Debug' argument passed in new().  Change objects' debug status
           with $info->debug().

       $BIGINT
           Default 0.   Set to true to have 64 bit counters return Math::BigInt objects instead
           of scalar string values.  See note under Interface Statistics about 64 bit values.

       $NOSUCH
           Default 1.  Set to false to disable RetryNoSuch option for SNMP::Session.  Or see
           method in new() to do it on an object scope.

       $REPEATERS
           Default 20.  MaxRepeaters for BULKWALK operations.  See "perldoc SNMP" for more info.
           Can change by passing "BulkRepeaters" option in new()

   Data Munging Callback Subroutines
       munge_speed()
           Makes human friendly speed ratings using %SPEED_MAP.

            %SPEED_MAP = (
                           '56000'      => '56 kbps',
                           '64000'      => '64 kbps',
                           '115000'     => '115 kbps',
                           '1500000'    => '1.5 Mbps',
                           '1536000'    => 'T1',
                           '1544000'    => 'T1',
                           '2000000'    => '2.0 Mbps',
                           '2048000'    => '2.048 Mbps',
                           '3072000'    => 'Dual T1',
                           '3088000'    => 'Dual T1',
                           '4000000'    => '4.0 Mbps',
                           '10000000'   => '10 Mbps',
                           '11000000'   => '11 Mbps',
                           '16000000'   => '16 Mbps',
                           '16777216'   => '16 Mbps',
                           '20000000'   => '20 Mbps',
                           '44210000'   => 'T3',
                           '44736000'   => 'T3',
                           '45000000'   => '45 Mbps',
                           '45045000'   => 'DS3',
                           '46359642'   => 'DS3',
                           '51850000'   => 'OC-1',
                           '54000000'   => '54 Mbps',
                           '64000000'   => '64 Mbps',
                           '100000000'  => '100 Mbps',
                           '149760000'  => 'ATM on OC-3',
                           '155000000'  => 'OC-3',
                           '155519000'  => 'OC-3',
                           '155520000'  => 'OC-3',
                           '200000000'  => '200 Mbps',
                           '400000000'  => '400 Mbps',
                           '599040000'  => 'ATM on OC-12',
                           '622000000'  => 'OC-12',
                           '622080000'  => 'OC-12',
                           '1000000000' => '1.0 Gbps',
                           '2000000000' => '2.0 Gbps',
                           '2488000000' => 'OC-48',
                        )

           Note: high speed interfaces (usually 1 Gbps or faster) have their link speed in
           "ifHighSpeed". i_speed() automatically determines whether to use "ifSpeed" or
           "ifHighSpeed"; if the latter is used, the value is munged by munge_highspeed().
           SNMP::Info can return speeds up to terabit levels this way.

       munge_highspeed()
           Makes human friendly speed ratings for "ifHighSpeed".

       munge_ip()
           Takes a binary IP and makes it dotted ASCII.

       munge_mac()
           Takes an octet stream (HEX-STRING) and returns a colon separated ASCII hex string.

       munge_prio_mac()
           Takes an 8-byte octet stream (HEX-STRING) and returns a colon separated ASCII hex
           string.

       munge_prio_port()
           Takes an 2-byte octet stream (HEX-STRING) and returns a colon separated ASCII hex
           string.

       munge_octet2hex()
           Takes a binary octet stream and returns an ASCII hex string.

       munge_dec2bin()
           Takes a binary char and returns its ASCII binary representation.

       munge_bits()
           Takes a SNMP2 'BITS' field and returns the ASCII bit string.

       munge_counter64()
           If $BIGINT is set to true, then a Math::BigInt object is returned.  See Math::BigInt
           for details.

       munge_i_up()
           Net-SNMP tends to load "RFC1213-MIB" first, and so ignores the updated enumeration for
           "ifOperStatus" in "IF-MIB".  This munge handles the "newer" definitions for the
           enumeration in IF-MIB.

           TODO: Get the precedence of MIBs and overriding of MIB data in Net-SNMP figured out.
           Hierarchy/precedence of MIBS in SNMP::Info.

       munge_port_list()
           Takes an octet string representing a set of ports and returns a reference to an array
           of binary values each array element representing a port.

           If the element has a value of '1', then that port is included in the set of ports; the
           port is not included if it has a value of '0'.

       munge_null()
           Removes control characters from a string.

       munge_e_type()
           Takes an OID and return the object name if the right MIB is loaded.

   Internally Used Functions
       resolve_desthost()
           Takes the SNMP::Session "DestHost" argument and determines if it is an 'IPv4' or
           'IPv6' host. 'IPv6' hosts are prefixed with the "udp6:" "transport-specifier" as
           required by the underlying "Net-SNMP" library.  If unable to determine the type of
           address or resolve a DNS name, dies with "croak".

       $info->init()
           Used internally.  Loads all entries in %MIBS.

       $info->args()
           Returns a reference to the argument hash supplied to SNMP::Session

       $info->class()
           Returns the class name of the object.

       $info->error_throw(error message)
           Stores the error message for use by $info->error()

           If $info->debug() is true, then the error message is carped too.

       $info->funcs()
           Returns a reference to the %FUNCS hash.

       $info->globals()
           Returns a reference to the %GLOBALS hash.

       $info->mibs()
           Returns a reference to the %MIBS hash.

       $info->munge()
           Returns a reference of the %MUNGE hash.

       $info->nosuch()
           Returns NoSuch value set or not in new()

       $info->session()
           Gets or Sets the SNMP::Session object.

       $info->store(new_store)
           Returns or sets hash store for Table functions.

           Store is a hash reference in this format :

           $info->store = { attribute => { iid => value , iid2 => value2, ... } };

       $info->_global()
           Used internally by AUTOLOAD to create dynamic methods from %GLOBALS or a single
           instance MIB Leaf node name from a loaded MIB.

           Example: $info->name() on the first call dispatches to AUTOLOAD() which calls
           $info->_global('name') creating the method name().

           These methods return data as a scalar.

       $info->_set(attr,val,iid,type)
           Used internally by set_multi() to run an SNMP set command.  When run clears attr
           cache.

           Attr can be passed as either a scalar or a reference to an array or array of arrays
           when used with set_multi().

           Example:  $info->set_name('dog',3) uses autoload to resolve to
           $info->_set('name','dog',3);

       $info->_make_setter(val,iid)
           Used internally by AUTOLOAD to create dynamic methods from either %GLOBALS, %FUNCS, or
           a valid mib leaf from a loaded MIB which runs an SNMP set command.  When run clears
           the attribute cache.

           Example:  $info->set_name('dog',3) dispatches to autoload to resolve to
           $info->_set('name','dog',3) and _make_setter creates the set_name() method.

       $info->set_multi(arrayref)
           Used to run an SNMP set command on several new values in the one request.  Returns the
           result of $info->_set(method).

           Pass either a reference to a 4 element array [<obj>, <iid>, <val>, <type>] or a
           reference to an array of 4 element arrays to specify multiple values.

               <obj> - One of the following forms:
                   1) leaf identifier (e.g., C<'sysContact'>)
                   2) An entry in either %FUNCS, %GLOBALS (e.g., 'contact')
               <iid> - The dotted-decimal, instance identifier. For scalar MIB objects
                        use '0'
               <val>  - The SNMP data value being set (e.g., 'netdisco')
               <type> - Optional as the MIB should be loaded.

           If one of the set assignments is invalid, then the request will be rejected without
           applying any of the new values - regardless of the order they appear in the list.

           Example:
               my $vlan_set = [
                   ['qb_v_untagged',"$old_vlan_id","$old_untagged_portlist"],
                   ['qb_v_egress',"$new_vlan_id","$new_egress_portlist"],
                   ['qb_v_egress',"$old_vlan_id","$old_egress_portlist"],
                   ['qb_v_untagged',"$new_vlan_id","$new_untagged_portlist"],
                   ['qb_i_vlan',"$port","$new_vlan_id"],
               ];

               $info->set_multi($vlan_set);

       $info->load_all()
           Debugging routine.  This does not include any overridden method or method implemented
           by subroutine.

           Runs $info->load_METHOD() for each entry in $info->funcs();

           Returns $info->store() -- See store() entry.

           Note return value has changed since version 0.3

       $info->all()
           Runs $info->load_all() once then returns $info->store();

           Use $info->load_all() to reload the data.

           Note return value has changed since version 0.3

       $info->_load_attr()
           Used internally by AUTOLOAD to create dynamic methods from %FUNCS or a MIB Leaf node
           name contained within a table of a loaded MIB.

           Supports partial table fetches and single instance table fetches.  See "Partial Table
           Fetches" in SNMP::Info.

           These methods return data as a reference to a hash.

       $info->_show_attr()
           Used internally by AUTOLOAD to return data called by methods listed in %FUNCS.

       $info->snmp_connect_ip(ip)
           Returns true or false based upon snmp connectivity to an IP.

       modify_port_list(portlist,offset,replacement)
           Replaces the specified bit in a port_list array and returns the packed bitmask

       $info->_cache(attr, data)
           Cache retrieved data so that if it's asked for again, we use the cache instead of
           going back to Net-SNMP. Data is cached inside the blessed hashref $self.

           Accepts the leaf and value (scalar, or hashref for a table). Does not return anything
           useful.

       $info->_munge(attr, data)
           Raw data returned from Net-SNMP might not be formatted correctly or might have
           platform-specific bugs or mistakes. The MUNGE feature of SNMP::Info allows for fixups
           to take place.

           Accepts the leaf and value (scalar, or hashref for a table) and returns the raw or the
           munged data, as appropriate. That is, you do not need to know whether MUNGE is
           installed, and it's safe to call this method regardless.

       _validate_autoload_method(method)
           Used internally by AUTOLOAD to validate that a dynamic method should be created.
           Returns the OID of the MIB leaf node the method will get or set.

           1. Returns unless method is listed in %FUNCS, %GLOBALS, or is MIB Leaf node name in a
           loaded MIB for given class.
           2. Translates the MIB Leaf node name to an OID.
           3. Checks to see if the method access type is allowed for the resolved OID.  Write
           access for set_ methods, read access for others.
       $info->can()
           Overrides UNIVERSAL::can() so that objects will correctly report their capabilities to
           include dynamic methods generated at run time via AUTOLOAD.

           Calls parent can() first to see if method exists, if not validates that a method
           should be created then dispatches to the appropriate internal method for creation.

           Returns undef if the method does not exist and can not be created.

   AUTOLOAD
       Each entry in either %FUNCS, %GLOBALS, or MIB Leaf node names present in loaded MIBs are
       used by AUTOLOAD() to create dynamic methods.

       1. Returns unless method is listed in %FUNCS, %GLOBALS, or is a MIB Leaf node name in a
       loaded MIB for given class.
       2. If the method exists in %GLOBALS or is a single instance MIB Leaf node name from a
       loaded MIB, _global() generates the method.
       3. If a set_ prefix is present _make_setter() generates the method.
       4. If the method exists in %FUNCS or is a MIB Leaf node name contained within a table from
       a loaded MIB, _load_attr() generates the method.
       5. A load_ prefix forces reloading of data and does not use cached data.
       6. A _raw suffix returns data ignoring any munge routines.

       Override any dynamic method listed in %GLOBALS, %FUNCS, or MIB Leaf node name a by
       creating a subroutine with the same name.

       For example to override $info->name() create `` sub name {...}'' in your subclass.

COPYRIGHT AND LICENSE

       Changes from SNMP::Info Version 0.7 and on are: Copyright (c) 2003-2010 Max Baker and
       SNMP::Info Developers All rights reserved.

       Original Code is: Copyright (c) 2002-2003, Regents of the University of California All
       rights reserved.

       Redistribution and use in source and binary forms, with or without modification, are
       permitted provided that the following conditions are met:

           * Redistributions of source code must retain the above copyright notice,
             this list of conditions and the following disclaimer.
           * Redistributions in binary form must reproduce the above copyright
             notice, this list of conditions and the following disclaimer in the
             documentation and/or other materials provided with the distribution.
           * Neither the name of the University of California, Santa Cruz nor the
             names of its contributors may be used to endorse or promote products
             derived from this software without specific prior written permission.

       THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
       EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
       MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
       COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
       EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
       SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
       HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
       TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
       SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.