Provided by: tcllib_1.20+dfsg-1_all
NAME
math::complexnumbers - Straightforward complex number package
SYNOPSIS
package require Tcl 8.3 package require math::complexnumbers ?1.0.2? ::math::complexnumbers::+ z1 z2 ::math::complexnumbers::- z1 z2 ::math::complexnumbers::* z1 z2 ::math::complexnumbers::/ z1 z2 ::math::complexnumbers::conj z1 ::math::complexnumbers::real z1 ::math::complexnumbers::imag z1 ::math::complexnumbers::mod z1 ::math::complexnumbers::arg z1 ::math::complexnumbers::complex real imag ::math::complexnumbers::tostring z1 ::math::complexnumbers::exp z1 ::math::complexnumbers::sin z1 ::math::complexnumbers::cos z1 ::math::complexnumbers::tan z1 ::math::complexnumbers::log z1 ::math::complexnumbers::sqrt z1 ::math::complexnumbers::pow z1 z2 _________________________________________________________________________________________________
DESCRIPTION
The mathematical module complexnumbers provides a straightforward implementation of complex numbers in pure Tcl. The philosophy is that the user knows he or she is dealing with complex numbers in an abstract way and wants as high a performance as can be had within the limitations of an interpreted language. Therefore the procedures defined in this package assume that the arguments are valid (representations of) "complex numbers", that is, lists of two numbers defining the real and imaginary part of a complex number (though this is a mere detail: rely on the complex command to construct a valid number.) Most procedures implement the basic arithmetic operations or elementary functions whereas several others convert to and from different representations: set z [complex 0 1] puts "z = [tostring $z]" puts "z**2 = [* $z $z] would result in: z = i z**2 = -1
AVAILABLE PROCEDURES
The package implements all or most basic operations and elementary functions. The arithmetic operations are: ::math::complexnumbers::+ z1 z2 Add the two arguments and return the resulting complex number complex z1 (in) First argument in the summation complex z2 (in) Second argument in the summation ::math::complexnumbers::- z1 z2 Subtract the second argument from the first and return the resulting complex number. If there is only one argument, the opposite of z1 is returned (i.e. -z1) complex z1 (in) First argument in the subtraction complex z2 (in) Second argument in the subtraction (optional) ::math::complexnumbers::* z1 z2 Multiply the two arguments and return the resulting complex number complex z1 (in) First argument in the multiplication complex z2 (in) Second argument in the multiplication ::math::complexnumbers::/ z1 z2 Divide the first argument by the second and return the resulting complex number complex z1 (in) First argument (numerator) in the division complex z2 (in) Second argument (denominator) in the division ::math::complexnumbers::conj z1 Return the conjugate of the given complex number complex z1 (in) Complex number in question Conversion/inquiry procedures: ::math::complexnumbers::real z1 Return the real part of the given complex number complex z1 (in) Complex number in question ::math::complexnumbers::imag z1 Return the imaginary part of the given complex number complex z1 (in) Complex number in question ::math::complexnumbers::mod z1 Return the modulus of the given complex number complex z1 (in) Complex number in question ::math::complexnumbers::arg z1 Return the argument ("angle" in radians) of the given complex number complex z1 (in) Complex number in question ::math::complexnumbers::complex real imag Construct the complex number "real + imag*i" and return it float real (in) The real part of the new complex number float imag (in) The imaginary part of the new complex number ::math::complexnumbers::tostring z1 Convert the complex number to the form "real + imag*i" and return the string float complex (in) The complex number to be converted Elementary functions: ::math::complexnumbers::exp z1 Calculate the exponential for the given complex argument and return the result complex z1 (in) The complex argument for the function ::math::complexnumbers::sin z1 Calculate the sine function for the given complex argument and return the result complex z1 (in) The complex argument for the function ::math::complexnumbers::cos z1 Calculate the cosine function for the given complex argument and return the result complex z1 (in) The complex argument for the function ::math::complexnumbers::tan z1 Calculate the tangent function for the given complex argument and return the result complex z1 (in) The complex argument for the function ::math::complexnumbers::log z1 Calculate the (principle value of the) logarithm for the given complex argument and return the result complex z1 (in) The complex argument for the function ::math::complexnumbers::sqrt z1 Calculate the (principle value of the) square root for the given complex argument and return the result complex z1 (in) The complex argument for the function ::math::complexnumbers::pow z1 z2 Calculate "z1 to the power of z2" and return the result complex z1 (in) The complex number to be raised to a power complex z2 (in) The complex power to be used
BUGS, IDEAS, FEEDBACK
This document, and the package it describes, will undoubtedly contain bugs and other problems. Please report such in the category math :: complexnumbers of the Tcllib Trackers [http://core.tcl.tk/tcllib/reportlist]. Please also report any ideas for enhancements you may have for either package and/or documentation. When proposing code changes, please provide unified diffs, i.e the output of diff -u. Note further that attachments are strongly preferred over inlined patches. Attachments can be made by going to the Edit form of the ticket immediately after its creation, and then using the left-most button in the secondary navigation bar.
KEYWORDS
complex numbers, math
CATEGORY
Mathematics
COPYRIGHT
Copyright (c) 2004 Arjen Markus <arjenmarkus@users.sourceforge.net>