Provided by: alt-ergo_2.0.0-8build1_amd64
NAME
Alt-Ergo - An automatic theorem prover dedicated to program verification
SYNOPSIS
alt-ergo [ options ] file
DESCRIPTION
Alt-Ergo is an automatic theorem prover. It takes as inputs an arbitrary polymorphic and multi-sorted first-order formula written is a why like syntax.
OPTIONS
-h Help. Will give you the full list of command line options.
EXAMPLES
A theory of functional arrays with integer indexes . This theory provides a built-in type ('a,'b) farray and a built-in syntax for manipulating arrays. For instance, given an abstract datatype tau and a functional array t of type (int, tau) farray declared as follows: type tau logic t : (int, tau) farray The expressions: t[i] denotes the value stored in t at index i t[i1<-v1,...,in<-vn] denotes an array which stores the same values as t for every index except possibly i1,...,in, where it stores value v1,...,vn. This expression is equivalent to ((t[i1<-v1])[i2<-v2])...[in<-vn]. Examples. t[0<-v][1<-w] t[0<-v, 1<-w] t[0<-v, 1<-w][1] A theory of enumeration types. For instance an enumeration type t with constructors A, B, C is defined as follows : type t = A | B | C Which means that all values of type t are equal to either A, B or C. And that all these constructors are distinct. A theory of polymorphic records. For instance a polymorphic record type 'a t with two labels a and b of type 'a and int respectively is defined as follows: type 'a t = { a : 'a; b : int } The expressions { a = 4; b = 5 } and { r with b = 3} denote records, while the dot notation r.a is used to access to labels. Alt-Ergo (v. >= 0.95) allows the user to force the type of terms using the syntax <term> : <type>. The example below illustrates the use of this new feature. type 'a list logic nil : 'b list logic f : 'c list -> int goal g1 : f(nil) = f(nil) (* not valid because the two instances of nil may have different types *) goal g2 : f(nil:'d list) = f(nil:'d list) (* valid *)
ENVIRONMENT VARIABLES
ERGOLIB Alternative path for the Alt-Ergo library
AUTHORS
Sylvain Conchon <conchon@lri.fr> and Evelyne Contejean <contejea@lri.fr>
SEE ALSO
Alt-Ergo web site: http://alt-ergo.lri.fr (C) 2006 -- 2013 Alt-Ergo(1)