Provided by: python3-ezdxf_0.14.2-3_all 

NAME
ezdxf - ezdxf Documentation [image] Welcome! This is the documentation for ezdxf release 0.14.2, last updated Nov 27, 2020. • ezdxf is a Python package to create new DXF files and read/modify/write existing DXF files • the intended audience are developers • requires at least Python 3.6 • OS independent • additional required packages: pyparsing • MIT-License • read/write/new support for DXF versions: R12, R2000, R2004, R2007, R2010, R2013 and R2018 • additional read support for DXF versions R13/R14 (upgraded to R2000) • additional read support for older DXF versions than R12 (upgraded to R12) • read/write support for ASCII DXF and Binary DXF • preserves third-party DXF content
INCLUDED EXTENSIONS
• drawing add-on to visualise and convert DXF files to images which can be saved to various formats such as png, pdf and svg • r12writer add-on to write basic DXF entities direct and fast into a DXF R12 file or stream • iterdxf add-on to iterate over entities of the modelspace of really big (> 5GB) DXF files which do not fit into memory • importer add-on to import entities, blocks and table entries from another DXF document • dxf2code add-on to generate Python code for DXF structures loaded from DXF documents as starting point for parametric DXF entity creation • acadctb add-on to read/write plot_style_files • pycsg add-on for Constructive Solid Geometry (CSG) modeling technique
WEBSITE
https://ezdxf.mozman.at/
DOCUMENTATION
Documentation of development version at https://ezdxf.mozman.at/docs Documentation of latest release at http://ezdxf.readthedocs.io/ Source Code: http://github.com/mozman/ezdxf.git Issue Tracker at GitHub: http://github.com/mozman/ezdxf/issues
QUESTIONS AND FEEDBACK AT GOOGLE GROUPS
Please post questions at the forum or stack overflow to make answers available to other users as well.
INTRODUCTION
What is ezdxf ezdxf is a Python interface to the DXF (drawing interchange file) format developed by Autodesk, it allows developers to read and modify existing DXF drawings or create new DXF drawings. The main objective in the development of ezdxf was to hide complex DXF details from the programmer but still support most capabilities of the DXF format. Nevertheless, a basic understanding of the DXF format is required, also to understand which tasks and goals are possible to accomplish by using the the DXF format. Not all DXF features are supported yet, but additional features will be added in the future gradually. ezdxf is also a replacement for my dxfwrite and my dxfgrabber packages but with different APIs, for more information see also: faq001 What ezdxf can’t do • ezdxf is not a DXF converter: ezdxf can not convert between different DXF versions, if you are looking for an appropriate application, try the free ODAFileConverter from the Open Design Alliance, which converts between different DXF version and also between the DXF and the DWG file format. • ezdxf is not a CAD file format converter: ezdxf can not convert DXF files to other CAD formats such as DWG • ezdxf is not a CAD kernel and does not provide high level functionality for construction work, it is just an interface to the DXF file format. If you are looking for a CAD kernel with Python scripting support, look at FreeCAD. Supported Python Versions ezdxf requires at least Python 3.6 and will be tested with the latest stable CPython 3 version and the latest stable release of pypy3 during development. ezdxf is written in pure Python and requires only pyparser as additional library beside the Python Standard Library. pytest is required to run the unit- and integration tests. Data to run the stress and audit test can not be provided, because I don’t have the rights for publishing this DXF files. Supported Operating Systems ezdxf is OS independent and runs on all platforms which provide an appropriate Python interpreter (>=3.6). Supported DXF Versions ┌────────┬──────────────────────┐ │Version │ AutoCAD Release │ ├────────┼──────────────────────┤ │AC1009 │ AutoCAD R12 │ ├────────┼──────────────────────┤ │AC1012 │ AutoCAD R13 -> R2000 │ ├────────┼──────────────────────┤ │AC1014 │ AutoCAD R14 -> R2000 │ ├────────┼──────────────────────┤ │AC1015 │ AutoCAD R2000 │ ├────────┼──────────────────────┤ │AC1018 │ AutoCAD R2004 │ ├────────┼──────────────────────┤ │AC1021 │ AutoCAD R2007 │ ├────────┼──────────────────────┤ │AC1024 │ AutoCAD R2010 │ ├────────┼──────────────────────┤ │AC1027 │ AutoCAD R2013 │ ├────────┼──────────────────────┤ │AC1032 │ AutoCAD R2018 │ └────────┴──────────────────────┘ ezdxf reads also older DXF versions but saves it as DXF R12. Embedded DXF Information of 3rd Party Applications The DXF format allows third-party applications to embed application-specific information. ezdxf manages DXF data in a structure-preserving form, but for the price of large memory requirement. Because of this, processing of DXF information of third-party applications is possible and will retained on rewriting. License ezdxf is licensed under the very liberal MIT-License.
USAGE FOR BEGINNERS
This section shows the intended usage of the ezdxf package. This is just a brief overview for new ezdxf users, follow the provided links for more detailed information. First import the package: import ezdxf Loading DXF Files ezdxf supports loading ASCII and binary DXF files from a file: doc = ezdxf.readfile(filename) or from a zip-file: doc = ezdxf.readzip(zipfilename[, filename]) Which loads the DXF file filename from the zip-file zipfilename or the first DXF file in the zip-file if filename is absent. It is also possible to read a DXF file from a stream by the ezdxf.read() function, but this is a more advanced feature, because this requires detection of the file encoding in advance. This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with minor or major flaws look at the ezdxf.recover module. SEE ALSO: Documentation for ezdxf.readfile(), ezdxf.readzip() and ezdxf.read(), for more information about file management go to the dwgmanagement section. For loading DXF files with structural errors look at the ezdxf.recover module. Saving DXF Files Save the DXF document with a new name: doc.saveas('new_name.dxf') or with the same name as loaded: doc.save() SEE ALSO: Documentation for ezdxf.document.Drawing.save() and ezdxf.document.Drawing.saveas(), for more information about file management go to the dwgmanagement section. Create a New DXF File Create new file for the latest supported DXF version: doc = ezdxf.new() Create a new DXF file for a specific DXF version, e.g for DXF R12: doc = ezdxf.new('R12') To setup some basic DXF resources use the setup argument: doc = ezdxf.new(setup=True) SEE ALSO: Documentation for ezdxf.new(), for more information about file management go to the dwgmanagement section. Layouts and Blocks Layouts are containers for DXF entities like LINE or CIRCLE. The most important layout is the modelspace labeled as “Model” in CAD applications which represents the “world” work space. Paperspace layouts represents plottable sheets which contains often the framing and the tile block of a drawing and VIEWPORT entities as scaled and clipped “windows” into the modelspace. The modelspace is always present and can not be deleted. The active paperspace is also always present in a new DXF document but can be deleted, in that case another paperspace layout gets the new active paperspace, but you can not delete the last paperspace layout. Getting the modelspace of a DXF document: msp = doc.modelspace() Getting a paperspace layout by the name as shown in the tab of a CAD application: psp = doc.layout('Layout1') A block is just another kind of entity space, which can be inserted multiple times into other layouts and blocks by the INSERT entity also called block references, this is a very powerful and important concept of the DXF format. Getting a block layout by the block name: blk = doc.blocks.get('NAME') All these layouts have factory functions to create graphical DXF entities for their entity space, for more information about creating entities see section: Create new DXF Entities Create New Blocks The block definitions of a DXF document are managed by the BlocksSection object: my_block = doc.blocks.new('MyBlock') SEE ALSO: tut_blocks Query DXF Entities As said in the Layouts and Blocks section, all graphical DXF entities are stored in layouts, all these layouts can be iterated and support the index operator e.g. layout[-1] returns the last entity. The main difference between iteration and index access is, that iteration filters destroyed entities, but the the index operator returns also destroyed entities until these entities are purged by layout.purge() more about this topic in section: Delete Entities. There are two advanced query methods: query() and groupby(). Get all lines of layer 'MyLayer': lines = msp.query('LINE[layer=="MyLayer"]') This returns an EntityQuery container, which also provides the same query() and groupby() methods. Get all lines categorized by a DXF attribute like color: all_lines_by_color = msp.query('LINE').groupby('color') lines_with_color_1 = all_lines_by_color.get(1, []) The groupby() method returns a regular Python dict with colors as key and a regular Python list of entities as values (not an EntityQuery container). SEE ALSO: For more information go to the tut_getting_data Examine DXF Entities Each DXF entity has a dxf namespace attribute, which stores the named DXF attributes, some DXF attributes are only indirect available like the vertices in the LWPOLYLINE entity. More information about the DXF attributes of each entity can found in the documentation of the ezdxf.entities module. Get some basic DXF attributes: layer = entity.dxf.layer # default is '0' color = entity.dxf.color # default is 256 = BYLAYER Most DXF attributes have a default value, which will be returned if the DXF attribute is not present, for DXF attributes without a default value you can check in the attribute really exist: entity.dxf.hasattr('true_color') or use the get() method and a default value: entity.dxf.get('true_color', 0) SEE ALSO: Common graphical DXF attributes Create New DXF Entities The factory functions for creating new graphical DXF entities are located in the BaseLayout class. This means this factory function are available for all entity containers: • Modelspace • Paperspace • BlockLayout The usage is simple: msp = doc.modelspace() msp.add_line((0, 0), (1, 0), dxfattribs={'layer': 'MyLayer'}) A few important or required DXF attributes are explicit method arguments, most additional and optional DXF attributes are gives as a regular Python dict object. The supported DXF attributes can be found in the documentation of the ezdxf.entities module. WARNING: Do not instantiate DXF entities by yourself and add them to layouts, always use the provided factory function to create new graphical entities, this is the intended way to use ezdxf. Create Block References A block reference is just another DXF entity called INSERT, but the term “Block Reference” is a better choice and so the Insert entity is created by the factory function: add_blockref(): msp.add_blockref('MyBlock') SEE ALSO: See tut_blocks for more advanced features like using Attrib entities. Create New Layers A layer is not an entity container, a layer is just another DXF attribute stored in the entity and this entity can inherit some properties from this Layer object. Layer objects are stored in the layer table which is available as attribute doc.layers. You can create your own layers: my_layer = doc.layer.new('MyLayer') The layer object also controls the visibility of entities which references this layer, the on/off state of the layer is unfortunately stored as positive or negative color value which make the raw DXF attribute of layers useless, to change the color of a layer use the property Layer.color my_layer.color = 1 To change the state of a layer use the provided methods of the Layer object, like on(), off(), freeze() or thaw(): my_layer.off() SEE ALSO: layer_concept Delete Entities The safest way to delete entities is to delete the entity from the layout containing that entity: line = msp.add_line((0, 0), (1, 0)) msp.delete_entity(line) This removes the entity immediately from the layout and destroys the entity. The property is_alive returns False for a destroyed entity and all Python attributes are deleted, so line.dxf.color will raise an AttributeError exception, because line does not have a dxf attribute anymore. The current version of ezdxf also supports also destruction of entities by calling method destroy() manually: line.destroy() Manually destroyed entities are not removed immediately from entities containers like Modelspace or EntityQuery, but iterating such a container will filter destroyed entities automatically, so a for e in msp: ... loop will never yield destroyed entities. The index operator and the len() function do not filter deleted entities, to avoid getting deleted entities call the purge() method of the container manually to remove deleted entities. Further Information • reference documentation • Documentation of package internals: Developer Guides.
BASIC CONCEPTS
The Basic Concepts section teach the intended meaning of DXF attributes and structures without teaching the application of this information or the specific implementation by ezdxf, if you are looking for more information about the ezdxf internals look at the Reference section or if you want to learn how to use ezdxf go to the Tutorials section and for the solution of specific problems go to the Howto section. AutoCAD Color Index (ACI) The color attribute represents an ACI (AutoCAD Color Index). AutoCAD and many other CAD application provides a default color table, but pen table would be the more correct term. Each ACI entry defines the color value, the line weight and some other attributes to use for the pen. This pen table can be edited by the user or loaded from an CTB or STB file. ezdxf provides functions to create (new()) or modify (ezdxf.acadctb.load()) plot styles files. DXF R12 and prior are not good in preserving the layout of a drawing, because of the lack of a standard color table defined by the DXF reference and missing DXF structures to define these color tables in the DXF file. So if a CAD user redefined an ACI and do not provide a CTB or STB file, you have no ability to determine which color or lineweight was used. This is better in later DXF versions by providing additional DXF attributes like lineweight and true_color. SEE ALSO: plot_style_files Layer Concept Every object has a layer as one of its properties. You may be familiar with layers - independent drawing spaces that stack on top of each other to create an overall image - from using drawing programs. Most CAD programs use layers as the primary organizing principle for all the objects that you draw. You use layers to organize objects into logical groups of things that belong together; for example, walls, furniture, and text notes usually belong on three separate layers, for a couple of reasons: • Layers give you a way to turn groups of objects on and off - both on the screen and on the plot. • Layers provide the most efficient way of controlling object color and linetype Create a layer table entry Layer by Drawing.layers.new(), assign the layer properties such as color and linetype. Then assign those layers to other DXF entities by setting the DXF attribute layer to the layer name as string. It is possible to use layers without a layer definition but not recommend, just use a layer name without a layer definition, the layer has the default linetype 'Continuous' and the default color is 7. The advantage of assigning a linetype and a color to a layer is that entities on this layer can inherit this properties by using 'BYLAYER' as linetype string and 256 as color, both values are default values for new entities. SEE ALSO: tut_layers Linetypes The linetype defines the pattern of a line. The linetype of an entity can be specified by the DXF attribute linetype, this can be an explicit named linetype or the entity can inherit its line type from the assigned layer by setting linetype to 'BYLAYER', which is also the default value. CONTINUOUS is the default line type for layers with unspecified line type. ezdxf creates several standard linetypes, if the argument setup is True at calling new(), this simple line types are supported by all DXF versions: doc = ezdxf.new('R2007', setup=True) [image] In DXF R13 Autodesk introduced complex linetypes, containing TEXT or SHAPES in linetypes. ezdxf v0.8.4 and later supports complex linetypes. SEE ALSO: tut_linetypes Linetype Scaling Global linetype scaling can be changed by setting the header variable doc.header['$LTSCALE'] = 2, which stretches the line pattern by factor 2. To change the linetype scaling for single entities set scaling factor by DXF attribute ltscale, which is supported since DXF version R2000. Coordinate Systems AutoLISP Reference to Coordinate Systems provided by Autodesk. To brush up you knowledge about vectors, watch the YouTube tutorials of 3Blue1Brown about Linear Algebra. WCS World coordinate system - the reference coordinate system. All other coordinate systems are defined relative to the WCS, which never changes. Values measured relative to the WCS are stable across changes to other coordinate systems. UCS User coordinate system - the working coordinate system defined by the user to make drawing tasks easier. All points passed to AutoCAD commands, including those returned from AutoLISP routines and external functions, are points in the current UCS. As far as I know, all coordinates stored in DXF files are always WCS or OCS never UCS. User defined coordinate systems are not just helpful for interactive CAD, therefore ezdxf provides a converter class UCS to translate coordinates from UCS into WCS and vice versa, but always remember: store only WCS or OCS coordinates in DXF files, because there is no method to determine which UCS was active or used to create UCS coordinates. SEE ALSO: • Table entry UCS • ezdxf.math.UCS - converter between WCS and UCS OCS Object coordinate system - coordinates relative to the object itself. These points are usually converted into the WCS, current UCS, or current DCS, according to the intended use of the object. Conversely, points must be translated into an OCS before they are written to the database. This is also known as the entity coordinate system. Because ezdxf is just an interface to DXF, it does not automatically convert OCS into WCS, this is the domain of the user/application. And further more, the main goal of OCS is to place 2D elements in 3D space, this maybe was useful in the early years of CAD, I think nowadays this is an not often used feature, but I am not an AutoCAD user. OCS differ from WCS only if extrusion != (0, 0, 1), convert OCS into WCS: # circle is an DXF entity with extrusion != (0, 0, 1) ocs = circle.ocs() wcs_center = ocs.to_wcs(circle.dxf.center) SEE ALSO: • Object Coordinate System - deeper insights into OCS • ezdxf.math.OCS - converter between WCS and OCS DCS Display coordinate system - the coordinate system into which objects are transformed before they are displayed. The origin of the DCS is the point stored in the AutoCAD system variable TARGET, and its z-axis is the viewing direction. In other words, a viewport is always a plan view of its DCS. These coordinates can be used to determine where something will be displayed to the AutoCAD user. Object Coordinate System (OCS) • DXF Reference for OCS provided by Autodesk. The points associated with each entity are expressed in terms of the entity’s own object coordinate system (OCS). The OCS was referred to as ECS in previous releases of AutoCAD. With OCS, the only additional information needed to describe the entity’s position in 3D space is the 3D vector describing the z-axis of the OCS, and the elevation value. For a given z-axis (or extrusion) direction, there are an infinite number of coordinate systems, defined by translating the origin in 3D space and by rotating the x- and y-axis around the z-axis. However, for the same z-axis direction, there is only one OCS. It has the following properties: • Its origin coincides with the WCS origin. • The orientation of the x- and y-axis within the xy-plane are calculated in an arbitrary but consistent manner. AutoCAD performs this calculation using the arbitrary axis algorithm. These entities do not lie in a particular plane. All points are expressed in world coordinates. Of these entities, only lines and points can be extruded. Their extrusion direction can differ from the world z-axis. • Line • Point • 3DFace • Polyline (3D) • Vertex (3D) • Polymesh • Polyface • Viewport These entities are planar in nature. All points are expressed in object coordinates. All of these entities can be extruded. Their extrusion direction can differ from the world z-axis. • Circle • Arc • Solid • Trace • Text • Attrib • Attdef • Shape • Insert • Polyline (2D) • Vertex (2D) • LWPolyline • Hatch • Image Some of a Dimension’s points are expressed in WCS and some in OCS. Elevation Elevation group code 38: Exists only in output from versions prior to R11. Otherwise, Z coordinates are supplied as part of each of the entity’s defining points. Arbitrary Axis Algorithm • DXF Reference for Arbitrary Axis Algorithm provided by Autodesk. The arbitrary axis algorithm is used by AutoCAD internally to implement the arbitrary but consistent generation of object coordinate systems for all entities that use object coordinates. Given a unit-length vector to be used as the z-axis of a coordinate system, the arbitrary axis algorithm generates a corresponding x-axis for the coordinate system. The y-axis follows by application of the right-hand rule. We are looking for the arbitrary x- and y-axis to go with the normal Az (the arbitrary z-axis). They will be called Ax and Ay (using Vector): Az = Vector(entity.dxf.extrusion).normalize() # normal (extrusion) vector # Extrusion vector normalization should not be necessary, but don't rely on any DXF content if (abs(Az.x) < 1/64.) and (abs(Az.y) < 1/64.): Ax = Vector(0, 1, 0).cross(Az).normalize() # the cross-product operator else: Ax = Vector(0, 0, 1).cross(Az).normalize() # the cross-product operator Ay = Az.cross(Ax).normalize() WCS to OCS def wcs_to_ocs(point): px, py, pz = Vector(point) # point in WCS x = px * Ax.x + py * Ax.y + pz * Ax.z y = px * Ay.x + py * Ay.y + pz * Ay.z z = px * Az.x + py * Az.y + pz * Az.z return Vector(x, y, z) OCS to WCS Wx = wcs_to_ocs((1, 0, 0)) Wy = wcs_to_ocs((0, 1, 0)) Wz = wcs_to_ocs((0, 0, 1)) def ocs_to_wcs(point): px, py, pz = Vector(point) # point in OCS x = px * Wx.x + py * Wx.y + pz * Wx.z y = px * Wy.x + py * Wy.y + pz * Wy.z z = px * Wz.x + py * Wz.y + pz * Wz.z return Vector(x, y, z)
TUTORIALS
Tutorial for getting data from DXF files In this tutorial I show you how to get data from an existing DXF drawing. Loading the DXF file: import sys import ezdxf try: doc = ezdxf.readfile("your_dxf_file.dxf") except IOError: print(f'Not a DXF file or a generic I/O error.') sys.exit(1) except ezdxf.DXFStructureError: print(f'Invalid or corrupted DXF file.') sys.exit(2) This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with minor or major flaws look at the ezdxf.recover module. SEE ALSO: dwgmanagement Layouts I use the term layout as synonym for an arbitrary entity space which can contain DXF entities like LINE, CIRCLE, TEXT and so on. Every DXF entity can only reside in exact one layout. There are three different layout types: • Modelspace: this is the common construction space • Paperspace: used to to create print layouts • BlockLayout: reusable elements, every block has its own entity space A DXF drawing consist of exact one modelspace and at least of one paperspace. DXF R12 has only one unnamed paperspace the later DXF versions support more than one paperspace and each paperspace has a name. Iterate over DXF entities of a layout Iterate over all DXF entities in modelspace. Although this is a possible way to retrieve DXF entities, I would like to point out that entity queries are the better way. # iterate over all entities in modelspace msp = doc.modelspace() for e in msp: if e.dxftype() == 'LINE': print_entity(e) # entity query for all LINE entities in modelspace for e in msp.query('LINE'): print_entity(e) def print_entity(e): print("LINE on layer: %s\n" % e.dxf.layer) print("start point: %s\n" % e.dxf.start) print("end point: %s\n" % e.dxf.end) All layout objects supports the standard Python iterator protocol and the in operator. Access DXF attributes of an entity Check the type of an DXF entity by e.dxftype(). The DXF type is always uppercase. All DXF attributes of an entity are grouped in the namespace attribute dxf: e.dxf.layer # layer of the entity as string e.dxf.color # color of the entity as integer See Common graphical DXF attributes If a DXF attribute is not set (a valid DXF attribute has no value), a DXFValueError will be raised. To avoid this use the get_dxf_attrib() method with a default value: # If DXF attribute 'paperspace' does not exist, the entity defaults # to modelspace: p = e.get_dxf_attrib('paperspace', 0) An unsupported DXF attribute raises an DXFAttributeError. Getting a paperspace layout paperspace = doc.layout('layout0') Retrieves the paperspace named layout0, the usage of the Layout object is the same as of the modelspace object. DXF R12 provides only one paperspace, therefore the paperspace name in the method call doc.layout('layout0') is ignored or can be left off. For the later DXF versions you get a list of the names of the available layouts by layout_names(). Retrieve entities by query language ezdxf provides a flexible query language for DXF entities. All layout types have a query() method to start an entity query or use the ezdxf.query.new() function. The query string is the combination of two queries, first the required entity query and second the optional attribute query, enclosed in square brackets: 'EntityQuery[AttributeQuery]' The entity query is a whitespace separated list of DXF entity names or the special name *. Where * means all DXF entities, all other DXF names have to be uppercase. The * search can exclude entity types by adding the entity name with a presceding ! (e.g. * !LINE, search all entities except lines). The attribute query is used to select DXF entities by its DXF attributes. The attribute query is an addition to the entity query and matches only if the entity already match the entity query. The attribute query is a boolean expression, supported operators: and, or, !. SEE ALSO: entity query string Get all LINE entities from the modelspace: msp = doc.modelspace() lines = msp.query('LINE') The result container EntityQuery also provides the query() method, get all LINE entities at layer construction: construction_lines = lines.query('*[layer=="construction"]') The * is a wildcard for all DXF types, in this case you could also use LINE instead of *, * works here because lines just contains entities of DXF type LINE. All together as one query: lines = msp.query('LINE[layer=="construction"]') The ENTITIES section also supports the query() method: lines_and_circles = doc.entities.query('LINE CIRCLE[layer=="construction"]') Get all modelspace entities at layer construction, but excluding entities with linetype DASHED: not_dashed_entities = msp.query('*[layer=="construction" and linetype!="DASHED"]') Retrieve entities by groupby() function Search and group entities by a user defined criteria. As example let’s group all entities from modelspace by layer, the result will be a dict with layer names as dict-key and a list of all entities from modelspace matching this layer as dict-value. Usage as dedicated function call: from ezdxf.groupby import groupby group = groupby(entities=msp, dxfattrib='layer') The entities argument can be any container or generator which yields DXFEntity or inherited objects. Shorter and simpler to use as method of BaseLayout (modelspace, paperspace layouts, blocks) and query results as EntityQuery objects: group = msp.groupby(dxfattrib='layer') for layer, entities in group.items(): print(f'Layer "{layer}" contains following entities:') for entity in entities: print(' {}'.format(str(entity))) print('-'*40) The previous example shows how to group entities by a single DXF attribute, but it is also possible to group entities by a custom key, to do so create a custom key function, which accepts a DXF entity as argument and returns a hashable value as dict-key or None to exclude the entity. The following example shows how to group entities by layer and color, so each result entry has a tuple (layer, color) as key and a list of entities with matching DXF attributes: def layer_and_color_key(entity): # return None to exclude entities from result container if entity.dxf.layer == '0': # exclude entities from default layer '0' return None else: return entity.dxf.layer, entity.dxf.color group = msp.groupby(key=layer_and_color_key) for key, entities in group.items(): print(f'Grouping criteria "{key}" matches following entities:') for entity in entities: print(' {}'.format(str(entity))) print('-'*40) To exclude entities from the result container the key function should return None. The groupby() function catches DXFAttributeError exceptions while processing entities and excludes this entities from the result container. So there is no need to worry about DXF entities which do not support certain attributes, they will be excluded automatically. SEE ALSO: groupby() documentation Tutorial for creating simple DXF drawings r12writer - create simple DXF R12 drawings with a restricted entities set: LINE, CIRCLE, ARC, TEXT, POINT, SOLID, 3DFACE and POLYLINE. Advantage of the r12writer is the speed and the low memory footprint, all entities are written direct to the file/stream without building a drawing data structure in memory. SEE ALSO: r12writer Create a new DXF drawing with ezdxf.new() to use all available DXF entities: import ezdxf doc = ezdxf.new('R2010') # create a new DXF R2010 drawing, official DXF version name: 'AC1024' msp = doc.modelspace() # add new entities to the modelspace msp.add_line((0, 0), (10, 0)) # add a LINE entity doc.saveas('line.dxf') New entities are always added to layouts, a layout can be the modelspace, a paperspace layout or a block layout. SEE ALSO: Look at factory methods of the BaseLayout class to see all the available DXF entities. Tutorial for Layers If you are not familiar with the concept of layers, please read this first: layer_concept Create a Layer Definition import ezdxf doc = ezdxf.new(setup=True) # setup required line types msp = doc.modelspace() doc.layers.new(name='MyLines', dxfattribs={'linetype': 'DASHED', 'color': 7}) The advantage of assigning a linetype and a color to a layer is that entities on this layer can inherit this properties by using 'BYLAYER' as linetype string and 256 as color, both values are default values for new entities so you can left off this assignments: msp.add_line((0, 0), (10, 0), dxfattribs={'layer': 'MyLines'}) The new created line will be drawn with color 7 and linetype 'DASHED'. Changing Layer State Get the layer definition object: my_lines = doc.layers.get('MyLines') Check the state of the layer: my_lines.is_off() # True if layer is off my_lines.is_on() # True if layer is on my_lines.is_locked() # True if layer is locked layer_name = my_lines.dxf.name # get the layer name Change the state of the layer: # switch layer off, entities at this layer will not shown in CAD applications/viewers my_lines.off() # lock layer, entities at this layer are not editable in CAD applications my_lines.lock() Get/set default color of a layer by property Layer.color, because the DXF attribute Layer.dxf.color is misused for switching the layer on and off, layer is off if the color value is negative. Changing the default layer values: my_lines.dxf.linetype = 'DOTTED' my_lines.color = 13 # preserves on/off state of layer SEE ALSO: For all methods and attributes see class Layer. Check Available Layers The layers object supports some standard Python protocols: # iteration for layer in doc.layers: if layer.dxf.name != '0': layer.off() # switch all layers off except layer '0' # check for existing layer definition if 'MyLines' in doc.layers: layer = doc.layers.get('MyLines') layer_count = len(doc.layers) # total count of layer definitions Deleting a Layer Delete a layer definition: doc.layers.remove('MyLines') This just deletes the layer definition, all DXF entities with the DXF attribute layer set to 'MyLines' are still there, but if they inherit color and/or linetype from the layer definition they will be drawn now with linetype 'Continuous' and color 1. Tutorial for Blocks What are Blocks? Blocks are collections of DXF entities which can be placed multiply times as block references in different layouts and other block definitions. The block reference (Insert) can be rotated, scaled, placed in 3D by OCS and arranged in a grid like manner, each Insert entity can have individual attributes (Attrib) attached. Create a Block Blocks are managed as BlockLayout by a BlocksSection object, every drawing has only one blocks section stored in the attribute: Drawing.blocks. import ezdxf import random # needed for random placing points def get_random_point(): """Returns random x, y coordinates.""" x = random.randint(-100, 100) y = random.randint(-100, 100) return x, y # Create a new drawing in the DXF format of AutoCAD 2010 doc = ezdxf.new('R2010') # Create a block with the name 'FLAG' flag = doc.blocks.new(name='FLAG') # Add DXF entities to the block 'FLAG'. # The default base point (= insertion point) of the block is (0, 0). flag.add_lwpolyline([(0, 0), (0, 5), (4, 3), (0, 3)]) # the flag symbol as 2D polyline flag.add_circle((0, 0), .4, dxfattribs={'color': 2}) # mark the base point with a circle Block References (Insert) A block reference is a DXF Insert entity and can be placed in any layout: Modelspace, any Paperspace or BlockLayout (which enables nested block references). Every block reference can be scaled and rotated individually. Lets insert some random flags into the modelspace: # Get the modelspace of the drawing. msp = doc.modelspace() # Get 50 random placing points. placing_points = [get_random_point() for _ in range(50)] for point in placing_points: # Every flag has a different scaling and a rotation of -15 deg. random_scale = 0.5 + random.random() * 2.0 # Add a block reference to the block named 'FLAG' at the coordinates 'point'. msp.add_blockref('FLAG', point, dxfattribs={ 'xscale': random_scale, 'yscale': random_scale, 'rotation': -15 }) # Save the drawing. doc.saveas("blockref_tutorial.dxf") Query all block references of block FLAG: for flag_ref in msp.query('INSERT[name=="FLAG"]'): print(str(flag_ref)) What are Attributes? An attribute (Attrib) is a text annotation attached to a block reference with an associated tag. Attributes are often used to add information to blocks which can be evaluated and exported by CAD programs. An attribute can be visible or hidden. The simple way to use attributes is just to add an attribute to a block reference by Insert.add_attrib(), but the attribute is geometrically not related to the block reference, so you have to calculate the insertion point, rotation and scaling of the attribute by yourself. Using Attribute Definitions The second way to use attributes in block references is a two step process, first step is to create an attribute definition (template) in the block definition, the second step is adding the block reference by Layout.add_blockref() and attach and fill attribute automatically by the add_auto_attribs() method to the block reference. The advantage of this method is that all attributes are placed relative to the block base point with the same rotation and scaling as the block, but has the disadvantage that non uniform scaling is not handled very well. The method Layout.add_auto_blockref() handles non uniform scaling better by wrapping the block reference and its attributes into an anonymous block and let the CAD application do the transformation work which will create correct graphical representations at least by AutoCAD and BricsCAD. This method has the disadvantage of a more complex evaluation of attached attributes Using attribute definitions (Attdef): # Define some attributes for the block 'FLAG', placed relative # to the base point, (0, 0) in this case. flag.add_attdef('NAME', (0.5, -0.5), dxfattribs={'height': 0.5, 'color': 3}) flag.add_attdef('XPOS', (0.5, -1.0), dxfattribs={'height': 0.25, 'color': 4}) flag.add_attdef('YPOS', (0.5, -1.5), dxfattribs={'height': 0.25, 'color': 4}) # Get another 50 random placing points. placing_points = [get_random_point() for _ in range(50)] for number, point in enumerate(placing_points): # values is a dict with the attribute tag as item-key and # the attribute text content as item-value. values = { 'NAME': "P(%d)" % (number + 1), 'XPOS': "x = %.3f" % point[0], 'YPOS': "y = %.3f" % point[1] } # Every flag has a different scaling and a rotation of +15 deg. random_scale = 0.5 + random.random() * 2.0 blockref = msp.add_blockref('FLAG', point, dxfattribs={ 'rotation': 15 }).set_scale(random_scale) blockref.add_auto_attribs(values) # Save the drawing. doc.saveas("auto_blockref_tutorial.dxf") Get/Set Attributes of Existing Block References See the howto: howto_get_attribs Evaluate Wrapped Block References As mentioned above evaluation of block references wrapped into anonymous blocks is complex: # Collect all anonymous block references starting with '*U' anonymous_block_refs = modelspace.query('INSERT[name ? "^\*U.+"]') # Collect real references to 'FLAG' flag_refs = [] for block_ref in anonymous_block_refs: # Get the block layout of the anonymous block block = doc.blocks.get(block_ref.dxf.name) # Find all block references to 'FLAG' in the anonymous block flag_refs.extend(block.query('INSERT[name=="FLAG"]')) # Evaluation example: collect all flag names. flag_numbers = [flag.get_attrib_text('NAME') for flag in flag_refs if flag.has_attrib('NAME')] print(flag_numbers) Exploding Block References New in version 0.12. This is an advanced and still experimental feature and because ezdxf is still not a CAD application, the results may no be perfect. Non uniform scaling lead to incorrect results for text entities (TEXT, MTEXT, ATTRIB) and some other entities like HATCH with arc or ellipse path segments. By default the “exploded” entities are added to the same layout as the block reference is located. for flag_ref in msp.query('INSERT[name=="FLAG"]'): flag_ref.explode() Examine Entities of Block References New in version 0.12. If you just want to examine the entities of a block reference use the virtual_entities() method. This methods yields “virtual” entities with attributes identical to “exploded” entities but they are not stored in the entity database, have no handle and are not assigned to any layout. for flag_ref in msp.query('INSERT[name=="FLAG"]'): for entity in flag_ref.virtual_entities(): if entity.dxftype() == 'LWPOLYLINE': print(f'Found {str(entity)}.') Tutorial for LWPolyline The LWPolyline is defined as a single graphic entity, which differs from the old-style Polyline entity, which is defined as a group of sub-entities. LWPolyline display faster (in AutoCAD) and consume less disk space, it is a planar element, therefore all points in OCS as (x, y) tuples (LWPolyline.dxf.elevation is the z-axis value). Create a simple polyline: import ezdxf doc = ezdxf.new('R2000') msp = doc.modelspace() points = [(0, 0), (3, 0), (6, 3), (6, 6)] msp.add_lwpolyline(points) doc.saveas("lwpolyline1.dxf") Append multiple points to a polyline: doc = ezdxf.readfile("lwpolyline1.dxf") msp = doc.modelspace() line = msp.query('LWPOLYLINE')[0] # take first LWPolyline line.append_points([(8, 7), (10, 7)]) doc.saveas("lwpolyline2.dxf") Getting points always returns a 5-tuple (x, y, start_width, ent_width, bulge), start_width, end_width and bulge is 0 if not present: first_point = line[0] x, y, start_width, end_width, bulge = first_point Use context manager to edit polyline points, this method was introduced because accessing single points was very slow, but since ezdxf v0.8.9, direct access by index operator [] is very fast and using the context manager is not required anymore. Advantage of the context manager is the ability to use a user defined point format: doc = ezdxf.readfile("lwpolyline2.dxf") msp = doc.modelspace() line = msp.query('LWPOLYLINE').first # take first LWPolyline, 'first' was introduced with v0.10 with line.points('xyseb') as points: # points is a standard python list # existing points are 5-tuples, but new points can be # set as (x, y, [start_width, [end_width, [bulge]]]) tuple # set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge). del points[-2:] # delete last 2 points points.extend([(4, 7), (0, 7)]) # adding 2 other points # the same as one command # points[-2:] = [(4, 7), (0, 7)] doc.saveas("lwpolyline3.dxf") Each line segment can have a different start- and end-width, if omitted start- and end-width is 0: doc = ezdxf.new('R2000') msp = doc.modelspace() # point format = (x, y, [start_width, [end_width, [bulge]]]) # set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge). points = [(0, 0, .1, .15), (3, 0, .2, .25), (6, 3, .3, .35), (6, 6)] msp.add_lwpolyline(points) doc.saveas("lwpolyline4.dxf") The first point carries the start- and end-width of the first segment, the second point of the second segment and so on, the start- and end-width value of the last point is used for the closing segment if polyline is closed else the values are ignored. Start- and end-width only works if the DXF attribute dxf.const_width is unset, to be sure delete it: del line.dxf.const_width # no exception will be raised if const_width is already unset LWPolyline can also have curved elements, they are defined by the bulge value: doc = ezdxf.new('R2000') msp = doc.modelspace() # point format = (x, y, [start_width, [end_width, [bulge]]]) # set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge). points = [(0, 0, 0, .05), (3, 0, .1, .2, -.5), (6, 0, .1, .05), (9, 0)] msp.add_lwpolyline(points) doc.saveas("lwpolyline5.dxf") [image] The curved segment is drawn from the point which defines the bulge value to the following point, the curved segment is always aa arc, The bulge value defines the ratio of the arc sagitta (segment height h) to half line segment length (point distance), a bulge value of 1 defines a semicircle. bulge > 0 the curve is on the right side of the vertex connection line, bulge < 0 the curve is on the left side. ezdxf v0.8.9 supports a user defined points format, default is xyseb: • x = x coordinate • y = y coordinate • s = start width • e = end width • b = bulge value • v = (x, y) as tuple msp.add_lwpolyline([(0, 0, 0), (10, 0, 1), (20, 0, 0)], format='xyb') msp.add_lwpolyline([(0, 10, 0), (10, 10, .5), (20, 10, 0)], format='xyb') [image] Tutorial for Text Add a simple one line text entity by factory function add_text(). import ezdxf # TEXT is a basic entity and is supported by every DXF version. # Argument setup=True for adding standard linetypes and text styles. doc = ezdxf.new('R12', setup=True) msp = doc.modelspace() # use set_pos() for proper TEXT alignment: # The relations between DXF attributes 'halign', 'valign', # 'insert' and 'align_point' are tricky. msp.add_text("A Simple Text").set_pos((2, 3), align='MIDDLE_RIGHT') # Using a text style msp.add_text("Text Style Example: Liberation Serif", dxfattribs={ 'style': 'LiberationSerif', 'height': 0.35} ).set_pos((2, 6), align='LEFT') doc.saveas("simple_text.dxf") Valid text alignments for argument align in Text.set_pos(): ┌───────────┬─────────────┬───────────────┬──────────────┐ │Vert/Horiz │ Left │ Center │ Right │ ├───────────┼─────────────┼───────────────┼──────────────┤ │Top │ TOP_LEFT │ TOP_CENTER │ TOP_RIGHT │ ├───────────┼─────────────┼───────────────┼──────────────┤ │Middle │ MIDDLE_LEFT │ MIDDLE_CENTER │ MIDDLE_RIGHT │ ├───────────┼─────────────┼───────────────┼──────────────┤ │Bottom │ BOTTOM_LEFT │ BOTTOM_CENTER │ BOTTOM_RIGHT │ ├───────────┼─────────────┼───────────────┼──────────────┤ │Baseline │ LEFT │ CENTER │ RIGHT │ └───────────┴─────────────┴───────────────┴──────────────┘ Special alignments are ALIGNED and FIT, they require a second alignment point, the text is justified with the vertical alignment Baseline on the virtual line between these two points. ┌──────────┬───────────────────────────────────────┐ │Alignment │ Description │ ├──────────┼───────────────────────────────────────┤ │ALIGNED │ Text is stretched or compressed to │ │ │ fit exactly between p1 and p2 and the │ │ │ text height is also adjusted to │ │ │ preserve height/width ratio. │ ├──────────┼───────────────────────────────────────┤ │FIT │ Text is stretched or compressed to │ │ │ fit exactly between p1 and p2 but │ │ │ only the text width is adjusted, the │ │ │ text height is fixed by the height │ │ │ attribute. │ ├──────────┼───────────────────────────────────────┤ │MIDDLE │ also a special adjustment, but the │ │ │ result is the same as for │ │ │ MIDDLE_CENTER. │ └──────────┴───────────────────────────────────────┘ Standard Text Styles Setup some standard text styles and linetypes by argument setup=True: doc = ezdxf.new('R12', setup=True) Replaced all proprietary font declarations in setup_styles() (ARIAL, ARIAL_NARROW, ISOCPEUR and TIMES) by open source fonts, this is also the style name (e.g. {'style': 'OpenSans-Italic'}): [image] New Text Style Creating a new text style is simple: doc.styles.new('myStandard', dxfattribs={'font' : 'OpenSans-Regular.ttf'}) But getting the correct font name is often not that simple, especially on Windows. This shows the required steps to get the font name for Open Sans: • open font folder c:\windows\fonts • select and open the font-family Open Sans • right-click on Open Sans Standard and select Properties • on top of the first tab you see the font name: 'OpenSans-Regular.ttf' The style name has to be unique in the DXF document, else ezdxf will raise an DXFTableEntryError exception. To replace an existing entry, delete the existing entry by doc.styles.remove(name), and add the replacement entry. 3D Text It is possible to place the 2D Text entity into 3D space by using the OCS, for further information see: tut_ocs. Tutorial for MText The MText entity is a multi line entity with extended formatting possibilities and requires at least DXF version R2000, to use all features (e.g. background fill) DXF R2007 is required. Prolog code: import ezdxf doc = ezdxf.new('R2007', setup=True) msp = doc.modelspace() lorem_ipsum = """ Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. """ Adding a MText entity The MText entity can be added to any layout (modelspace, paperspace or block) by the add_mtext() function. # store MText entity for additional manipulations mtext = msp.add_mtext(lorem_ipsum, dxfattribs={'style': 'OpenSans'}) This adds a MText entity with text style 'OpenSans'. The MText content can be accessed by the text attribute, this attribute can be edited like any Python string: mtext.text += 'Append additional text to the MText entity.' # even shorter with __iadd__() support: mtext += 'Append additional text to the MText entity.' [image] IMPORTANT: Line endings \n will be replaced by the MTEXT line endings \P at DXF export, but not vice versa \P by \n at DXF file loading. Text placement The location of the MText entity is defined by the MText.dxf.insert and the MText.dxf.attachment_point attributes. The attachment_point defines the text alignment relative to the insert location, default value is 1. Attachment point constants defined in ezdxf.lldxf.const: ┌───────────────────────────┬───────┐ │MText.dxf.attachment_point │ Value │ ├───────────────────────────┼───────┤ │MTEXT_TOP_LEFT │ 1 │ ├───────────────────────────┼───────┤ │MTEXT_TOP_CENTER │ 2 │ ├───────────────────────────┼───────┤ │MTEXT_TOP_RIGHT │ 3 │ ├───────────────────────────┼───────┤ │MTEXT_MIDDLE_LEFT │ 4 │ ├───────────────────────────┼───────┤ │MTEXT_MIDDLE_CENTER │ 5 │ ├───────────────────────────┼───────┤ │MTEXT_MIDDLE_RIGHT │ 6 │ ├───────────────────────────┼───────┤ │MTEXT_BOTTOM_LEFT │ 7 │ ├───────────────────────────┼───────┤ │MTEXT_BOTTOM_CENTER │ 8 │ ├───────────────────────────┼───────┤ │MTEXT_BOTTOM_RIGHT │ 9 │ └───────────────────────────┴───────┘ The MText entity has a method for setting insert, attachment_point and rotation attributes by one call: set_location() Character height The character height is defined by the DXF attribute MText.dxf.char_height in drawing units, which has also consequences for the line spacing of the MText entity: mtext.dxf.char_height = 0.5 The character height can be changed inline, see also MText formatting and mtext_inline_codes. Text rotation (direction) The MText.dxf.rotation attribute defines the text rotation as angle between the x-axis and the horizontal direction of the text in degrees. The MText.dxf.text_direction attribute defines the horizontal direction of MText as vector in WCS or OCS, if an OCS is defined. Both attributes can be present at the same entity, in this case the MText.dxf.text_direction attribute has the higher priority. The MText entity has two methods to get/set rotation: get_rotation() returns the rotation angle in degrees independent from definition as angle or direction, and set_rotation() set the rotation attribute and removes the text_direction attribute if present. Defining a wrapping border The wrapping border limits the text width and forces a line break for text beyond this border. Without attribute dxf.width (or setting 0) the lines are wrapped only at the regular line endings \P or \n, setting the reference column width forces additional line wrappings at the given width. The text height can not be limited, the text always occupies as much space as needed. mtext.dxf.width = 60 [image] MText formatting MText supports inline formatting by special codes: mtext_inline_codes mtext.text = "{\\C1red text} - {\\C3green text} - {\\C5blue text}" [image] Stacked text MText also supports stacked text: # the space ' ' in front of 'Lower' anr the ';' behind 'Lower' are necessary # combined with vertical center alignment mtext.text = "\\A1\\SUpper^ Lower; - \\SUpper/ Lower;} - \\SUpper# Lower;" [image] Available helper function for text formatting: • set_color() - append text color change • set_font() - append text font change • add_stacked_text() - append stacked text Background color (filling) The MText entity can have a background filling: • ACI • true color value as (r, g, b) tuple • color name as string, use special name 'canvas' to use the canvas background color Because of the complex dependencies ezdxf provides a method to set all required DXF attributes at once: mtext.set_bg_color(2, scale=1.5) The parameter scale determines how much border there is around the text, the value is based on the text height, and should be in the range of 1 - 5, where 1 fits exact the MText entity. [image] Tutorial for Spline Background information about B-spline at Wikipedia. Splines from fit points Splines can be defined by fit points only, this means the curve goes through all given fit points. AutoCAD and BricsCAD generates required control points and knot values by itself, if only fit points are present. Create a simple spline: doc = ezdxf.new('R2000') fit_points = [(0, 0, 0), (750, 500, 0), (1750, 500, 0), (2250, 1250, 0)] msp = doc.modelspace() spline = msp.add_spline(fit_points) [image] Append a fit point to a spline: # fit_points, control_points, knots and weights are list-like containers: spline.fit_points.append((2250, 2500, 0)) [image] You can set additional control points, but if they do not fit the auto-generated AutoCAD values, they will be ignored and don’t mess around with knot values. Solve problems of incorrect values after editing a spline generated by AutoCAD: doc = ezdxf.readfile("AutoCAD_generated.dxf") msp = doc.modelspace() spline = msp.query('SPLINE').first # fit_points, control_points, knots and weights are list-like objects: spline.fit_points.append((2250, 2500, 0)) As far as I have tested, this approach works without complaints from AutoCAD, but for the case of problems remove invalid data: # current control points do not match spline defined by fit points spline.control_points = [] # count of knots is not correct: # count of knots = count of control points + degree + 1 spline.knots = [] # same for weights, count of weights == count of control points spline.weights = [] Splines by control points To create splines from fit points is the easiest way to create splines, but this method is also the least accurate, because a spline is defined by control points and knot values, which are generated for the case of a definition by fit points, and the worst fact is that for every given set of fit points exist an infinite number of possible splines as solution. AutoCAD (and BricsCAD also) uses an proprietary algorithm to generate control points and knot values from fit points, which differs from the well documented Global Curve Interpolation. Therefore splines generated from fit points by ezdxf do not match splines generated by AutoCAD (BricsCAD). To ensure the same spline geometry for all CAD applications, the spline has to be defined by control points. The method add_spline_control_frame() adds a spline trough fit points by calculating the control points by the Global Curve Interpolation algorithm. There is also a low level function ezdxf.math.global_bspline_interpolation() which calculates the control points from fit points. msp.add_spline_control_frame(fit_points, method='uniform', dxfattribs={'color': 1}) msp.add_spline_control_frame(fit_points, method='chord', dxfattribs={'color': 3}) msp.add_spline_control_frame(fit_points, method='centripetal', dxfattribs={'color': 5}) • black curve: AutoCAD/BricsCAD spline generated from fit points • red curve: spline curve interpolation, “uniform” method • green curve: spline curve interpolation, “chord” method • blue curve: spline curve interpolation, “centripetal” method [image] Open Spline Add and open (clamped) spline defined by control points with the method add_open_spline(). If no knot values are given, an open uniform knot vector will be generated. A clamped B-spline starts at the first control point and ends at the last control point. control_points = [(0, 0, 0), (1250, 1560, 0), (3130, 610, 0), (2250, 1250, 0)] msp.add_open_spline(control_points) [image] Closed Spline A closed spline is continuous closed curve. msp.add_closed_spline(control_points) [image] Rational Spline Rational B-splines have a weight for every control point, which can raise or lower the influence of the control point, default weight = 1, to lower the influence set a weight < 1 to raise the influence set a weight > 1. The count of weights has to be always equal to the count of control points. Example to raise the influence of the first control point: msp.add_closed_rational_spline(control_points, weights=[3, 1, 1, 1]) [image] Spline properties Check if spline is a closed curve or close/open spline, for a closed spline the last point is connected to the first point: if spline.closed: # this spline is closed pass # close spline spline.closed = True # open spline spline.closed = False Set start- and end tangent for splines defined by fit points: spline.dxf.start_tangent = (0, 1, 0) # in y-axis spline.dxf.end_tangent = (1, 0, 0) # in x-axis Get data count as stored in DXF file: count = spline.dxf.n_fit_points count = spline.dxf.n_control_points count = spline.dxf.n_knots Get data count of real existing data: count = spline.fit_point_count count = spline.control_point_count count = spline.knot_count Tutorial for Polyface coming soon … Tutorial for Mesh Create a cube mesh by direct access to base data structures: import ezdxf # 8 corner vertices cube_vertices = [ (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1), ] # 6 cube faces cube_faces = [ [0, 1, 2, 3], [4, 5, 6, 7], [0, 1, 5, 4], [1, 2, 6, 5], [3, 2, 6, 7], [0, 3, 7, 4] ] doc = ezdxf.new('R2000') # MESH requires DXF R2000 or later msp = doc.modelspace() mesh = msp.add_mesh() mesh.dxf.subdivision_levels = 0 # do not subdivide cube, 0 is the default value with mesh.edit_data() as mesh_data: mesh_data.vertices = cube_vertices mesh_data.faces = cube_faces doc.saveas("cube_mesh_1.dxf") Create a cube mesh by method calls: import ezdxf # 8 corner vertices p = [ (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1), ] doc = ezdxf.new('R2000') # MESH requires DXF R2000 or later msp = doc.modelspace() mesh = msp.add_mesh() with mesh.edit_data() as mesh_data: mesh_data.add_face([p[0], p[1], p[2], p[3]]) mesh_data.add_face([p[4], p[5], p[6], p[7]]) mesh_data.add_face([p[0], p[1], p[5], p[4]]) mesh_data.add_face([p[1], p[2], p[6], p[5]]) mesh_data.add_face([p[3], p[2], p[6], p[7]]) mesh_data.add_face([p[0], p[3], p[7], p[4]]) mesh_data.optimize() # optional, minimizes vertex count doc.saveas("cube_mesh_2.dxf") Tutorial for Hatch Create hatches with one boundary path The simplest form of the Hatch entity has one polyline path with only straight lines as boundary path: import ezdxf doc = ezdxf.new('R2000') # hatch requires the DXF R2000 (AC1015) format or later msp = doc.modelspace() # adding entities to the model space hatch = msp.add_hatch(color=2) # by default a solid fill hatch with fill color=7 (white/black) # every boundary path is always a 2D element # vertex format for the polyline path is: (x, y[, bulge]) # there are no bulge values in this example hatch.paths.add_polyline_path([(0, 0), (10, 0), (10, 10), (0, 10)], is_closed=1) doc.saveas("solid_hatch_polyline_path.dxf") But like all polyline entities the polyline path can also have bulge values: import ezdxf doc = ezdxf.new('R2000') # hatch requires the DXF R2000 (AC1015) format or later msp = doc.modelspace() # adding entities to the model space hatch = msp.add_hatch(color=2) # by default a solid fill hatch with fill color=7 (white/black) # every boundary path is always a 2D element # vertex format for the polyline path is: (x, y[, bulge]) # bulge value 1 = an arc with diameter=10 (= distance to next vertex * bulge value) # bulge value > 0 ... arc is right of line # bulge value < 0 ... arc is left of line hatch.paths.add_polyline_path([(0, 0, 1), (10, 0), (10, 10, -0.5), (0, 10)], is_closed=1) doc.saveas("solid_hatch_polyline_path_with_bulge.dxf") The most flexible way to define a boundary path is the edge path. An edge path consist of a number of edges and each edge can be one of the following elements: • line EdgePath.add_line() • arc EdgePath.add_arc() • ellipse EdgePath.add_ellipse() • spline EdgePath.add_spline() Create a solid hatch with an edge path (ellipse) as boundary path: import ezdxf doc = ezdxf.new('R2000') # hatch requires the DXF R2000 (AC1015) format or later msp = doc.modelspace() # adding entities to the model space # important: major axis >= minor axis (ratio <= 1.) # minor axis length = major axis length * ratio msp.add_ellipse((0, 0), major_axis=(0, 10), ratio=0.5) # by default a solid fill hatch with fill color=7 (white/black) hatch = msp.add_hatch(color=2) # every boundary path is always a 2D element edge_path = hatch.paths.add_edge_path() # each edge path can contain line arc, ellipse and spline elements # important: major axis >= minor axis (ratio <= 1.) edge_path.add_ellipse((0, 0), major_axis=(0, 10), ratio=0.5) doc.saveas("solid_hatch_ellipse.dxf") Create hatches with multiple boundary paths (islands) The DXF atribute hatch_style defines the island detection style: ┌──┬───────────────────────────────────────┐ │0 │ nested - altering filled and unfilled │ │ │ areas │ ├──┼───────────────────────────────────────┤ │1 │ outer - area between external and │ │ │ outermost path is filled │ ├──┼───────────────────────────────────────┤ │2 │ ignore - external path is filled │ └──┴───────────────────────────────────────┘ hatch = msp.add_hatch(color=1, dxfattribs={ 'hatch_style': 0, # 0 = nested # 1 = outer # 2 = ignore }) # The first path has to set flag: 1 = external # flag const.BOUNDARY_PATH_POLYLINE is added (OR) automatically hatch.paths.add_polyline_path([(0, 0), (10, 0), (10, 10), (0, 10)], is_closed=1, flags=1) This is also the result for all 4 paths and hatch_style set to 2 (ignore). [image] # The second path has to set flag: 16 = outermost hatch.paths.add_polyline_path([(1, 1), (9, 1), (9, 9), (1, 9)], is_closed=1, flags=16) This is also the result for all 4 paths and hatch_style set to 1 (outer). [image] # The third path has to set flag: 0 = default hatch.paths.add_polyline_path([(2, 2), (8, 2), (8, 8), (2, 8)], is_closed=1, flags=0) [image] # The forth path has to set flag: 0 = default, and so on hatch.paths.add_polyline_path([(3, 3), (7, 3), (7, 7), (3, 7)], is_closed=1, flags=0) [image] The expected result of combinations of various hatch_style values and paths flags, or the handling of overlapping paths is not documented by the DXF reference, so don’t ask me, ask Autodesk or just try it by yourself and post your experience in the forum. Example for Edge Path Boundary hatch = msp.add_hatch(color=1) # 1. polyline path hatch.paths.add_polyline_path([ (240, 210, 0), (0, 210, 0), (0, 0, 0.), (240, 0, 0), ], is_closed=1, flags=1, ) # 2. edge path edge_path = hatch.paths.add_edge_path(flags=16) edge_path.add_spline( control_points=[ (126.658105895725, 177.0823706957212), (141.5497003747484, 187.8907860433995), (205.8997365206943, 154.7946313459515), (113.0168862297068, 117.8189380884978), (202.9816918983783, 63.17222935389572), (157.363511042264, 26.4621294342132), (144.8204003260554, 28.4383294369643) ], knot_values=[ 0.0, 0.0, 0.0, 0.0, 55.20174685732758, 98.33239645153571, 175.1126541251052, 213.2061566683142, 213.2061566683142, 213.2061566683142, 213.2061566683142 ], ) edge_path.add_arc( center=(152.6378550678883, 128.3209356351659), radius=100.1880612627354, start_angle=94.4752130054052, end_angle=177.1345242028005, ) edge_path.add_line( (52.57506282464041, 123.3124200796114), (126.658105895725, 177.0823706957212) ) [image] Associative Boundary Paths A HATCH entity can be associative to a base geometry, which means if the base geometry is edited in a CAD application the HATCH get the same modification. Because ezdxf is not a CAD application, this association is not maintained nor verified by ezdxf, so if you modify the base geometry afterwards the geometry of the boundary path is not updated and no verification is done to check if the associated geometry matches the boundary path, this opens many possibilities to create invalid DXF files: USE WITH CARE. This example associates a LWPOLYLINE entity to the hatch created from the LWPOLYLINE vertices: # Create base geometry lwpolyline = msp.add_lwpolyline( [(0, 0, 0), (10, 0, .5), (10, 10, 0), (0, 10, 0)], format='xyb', dxfattribs={'closed': True}, ) hatch = msp.add_hatch(color=1) path = hatch.paths.add_polyline_path( # get path vertices from associated LWPOLYLINE entity lwpolyline.get_points(format='xyb'), # get closed state also from associated LWPOLYLINE entity is_closed=lwpolyline.closed, ) # Set association between boundary path and LWPOLYLINE hatch.associate(path, [lwpolyline]) An EdgePath needs associations to all geometry entities forming the boundary path. Predefined Hatch Pattern Use predefined hatch pattern by name: hatch.set_pattern_fill('ANSI31', scale=0.5) [image] Create hatches with gradient fill TODO Tutorial for Hatch Pattern Definition TODO Tutorial for Image and ImageDef Insert a raster image into a DXF drawing, the raster image is NOT embedded into the DXF file: import ezdxf doc = ezdxf.new('AC1015') # image requires the DXF R2000 format or later my_image_def = doc.add_image_def(filename='mycat.jpg', size_in_pixel=(640, 360)) # The IMAGEDEF entity is like a block definition, it just defines the image msp = doc.modelspace() # add first image msp.add_image(insert=(2, 1), size_in_units=(6.4, 3.6), image_def=my_image_def, rotation=0) # The IMAGE entity is like the INSERT entity, it creates an image reference, # and there can be multiple references to the same picture in a drawing. msp.add_image(insert=(4, 5), size_in_units=(3.2, 1.8), image_def=my_image_def, rotation=30) # get existing image definitions, Important: IMAGEDEFs resides in the objects section image_defs = doc.objects.query('IMAGEDEF') # get all image defs in drawing doc.saveas("dxf_with_cat.dxf") Tutorial for Underlay and UnderlayDefinition Insert a PDF, DWF, DWFx or DGN file as drawing underlay, the underlay file is NOT embedded into the DXF file: import ezdxf doc = ezdxf.new('AC1015') # underlay requires the DXF R2000 format or later my_underlay_def = doc.add_underlay_def(filename='my_underlay.pdf', name='1') # The (PDF)DEFINITION entity is like a block definition, it just defines the underlay # 'name' is misleading, because it defines the page/sheet to be displayed # PDF: name is the page number to display # DGN: name='default' ??? # DWF: ???? msp = doc.modelspace() # add first underlay msp.add_underlay(my_underlay_def, insert=(2, 1, 0), scale=0.05) # The (PDF)UNDERLAY entity is like the INSERT entity, it creates an underlay reference, # and there can be multiple references to the same underlay in a drawing. msp.add_underlay(my_underlay_def, insert=(4, 5, 0), scale=.5, rotation=30) # get existing underlay definitions, Important: UNDERLAYDEFs resides in the objects section pdf_defs = doc.objects.query('PDFDEFINITION') # get all pdf underlay defs in drawing doc.saveas("dxf_with_underlay.dxf") Tutorial for Linetypes Simple line type example: [image] You can define your own line types. A DXF linetype definition consists of name, description and elements: elements = [total_pattern_length, elem1, elem2, ...] total_pattern_length Sum of all linetype elements (absolute vaues) elem if elem > 0 it is a line, if elem < 0 it is gap, if elem == 0.0 it is a dot Create a new linetype definition: import ezdxf from ezdxf.tools.standards import linetypes # some predefined line types doc = ezdxf.new() msp = modelspace() my_line_types = [ ("DOTTED", "Dotted . . . . . . . . . . . . . . . .", [0.2, 0.0, -0.2]), ("DOTTEDX2", "Dotted (2x) . . . . . . . . ", [0.4, 0.0, -0.4]), ("DOTTED2", "Dotted (.5) . . . . . . . . . . . . . . . . . . . ", [0.1, 0.0, -0.1]), ] for name, desc, pattern in my_line_types: if name not in doc.linetypes: doc.linetypes.new(name=name, dxfattribs={'description': desc, 'pattern': pattern}) Setup some predefined linetypes: for name, desc, pattern in linetypes(): if name not in doc.linetypes: doc.linetypes.new(name=name, dxfattribs={'description': desc, 'pattern': pattern}) Check Available Linetypes The linetypes object supports some standard Python protocols: # iteration print('available line types:') for linetype in doc.linetypes: print('{}: {}'.format(linetype.dxf.name, linetype.dxf.description)) # check for existing line type if 'DOTTED' in doc.linetypes: pass count = len(doc.linetypes) # total count of linetypes Removing Linetypes WARNING: Deleting of linetypes still in use generates invalid DXF files. You can delete a linetype: doc.layers.remove('DASHED') This just deletes the linetype definition, all DXF entity with the DXF attribute linetype set to DASHED still refers to linetype DASHED and AutoCAD will not open DXF files with undefined line types. Tutorial for Complex Linetypes In DXF R13 Autodesk introduced complex line types, containing TEXT or SHAPES in line types. ezdxf v0.8.4 and later supports complex line types. Complex line type example with text: [image] Complex line type example with shapes: [image] For simplicity the pattern string for complex line types is mostly the same string as the pattern definition strings in AutoCAD .lin files. Example for complex line type TEXT: doc = ezdxf.new('R2018') # DXF R13 or later is required doc.linetypes.new('GASLEITUNG2', dxfattribs={ 'description': 'Gasleitung2 ----GAS----GAS----GAS----GAS----GAS----GAS--', 'length': 1, # required for complex line types # line type definition in acadlt.lin: 'pattern': 'A,.5,-.2,["GAS",STANDARD,S=.1,U=0.0,X=-0.1,Y=-.05],-.25', }) The pattern always starts with an A, the following float values have the same meaning as for simple line types, a value > 0 is a line, a value < 0 is a gap, and a 0 is a point, the [ starts the complex part of the line pattern. A following text in quotes defines a TEXT type, a following text without quotes defines a SHAPE type, in .lin files the shape type is a shape name, but ezdxf can not translate this name into the required shape file index, so YOU have to translate this name into the shape file index (e.g. saving the file with AutoCAD as DXF and searching for the line type definition, see also DXF Internals: ltype_table_internals). The second parameter is the text style for a TEXT type and the shape file name for the SHAPE type, the shape file has to be in the same directory as the DXF file. The following parameters in the scheme of S=1.0 are: • S … scaling factor, always > 0, if S=0 the TEXT or SHAPE is not visible • R or U … rotation relative to the line direction • X … x direction offset (along the line) • Y … y direction offset (perpendicular to the line) The parameters are case insensitive. ] ends the complex part of the line pattern. The fine tuning of this parameters is still a try an error process for me, for TEXT the scaling factor (STANDARD text style) sets the text height (S=.1 the text is .1 units in height), by shifting in y direction by half of the scaling factor, the center of the text is on the line. For the x direction it seems to be a good practice to place a gap in front of the text and after the text, find x shifting value and gap sizes by try and error. The overall length is at least the sum of all line and gap definitions (absolute values). Example for complex line type SHAPE: doc.linetypes.new('GRENZE2', dxfattribs={ 'description': 'Grenze eckig ----[]-----[]----[]-----[]----[]--', 'length': 1.45, # required for complex line types # line type definition in acadlt.lin: # A,.25,-.1,[BOX,ltypeshp.shx,x=-.1,s=.1],-.1,1 # replacing BOX by shape index 132 (got index from an AutoCAD file), # ezdxf can't get shape index from ltypeshp.shx 'pattern': 'A,.25,-.1,[132,ltypeshp.shx,x=-.1,s=.1],-.1,1', }) Complex line types with shapes only work if the associated shape file (ltypeshp.shx) and the DXF file are in the same directory. Tutorial for OCS/UCS Usage For OCS/UCS usage is a basic understanding of vectors required, for a brush up, watch the YouTube tutorials of 3Blue1Brown about Linear Algebra. Second read the Coordinate Systems introduction please. For WCS there is not much to say as, it is what it is: the main world coordinate system, and a drawing unit can have any real world unit you want. Autodesk added some mechanism to define a scale for dimension and text entities, but because I am not an AutoCAD user, I am not familiar with it, and further more I think this is more an AutoCAD topic than a DXF topic. Object Coordinate System (OCS) The OCS is used to place planar 2D entities in 3D space. ALL points of a planar entity lay in the same plane, this is also true if the plane is located in 3D space by an OCS. There are three basic DXF attributes that gives a 2D entity its spatial form. Extrusion The extrusion vector defines the OCS, it is a normal vector to the base plane of a planar entity. This base plane is always located in the origin of the WCS. But there are some entities like Ellipse, which have an extrusion vector, but do not establish an OCS. For this entities the extrusion vector defines only the extrusion direction and thickness defines the extrusion distance, but all other points in WCS. Elevation The elevation value defines the z-axis value for all points of a planar entity, this is an OCS value, and defines the distance of the entity plane from the base plane. This value exists only in output from DXF versions prior to R11 as separated DXF attribute (group code 38). In DXF R12 and later, the elevation value is supplied as z-axis value of each point. But as always in DXF, this simple rule does not apply to all entities: LWPolyline and Hatch have an DXF attribute elevation, where the z-axis of this point is the elevation height and the x-axis = y-axis = 0. Thickness Defines the extrusion distance for an entity. NOTE: There is a new edition of this tutorial using UCS based transformation, which are available in ezdxf v0.11 and later: tut_ucs_transform This edition shows the hard way to accomplish the transformations by low level operations. Placing 2D Circle in 3D Space The colors for axis follow the AutoCAD standard: • red is x-axis • green is y-axis • blue is z-axis import ezdxf from ezdxf.math import OCS doc = ezdxf.new('R2010') msp = doc.modelspace() # For this example the OCS is rotated around x-axis about 45 degree # OCS z-axis: x=0, y=1, z=1 # extrusion vector must not normalized here ocs = OCS((0, 1, 1)) msp.add_circle( # You can place the 2D circle in 3D space # but you have to convert WCS into OCS center=ocs.from_wcs((0, 2, 2)), # center in OCS: (0.0, 0.0, 2.82842712474619) radius=1, dxfattribs={ # here the extrusion vector should be normalized, # which is granted by using the ocs.uz 'extrusion': ocs.uz, 'color': 1, }) # mark center point of circle in WCS msp.add_point((0, 2, 2), dxfattribs={'color': 1}) The following image shows the 2D circle in 3D space in AutoCAD Left and Front view. The blue line shows the OCS z-axis (extrusion direction), elevation is the distance from the origin to the center of the circle in this case 2.828, and you see that the x- and y-axis of OCS and WCS are not aligned. [image: circle in ocs as side view] [image] [image: circle in ocs as front view] [image] Placing LWPolyline in 3D Space For simplicity of calculation I use the UCS class in this example to place a 2D pentagon in 3D space. # The center of the pentagon should be (0, 2, 2), and the shape is # rotated around x-axis about 45 degree, to accomplish this I use an # UCS with z-axis (0, 1, 1) and an x-axis parallel to WCS x-axis. ucs = UCS( origin=(0, 2, 2), # center of pentagon ux=(1, 0, 0), # x-axis parallel to WCS x-axis uz=(0, 1, 1), # z-axis ) # calculating corner points in local (UCS) coordinates points = [Vector.from_deg_angle((360 / 5) * n) for n in range(5)] # converting UCS into OCS coordinates ocs_points = list(ucs.points_to_ocs(points)) # LWPOLYLINE accepts only 2D points and has an separated DXF attribute elevation. # All points have the same z-axis (elevation) in OCS! elevation = ocs_points[0].z msp.add_lwpolyline( points=ocs_points, format='xy', # ignore z-axis dxfattribs={ 'elevation': elevation, 'extrusion': ucs.uz, 'closed': True, 'color': 1, }) The following image shows the 2D pentagon in 3D space in AutoCAD Left, Front and Top view. The three lines from the center of the pentagon show the UCS, the three colored lines in the origin show the OCS the white lines in the origin show the WCS. The z-axis of the UCS and the OCS show the same direction (extrusion direction), and the x-axis of the UCS and the WCS show the same direction. The elevation is the distance from the origin to the center of the pentagon and all points of the pentagon have the same elevation, and you see that the y- axis of UCS, OCS and WCS are not aligned. [image: pentagon in ucs as side view] [image] [image: pentagon in ucs as front view] [image] Using UCS to Place 3D Polyline It is much simpler to use a 3D Polyline to create the 3D pentagon. The UCS class is handy for this example and all kind of 3D operations. # Using an UCS simplifies 3D operations, but UCS definition can happen later # calculating corner points in local (UCS) coordinates without Vector class angle = math.radians(360 / 5) corners_ucs = [(math.cos(angle * n), math.sin(angle * n), 0) for n in range(5)] # let's do some transformations tmatrix = Matrix44.chain( # creating a transformation matrix Matrix44.z_rotate(math.radians(15)), # 1. rotation around z-axis Matrix44.translate(0, .333, .333), # 2. translation ) transformed_corners_ucs = tmatrix.transform_vertices(corners_ucs) # transform UCS into WCS ucs = UCS( origin=(0, 2, 2), # center of pentagon ux=(1, 0, 0), # x-axis parallel to WCS x-axis uz=(0, 1, 1), # z-axis ) corners_wcs = list(ucs.points_to_wcs(transformed_corners_ucs)) msp.add_polyline3d( points=corners_wcs, dxfattribs={ 'closed': True, 'color': 1, }) # add lines from center to corners center_wcs = ucs.to_wcs((0, .333, .333)) for corner in corners_wcs: msp.add_line(center_wcs, corner, dxfattribs={'color': 1}) [image: 3d poyline with UCS] [image] Placing 2D Text in 3D Space The problem by placing text in 3D space is the text rotation, which is always counter clockwise around the OCS z-axis, and 0 degree is in direction of the positive OCS x-axis, and the OCS x-axis is calculated by the Arbitrary Axis Algorithm. Calculate the OCS rotation angle by converting the TEXT rotation angle (in UCS or WCS) into a vector or begin with text direction as vector, transform this direction vector into OCS and convert the OCS vector back into an angle in the OCS xy-plane (see example), this procedure is available as UCS.to_ocs_angle_deg() or UCS.to_ocs_angle_rad(). AutoCAD supports thickness for the TEXT entity only for .shx fonts and not for true type fonts. # Thickness for text works only with shx fonts not with true type fonts doc.styles.new('TXT', dxfattribs={'font': 'romans.shx'}) ucs = UCS(origin=(0, 2, 2), ux=(1, 0, 0), uz=(0, 1, 1)) # calculation of text direction as angle in OCS: # convert text rotation in degree into a vector in UCS text_direction = Vector.from_deg_angle(-45) # transform vector into OCS and get angle of vector in xy-plane rotation = ucs.to_ocs(text_direction).angle_deg text = msp.add_text( text="TEXT", dxfattribs={ # text rotation angle in degrees in OCS 'rotation': rotation, 'extrusion': ucs.uz, 'thickness': .333, 'color': 1, 'style': 'TXT', }) # set text position in OCS text.set_pos(ucs.to_ocs((0, 0, 0)), align='MIDDLE_CENTER') [image: text in ucs as top view] [image] [image: text in ucs as front view] [image] HINT: For calculating OCS angles from an UCS, be aware that 2D entities, like TEXT or ARC, are placed parallel to the xy-plane of the UCS. Placing 2D Arc in 3D Space Here we have the same problem as for placing text, you need the start and end angle of the arc in degrees in OCS, and this example also shows a shortcut for calculating the OCS angles. ucs = UCS(origin=(0, 2, 2), ux=(1, 0, 0), uz=(0, 1, 1)) msp.add_arc( center=ucs.to_ocs((0, 0)), radius=1, start_angle=ucs.to_ocs_angle_deg(45), end_angle=ucs.to_ocs_angle_deg(270), dxfattribs={ 'extrusion': ucs.uz, 'color': 1, }) center = ucs.to_wcs((0, 0)) msp.add_line( start=center, end=ucs.to_wcs(Vector.from_deg_angle(45)), dxfattribs={'color': 1}, ) msp.add_line( start=center, end=ucs.to_wcs(Vector.from_deg_angle(270)), dxfattribs={'color': 1}, ) [image: arc in ucs as top view] [image] [image: arc in ucs as front view] [image] Placing Block References in 3D Space Despite the fact that block references (Insert) can contain true 3D entities like Line or Mesh, the Insert entity uses the same placing principe as Text or Arc shown in the previous chapters. Simple placing by OCS and rotation about the z-axis, can be achieved the same way as for generic 2D entity types. The DXF attribute Insert.dxf.rotation rotates a block reference around the block z-axis, which is located in the Block.dxf.base_point. To rotate the block reference around the WCS x-axis, a transformation of the block z-axis into the WCS x-axis is required by rotating the block z-axis 90 degree counter clockwise around y-axis by using an UCS: This is just an excerpt of the important parts, see the whole code of insert.py at github. # rotate UCS around an arbitrary axis: def ucs_rotation(ucs: UCS, axis: Vector, angle: float): # new in ezdxf v0.11: UCS.rotate(axis, angle) t = Matrix44.axis_rotate(axis, math.radians(angle)) ux, uy, uz = t.transform_vertices([ucs.ux, ucs.uy, ucs.uz]) return UCS(origin=ucs.origin, ux=ux, uy=uy, uz=uz) doc = ezdxf.new('R2010', setup=True) blk = doc.blocks.new('CSYS') setup_csys(blk) msp = doc.modelspace() ucs = ucs_rotation(UCS(), axis=Y_AXIS, angle=90) # transform insert location to OCS insert = ucs.to_ocs((0, 0, 0)) # rotation angle about the z-axis (= WCS x-axis) rotation = ucs.to_ocs_angle_deg(15) msp.add_blockref('CSYS', insert, dxfattribs={ 'extrusion': ucs.uz, 'rotation': rotation, }) [image] [image] To rotate a block reference around another axis than the block z-axis, you have to find the rotated z-axis (extrusion vector) of the rotated block reference, following example rotates the block reference around the block x-axis by 15 degrees: # t is a transformation matrix to rotate 15 degree around the x-axis t = Matrix44.axis_rotate(axis=X_AXIS, angle=math.radians(15)) # transform block z-axis into new UCS z-axis (= extrusion vector) uz = Vector(t.transform(Z_AXIS)) # create new UCS at the insertion point, because we are rotating around the x-axis, # ux is the same as the WCS x-axis and uz is the rotated z-axis. ucs = UCS(origin=(1, 2, 0), ux=X_AXIS, uz=uz) # transform insert location to OCS, block base_point=(0, 0, 0) insert = ucs.to_ocs((0, 0, 0)) # for this case a rotation around the z-axis is not required rotation = 0 blockref = msp.add_blockref('CSYS', insert, dxfattribs={ 'extrusion': ucs.uz, 'rotation': rotation, }) [image] [image] The next example shows how to translate a block references with an already established OCS: # translate a block references with an established OCS translation = Vector(-3, -1, 1) # get established OCS ocs = blockref.ocs() # get insert location in WCS actual_wcs_location = ocs.to_wcs(blockref.dxf.insert) # translate location new_wcs_location = actual_wcs_location + translation # convert WCS location to OCS location blockref.dxf.insert = ocs.from_wcs(new_wcs_location) Setting a new insert location is the same procedure without adding a translation vector, just transform the new insert location into the OCS. [image] [image] The next operation is to rotate a block reference with an established OCS, rotation axis is the block y-axis, rotation angle is -90 degrees. First transform block y-axis (rotation axis) and block z-axis (extrusion vector) from OCS into WCS: # rotate a block references with an established OCS around the block y-axis about 90 degree ocs = blockref.ocs() # convert block y-axis (= rotation axis) into WCS vector rotation_axis = ocs.to_wcs((0, 1, 0)) # convert local z-axis (=extrusion vector) into WCS vector local_z_axis = ocs.to_wcs((0, 0, 1)) Build transformation matrix and transform extrusion vector and build new UCS: # build transformation matrix t = Matrix44.axis_rotate(axis=rotation_axis, angle=math.radians(-90)) uz = t.transform(local_z_axis) uy = rotation_axis # the block reference origin stays at the same location, no rotation needed wcs_insert = ocs.to_wcs(blockref.dxf.insert) # build new UCS to convert WCS locations and angles into OCS ucs = UCS(origin=wcs_insert, uy=uy, uz=uz) Set new OCS attributes, we also have to set the rotation attribute even though we do not rotate the block reference around the local z-axis, the new block x-axis (0 deg) differs from OCS x-axis and has to be adjusted: # set new OCS blockref.dxf.extrusion = ucs.uz # set new insert blockref.dxf.insert = ucs.to_ocs((0, 0, 0)) # set new rotation: we do not rotate the block reference around the local z-axis, # but the new block x-axis (0 deg) differs from OCS x-axis and has to be adjusted blockref.dxf.rotation = ucs.to_ocs_angle_deg(0) [image] [image] And here is the point, where my math knowledge ends, for more advanced CAD operation you have to look elsewhere. Tutorial for UCS Based Transformations With ezdxf v0.11 a new feature for entity transformation was introduced, which makes working with OCS/UCS much easier, this is a new edition of the older tut_ocs. For the basic information read the old tutorial please. In ezdxf v0.13 the transform_to_wcs() interface was replaced by the general transformation interface: transform(). For this tutorial we don’t have to worry about the OCS and the extrusion vector, this is done automatically by the transform() method of each DXF entity. Placing 2D Circle in 3D Space To recreate the situation of the old tutorial instantiate a new UCS and rotate it around the local x-axis. Use UCS coordinates to place the 2D CIRCLE in 3D space, and transform the UCS coordinates to the WCS. import math import ezdxf from ezdxf.math import UCS doc = ezdxf.new('R2010') msp = doc.modelspace() ucs = UCS() # New default UCS # All rotation angles in radians, and rotation # methods always return a new UCS. ucs = ucs.rotate_local_x(math.radians(-45)) circle = msp.add_circle( # Use UCS coordinates to place the 2d circle in 3d space center=(0, 0, 2), radius=1, dxfattribs={'color': 1} ) circle.transform(ucs.matrix) # mark center point of circle in WCS msp.add_point((0, 0, 2), dxfattribs={'color': 1}).transform(ucs.matrix) [image: circle in ucs as side view] [image] [image: circle in ucs as front view] [image] Placing LWPolyline in 3D Space Simplified LWPOLYLINE example: # The center of the pentagon should be (0, 2, 2), and the shape is # rotated around x-axis about -45 degree ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45)) msp.add_lwpolyline( # calculating corner points in UCS coordinates points=(Vector.from_deg_angle((360 / 5) * n) for n in range(5)), format='xy', # ignore z-axis dxfattribs={ 'closed': True, 'color': 1, } ).transform(ucs.matrix) The 2D pentagon in 3D space in BricsCAD Left and Front view. [image: pentagon in ucs as side view] [image] [image: pentagon in ucs as front view] [image] Using UCS to Place 3D Polyline Simplified POLYLINE example: Using a first UCS to transform the POLYLINE and a second UCS to place the POLYLINE in 3D space. # using an UCS simplifies 3D operations, but UCS definition can happen later # calculating corner points in local (UCS) coordinates without Vector class angle = math.radians(360 / 5) corners_ucs = [(math.cos(angle * n), math.sin(angle * n), 0) for n in range(5)] # let's do some transformations by UCS transformation_ucs = UCS().rotate_local_z(math.radians(15)) # 1. rotation around z-axis transformation_ucs.shift((0, .333, .333)) # 2. translation (inplace) corners_ucs = list(transformation_ucs.points_to_wcs(corners_ucs)) location_ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45)) msp.add_polyline3d( points=corners_ucs, dxfattribs={ 'closed': True, 'color': 1, } ).transform(location_ucs.matrix) # Add lines from the center of the POLYLINE to the corners center_ucs = transformation_ucs.to_wcs((0, 0, 0)) for corner in corners_ucs: msp.add_line( center_ucs, corner, dxfattribs={'color': 1} ).transform(location_ucs.matrix) [image: 3d poyline with UCS] [image] Placing 2D Text in 3D Space The problem with the text rotation in the old tutorial disappears (or better it is hidden in transform()) with the new UCS based transformation method: AutoCAD supports thickness for the TEXT entity only for .shx fonts and not for true type fonts. # thickness for text works only with shx fonts not with true type fonts doc.styles.new('TXT', dxfattribs={'font': 'romans.shx'}) ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45)) text = msp.add_text( text="TEXT", dxfattribs={ # text rotation angle in degrees in UCS 'rotation': -45, 'thickness': .333, 'color': 1, 'style': 'TXT', } ) # set text position in UCS text.set_pos((0, 0, 0), align='MIDDLE_CENTER') text.transform(ucs.matrix) [image: text in ucs as top view] [image] [image: text in ucs as front view] [image] Placing 2D Arc in 3D Space Same as for the text example, OCS angle transformation can be ignored: ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45)) CENTER = (0, 0) START_ANGLE = 45 END_ANGLE = 270 msp.add_arc( center=CENTER, radius=1, start_angle=START_ANGLE, end_angle=END_ANGLE, dxfattribs={'color': 6}, ).transform(ucs.matrix) msp.add_line( start=CENTER, end=Vector.from_deg_angle(START_ANGLE), dxfattribs={'color': 6}, ).transform(ucs.matrix) msp.add_line( start=CENTER, end=Vector.from_deg_angle(END_ANGLE), dxfattribs={'color': 6}, ).transform(ucs.matrix) [image: arc in ucs as top view] [image] [image: arc in ucs as front view] [image] Placing Block References in 3D Space Despite the fact that block references (INSERT) can contain true 3D entities like LINE or MESH, the INSERT entity uses the same placing principe as TEXT or ARC shown in the previous chapters. To rotate the block reference 15 degrees around the WCS x-axis, we place the block reference in the origin of the UCS, and rotate the UCS 90 degrees around its local y-axis, to align the UCS z-axis with the WCS x-axis: This is just an excerpt of the important parts, see the whole code of insert.py at github. doc = ezdxf.new('R2010', setup=True) blk = doc.blocks.new('CSYS') setup_csys(blk) msp = doc.modelspace() ucs = UCS().rotate_local_y(angle=math.radians(90)) msp.add_blockref( 'CSYS', insert=(0, 0), # rotation around the block z-axis (= WCS x-axis) dxfattribs={'rotation': 15}, ).transform(ucs.matrix) [image] [image] A more simple approach is to ignore the rotate attribute at all and just rotate the UCS. To rotate a block reference around any axis rather than the block z-axis, rotate the UCS into the desired position. Following example rotates the block reference around the block x-axis by 15 degrees: ucs = UCS(origin=(1, 2, 0)).rotate_local_x(math.radians(15)) blockref = msp.add_blockref('CSYS', insert=(0, 0, 0)) blockref.transform(ucs.matrix) [image] [image] The next example shows how to translate a block references with an already established OCS: # New UCS at the translated location, axis aligned to the WCS ucs = UCS((-3, -1, 1)) # Transform an already placed block reference, including # the transformation of the established OCS. blockref.transform(ucs.matrix) [image] [image] The next operation is to rotate a block reference with an established OCS, rotation axis is the block y-axis, rotation angle is -90 degrees. The idea is to create an UCS in the origin of the already placed block reference, UCS axis aligned to the block axis and resetting the block reference parameters for a new WCS transformation. # Get UCS at the block reference insert location, UCS axis aligned # to the block axis. ucs = blockref.ucs() # Rotate UCS around the local y-axis. ucs = ucs.rotate_local_y(math.radians(-90)) Reset block reference parameters, this places the block reference in the UCS origin and aligns the block axis to the UCS axis, now we do a new transformation from UCS to WCS: # Reset block reference parameters to place block reference in # UCS origin, without any rotation and OCS. blockref.reset_transformation() # Transform block reference from UCS to WCS blockref.transform(ucs.matrix) [image] [image] Tutorial for Linear Dimensions The Dimension entity is the generic entity for all dimension types, but unfortunately AutoCAD is not willing to show a dimension line defined only by this dimension entity, it also needs an anonymous block which contains the dimension line shape constructed by basic DXF entities like LINE and TEXT entities, this representation is called the dimension line rendering in this documentation, beside the fact this is not a real graphical rendering. BricsCAD is a much more friendly CAD application, which do show the dimension entity without the graphical rendering as block, which was very useful for testing, because there is no documentation how to apply all the dimension style variables (more than 80). This seems to be the reason why dimension lines are rendered so differently by many CAD application. Don’t expect to get the same rendering results by ezdxf as you get from AutoCAD, ezdxf tries to be as close to the results rendered by BricsCAD, but it was not possible to implement all the various combinations of dimension style parameters. Text rendering is another problem, because ezdxf has no real rendering engine. Some font properties, like the real text width, are not available to ezdxf and may also vary slightly for different CAD applications. The text properties in ezdxf are based on the default monospaced standard font, but for TrueType fonts the space around the text is much bigger than needed. Not all DIMENSION and DIMSTYLE features are supported by all DXF versions, especially DXF R12 does not support many features, but in this case the required rendering of dimension lines is an advantage, because if the application just shows the rendered block, all features which can be used in DXF R12 are displayed like linetypes, but they disappear if the dimension line is edited in the application. ezdxf writes only the supported DIMVARS of the used DXF version to avoid invalid DXF files. So it is not that critical to know all the supported features of a DXF version, except for limits and tolerances, ezdxf uses the advanced features of MTEXT to create limits and tolerances and therefore they are not supported (displayed) in DXF R12 files. SEE ALSO: • Graphical reference of many DIMVARS and some advanced information: dimstyle_table_internals • Source code file standards.py shows how to create your own DIMSTYLES. • dimension_linear.py for linear dimension examples. Horizontal Dimension import ezdxf # Argument setup=True setups the default dimension styles doc = ezdxf.new('R2010', setup=True) # Add new dimension entities to the modelspace msp = doc.modelspace() # Add a LINE entity, not required msp.add_line((0, 0), (3, 0)) # Add a horizontal dimension, default dimension style is 'EZDXF' dim = msp.add_linear_dim(base=(3, 2), p1=(0, 0), p2=(3, 0)) # Necessary second step, to create the BLOCK entity with the dimension geometry. # Additional processing of the dimension line could happen between adding and # rendering call. dim.render() doc.saveas('dim_linear_horiz.dxf') [image] The example above creates a horizontal Dimension entity, the default dimension style 'EZDXF' and is defined as 1 drawing unit is 1m in reality, the drawing scale 1:100 and the length factor is 100, which creates a measurement text in cm. The base point defines the location of the dimension line, ezdxf accepts any point on the dimension line, the point p1 defines the start point of the first extension line, which also defines the first measurement point and the point p2 defines the start point of the second extension line, which also defines the second measurement point. The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the dimension entity is stored as dim.dimension. Vertical and Rotated Dimension Argument angle defines the angle of the dimension line in relation to the x-axis of the WCS or UCS, measurement is the distance between first and second measurement point in direction of angle. # assignment to dim is not necessary, if no additional processing happens msp.add_linear_dim(base=(3, 2), p1=(0, 0), p2=(3, 0), angle=-30).render() doc.saveas('dim_linear_rotated.dxf') [image] For a vertical dimension set argument angle to 90 degree, but in this example the vertical distance would be 0. Aligned Dimension An aligned dimension line is parallel to the line defined by the definition points p1 and p2. The placement of the dimension line is defined by the argument distance, which is the distance between the definition line and the dimension line. The distance of the dimension line is orthogonal to the base line in counter clockwise orientation. msp.add_line((0, 2), (3, 0)) dim = msp.add_aligned_dim(p1=(0, 2), p2=(3, 0), distance=1) doc.saveas('dim_linear_aligned.dxf') [image] Dimension Style Override Many dimension styling options are defined by the associated DimStyle entity. But often you wanna change just a few settings without creating a new dimension style, therefore the DXF format has a protocol to store this changed settings in the dimension entity itself. This protocol is supported by ezdxf and every factory function which creates dimension entities supports the override argument. This override argument is a simple Python dictionary (e.g. override = {'dimtad': 4}, place measurement text below dimension line). The overriding protocol is managed by the DimStyleOverride object, which is returned by the most dimension factory functions. Placing Measurement Text The “default” location of the measurement text depends on various DimStyle parameters and is applied if no user defined text location is defined. Default Text Locations “Horizontal direction” means in direction of the dimension line and “vertical direction” means perpendicular to the dimension line direction. The “horizontal” location of the measurement text is defined by dimjust: ┌──┬───────────────────────────────────────┐ │0 │ Center of dimension line │ ├──┼───────────────────────────────────────┤ │1 │ Left side of the dimension line, near │ │ │ first extension line │ ├──┼───────────────────────────────────────┤ │2 │ Right side of the dimension line, │ │ │ near second extension line │ ├──┼───────────────────────────────────────┤ │3 │ Over first extension line │ ├──┼───────────────────────────────────────┤ │4 │ Over second extension line │ └──┴───────────────────────────────────────┘ msp.add_linear_dim(base=(3, 2), p1=(0, 0), p2=(3, 0), override={'dimjust': 1}).render() [image] The “vertical” location of the measurement text relative to the dimension line is defined by dimtad: ┌──┬───────────────────────────────────────┐ │0 │ Center, it is possible to adjust the │ │ │ vertical location by dimtvp │ ├──┼───────────────────────────────────────┤ │1 │ Above │ ├──┼───────────────────────────────────────┤ │2 │ Outside, handled like Above by ezdxf │ ├──┼───────────────────────────────────────┤ │3 │ JIS, handled like Above by ezdxf │ ├──┼───────────────────────────────────────┤ │4 │ Below │ └──┴───────────────────────────────────────┘ msp.add_linear_dim(base=(3, 2), p1=(0, 0), p2=(3, 0), override={'dimtad': 4}).render() [image] The distance between text and dimension line is defined by dimgap. The DimStyleOverride object has a method set_text_align() to set the default text location in an easy way, this is also the reason for the 2 step creation process of dimension entities: dim = msp.add_linear_dim(base=(3, 2), p1=(0, 0), p2=(3, 0)) dim.set_text_align(halign='left', valign='center') dim.render() ┌───────┬───────────────────────────────────────┐ │halign │ 'left', 'right', 'center', 'above1', │ │ │ 'above2' │ ├───────┼───────────────────────────────────────┤ │valign │ 'above', 'center', 'below' │ └───────┴───────────────────────────────────────┘ Run function example_for_all_text_placings_R2007() in the example script dimension_linear.py to create a DXF file with all text placings supported by ezdxf. User Defined Text Locations Beside the default location, it is possible to locate the measurement text freely. Location Relative to Origin The user defined text location can be set by the argument location in most dimension factory functions and always references the midpoint of the measurement text: msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0), location=(4, 4)).render() [image] The location is relative to origin of the active coordinate system or WCS if no UCS is defined in the render() method, the user defined location can also be set by user_location_override(). Location Relative to Center of Dimension Line The method set_location() has additional features for linear dimensions. Argument leader = True adds a simple leader from the measurement text to the center of the dimension line and argument relative = True places the measurement text relative to the center of the dimension line. dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0)) dim.set_location(location=(-1, 1), leader=True, relative=True) dim.render() [image] Location Relative to Default Location The method shift_text() shifts the measurement text away from the default text location. Shifting directions are aligned to the text direction, which is the direction of the dimension line in most cases, dh (for delta horizontal) shifts the text parallel to the text direction, dv (for delta vertical) shifts the text perpendicular to the text direction. This method does not support leaders. dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0)) dim.shift_text(dh=1, dv=1) dim.render() [image] Measurement Text Formatting and Styling Text Properties ┌─────────┬───────────────────────────────────────┐ │DIMVAR │ Description │ ├─────────┼───────────────────────────────────────┤ │dimtxsty │ Specifies the text style of the │ │ │ dimension as Textstyle name. │ ├─────────┼───────────────────────────────────────┤ │dimtxt │ Text height in drawing units. │ ├─────────┼───────────────────────────────────────┤ │dimclrt │ Measurement text color as ACI. │ └─────────┴───────────────────────────────────────┘ msp.add_linear_dim( base=(3, 2), p1=(3, 0), p2=(6, 0), override={ 'dimtxsty': 'Standard', 'dimtxt': 0.35, 'dimclrt': 1, }).render() [image] Background Filling Background fillings are supported since DXF R2007, and ezdxf uses the MTEXT entity to implement this feature, so setting background filling in DXF R12 has no effect. Set dimtfill to 1 to use the canvas color as background filling or set dimtfill to 2 to use dimtfillclr as background filling, color value as ACI. Set dimtfill to 0 to disable background filling. ┌────────────┬───────────────────────────────────────┐ │DIMVAR │ Description │ ├────────────┼───────────────────────────────────────┤ │dimtfill │ Enables background filling if bigger │ │ │ than 0 │ ├────────────┼───────────────────────────────────────┤ │dimtfillclr │ Fill color as ACI, if dimtfill is 2 │ └────────────┴───────────────────────────────────────┘ ┌─────────┬──────────────────────────────┐ │dimtfill │ Description │ ├─────────┼──────────────────────────────┤ │0 │ disabled │ ├─────────┼──────────────────────────────┤ │1 │ canvas color │ └─────────┴──────────────────────────────┘ │2 │ color defined by dimtfillclr │ └─────────┴──────────────────────────────┘ msp.add_linear_dim( base=(3, 2), p1=(3, 0), p2=(6, 0), override={ 'dimtfill': 2, 'dimtfillclr': 1, }).render() [image] Text Formatting • Set decimal places: dimdec defines the number of decimal places displayed for the primary units of a dimension. (DXF R2000) • Set decimal point character: dimdsep defines the decimal point as ASCII code, use ord('.') • Set rounding: dimrnd, rounds all dimensioning distances to the specified value, for instance, if dimrnd is set to 0.25, all distances round to the nearest 0.25 unit. If dimrnd is set to 1.0, all distances round to the nearest integer. For more information look at the documentation of the ezdxf.math.xround() function. • Set zero trimming: dimzin, ezdxf supports only: 4 suppress leading zeros and 8: suppress trailing zeros and both as 12. • Set measurement factor: scale measurement by factor dimlfac, e.g. to get the dimensioning text in cm for a DXF file where 1 drawing unit represents 1m, set dimlfac to 100. • Text template for measurement text is defined by dimpost, '<>' represents the measurement text, e.g. '~<>cm' produces '~300cm' for measurement in previous example. To set this values the ezdxf.entities.DimStyle.set_text_format() and ezdxf.entities.DimStyleOverride.set_text_format() methods are very recommended. Overriding Measurement Text Measurement text overriding is stored in the Dimension entity, the content of to DXF attribute text represents the override value as string. Special values are one space ' ' to just suppress the measurement text, an empty string '' or '<>' to get the regular measurement. All factory functions have an explicit text argument, which always replaces the text value in the dxfattribs dict. msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0), text='>1m').render() [image] Dimension Line Properties The dimension line color is defined by the DIMVAR dimclrd as ACI, dimclrd also defines the color of the arrows. The linetype is defined by dimltype but requires DXF R2007 for full support by CAD Applications and the line weight is defined by dimlwd (DXF R2000), see also the lineweight reference for valid values. The dimdle is the extension of the dimension line beyond the extension lines, this dimension line extension is not supported for all arrows. ┌─────────┬───────────────────────────────────────┐ │DIMVAR │ Description │ ├─────────┼───────────────────────────────────────┤ │dimclrd │ dimension line and arrows color as │ │ │ ACI │ ├─────────┼───────────────────────────────────────┤ │dimltype │ linetype of dimension line │ ├─────────┼───────────────────────────────────────┤ │dimlwd │ line weight of dimension line │ ├─────────┼───────────────────────────────────────┤ │dimdle │ extension of dimension line in │ │ │ drawing units │ └─────────┴───────────────────────────────────────┘ msp.add_linear_dim( base=(3, 2), p1=(3, 0), p2=(6, 0), override={ 'dimclrd': 1, # red 'dimdle': 0.25, 'dimltype': 'DASHED2', 'dimlwd': 35, # 0.35mm line weight }).render() [image] DimStyleOverride() method: dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0)) dim.set_dimline_format(color=1, linetype='DASHED2', lineweight=35, extension=0.25) dim.render() Extension Line Properties The extension line color is defined by the DIMVAR dimclre as ACI. The linetype for first and second extension line is defined by dimltex1 and dimltex2 but requires DXF R2007 for full support by CAD Applications and the line weight is defined by dimlwe (DXF R2000), see also the lineweight reference for valid values. The dimexe is the extension of the extension line beyond the dimension line, and dimexo defines the offset of the extension line from the measurement point. ┌─────────┬───────────────────────────────────────┐ │DIMVAR │ Description │ ├─────────┼───────────────────────────────────────┤ │dimclre │ extension line color as ACI │ ├─────────┼───────────────────────────────────────┤ │dimltex1 │ linetype of first extension line │ ├─────────┼───────────────────────────────────────┤ │dimltex2 │ linetype of second extension line │ ├─────────┼───────────────────────────────────────┤ │dimlwe │ line weight of extension line │ ├─────────┼───────────────────────────────────────┤ │dimexe │ extension beyond dimension line in │ │ │ drawing units │ ├─────────┼───────────────────────────────────────┤ │dimexo │ offset of extension line from │ │ │ measurement point │ ├─────────┼───────────────────────────────────────┤ │dimfxlon │ set to 1 to enable fixed length │ │ │ extension line │ ├─────────┼───────────────────────────────────────┤ │dimfxl │ length of fixed length extension line │ │ │ in drawing units │ ├─────────┼───────────────────────────────────────┤ │dimse1 │ suppress first extension line if 1 │ ├─────────┼───────────────────────────────────────┤ │dimse2 │ suppress second extension line if 1 │ └─────────┴───────────────────────────────────────┘ msp.add_linear_dim( base=(3, 2), p1=(3, 0), p2=(6, 0), override={ 'dimclre': 1, # red 'dimltex1': 'DASHED2', 'dimltex2': 'CENTER2', 'dimlwe': 35, # 0.35mm line weight 'dimexe': 0.3, # length above dimension line 'dimexo': 0.1, # offset from measurement point }).render() [image] DimStyleOverride() methods: dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0)) dim.set_extline_format(color=1, lineweight=35, extension=0.3, offset=0.1) dim.set_extline1(linetype='DASHED2') dim.set_extline2(linetype='CENTER2') dim.render() Fixed length extension lines are supported in DXF R2007+, set dimfxlon to 1 and dimfxl defines the length of the extension line starting at the dimension line. msp.add_linear_dim( base=(3, 2), p1=(3, 0), p2=(6, 0), override={ 'dimfxlon': 1, # fixed length extension lines 'dimexe': 0.2, # length above dimension line 'dimfxl': 0.4, # length below dimension line }).render() [image] DimStyleOverride() method: dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0)) dim.set_extline_format(extension=0.2, fixed_length=0.4) dim.render() To suppress extension lines set dimse1 = 1 to suppress the first extension line and dimse2 = 1 to suppress the second extension line. msp.add_linear_dim( base=(3, 2), p1=(3, 0), p2=(6, 0), override={ 'dimse1': 1, # suppress first extension line 'dimse2': 1, # suppress second extension line 'dimblk': ezdxf.ARROWS.closed_filled, # arrows just looks better }).render() [image] DimStyleOverride() methods: dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0)) dim.set_arrows(blk=ezdxf.ARROWS.closed_filled) dim.set_extline1(disable=True) dim.set_extline2(disable=True) dim.render() Arrows “Arrows” mark then beginning and the end of a dimension line, and most of them do not look like arrows. DXF distinguish between the simple tick and arrows as blocks. Using the simple tick by setting tick size dimtsz != 0 also disables arrow blocks as side effect: dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0)) dim.set_tick(size=0.25) dim.render() ezdxf uses the "ARCHTICK" block at double size to render the tick (AutoCAD and BricsCad just draw a simple line), so there is no advantage of using the tick instead of an arrow. Using arrows: dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0)) dim.set_arrow(blk="OPEN_30", size=0.25) dim.render() ┌────────┬───────────────────────────────────────┐ │DIMVAR │ Description │ ├────────┼───────────────────────────────────────┤ │dimtsz │ tick size in drawing units, set to 0 │ │ │ to use arrows │ ├────────┼───────────────────────────────────────┤ │dimblk │ set both arrow block names at once │ ├────────┼───────────────────────────────────────┤ │dimblk1 │ first arrow block name │ ├────────┼───────────────────────────────────────┤ │dimblk2 │ second arrow block name │ ├────────┼───────────────────────────────────────┤ │dimasz │ arrow size in drawing units │ └────────┴───────────────────────────────────────┘ msp.add_linear_dim( base=(3, 2), p1=(3, 0), p2=(6, 0), override={ 'dimtsz': 0, # set tick size to 0 to enable arrow usage 'dimasz': 0.25, # arrow size in drawing units 'dimblk': "OPEN_30", # arrow block name }).render() Dimension line extension (dimdle) works only for a few arrow blocks and the simple tick: • "ARCHTICK" • "OBLIQUE" • "NONE" • "SMALL" • "DOTSMALL" • "INTEGRAL" Arrow Shapes [image] Arrow Names The arrow names are stored as attributes in the ezdxf.ARROWS object. ┌──────────────────────┬───────────────────┐ │closed_filled │ "" (empty string) │ ├──────────────────────┼───────────────────┤ │dot │ "DOT" │ ├──────────────────────┼───────────────────┤ │dot_small │ "DOTSMALL" │ ├──────────────────────┼───────────────────┤ │dot_blank │ "DOTBLANK" │ ├──────────────────────┼───────────────────┤ │origin_indicator │ "ORIGIN" │ ├──────────────────────┼───────────────────┤ │origin_indicator_2 │ "ORIGIN2" │ ├──────────────────────┼───────────────────┤ │open │ "OPEN" │ ├──────────────────────┼───────────────────┤ │right_angle │ "OPEN90" │ ├──────────────────────┼───────────────────┤ │open_30 │ "OPEN30" │ ├──────────────────────┼───────────────────┤ │closed │ "CLOSED" │ ├──────────────────────┼───────────────────┤ │dot_smallblank │ "SMALL" │ ├──────────────────────┼───────────────────┤ │none │ "NONE" │ ├──────────────────────┼───────────────────┤ │oblique │ "OBLIQUE" │ ├──────────────────────┼───────────────────┤ │box_filled │ "BOXFILLED" │ ├──────────────────────┼───────────────────┤ │box │ "BOXBLANK" │ ├──────────────────────┼───────────────────┤ │closed_blank │ "CLOSEDBLANK" │ ├──────────────────────┼───────────────────┤ │datum_triangle_filled │ "DATUMFILLED" │ ├──────────────────────┼───────────────────┤ │datum_triangle │ "DATUMBLANK" │ ├──────────────────────┼───────────────────┤ │integral │ "INTEGRAL" │ ├──────────────────────┼───────────────────┤ │architectural_tick │ "ARCHTICK" │ ├──────────────────────┼───────────────────┤ │ez_arrow │ "EZ_ARROW" │ ├──────────────────────┼───────────────────┤ │ez_arrow_blank │ "EZ_ARROW_BLANK" │ ├──────────────────────┼───────────────────┤ │ez_arrow_filled │ "EZ_ARROW_FILLED" │ └──────────────────────┴───────────────────┘ Tolerances and Limits The tolerances ans limits features are implemented by using the MText entity, therefore DXF R2000+ is required to use these features. It is not possible to use both tolerances and limits at the same time. Tolerances Geometrical tolerances are shown as additional text appended to the measurement text. It is recommend to use set_tolerance() method in DimStyleOverride or DimStyle. The attribute dimtp defines the upper tolerance value, dimtm defines the lower tolerance value if present, else the lower tolerance value is the same as the upper tolerance value. Tolerance values are shown as given! Same upper and lower tolerance value: dim = msp.add_linear_dim(base=(0, 3), p1=(3, 0), p2=(6.5, 0)) dim.set_tolerance(.1, hfactor=.4, align="top", dec=2) dim.render() [image] Different upper and lower tolerance values: dim = msp.add_linear_dim(base=(0, 3), p1=(3, 0), p2=(6.5, 0)) dim.set_tolerance(upper=.1, lower=.15, hfactor=.4, align="middle", dec=2) dim.render() [image] The attribute dimtfac specifies a scale factor for the text height of limits and tolerance values relative to the dimension text height, as set by dimtxt. For example, if dimtfac is set to 1.0, the text height of fractions and tolerances is the same height as the dimension text. If dimtxt is set to 0.75, the text height of limits and tolerances is three-quarters the size of dimension text. Vertical justification for tolerances is specified by dimtolj: ┌────────┬───────────────────────────────────────┐ │dimtolj │ Description │ ├────────┼───────────────────────────────────────┤ │0 │ Align with bottom line of dimension │ │ │ text │ ├────────┼───────────────────────────────────────┤ │1 │ Align vertical centered to dimension │ │ │ text │ ├────────┼───────────────────────────────────────┤ │2 │ Align with top line of dimension text │ └────────┴───────────────────────────────────────┘ ┌────────┬───────────────────────────────────────┐ │DIMVAR │ Description │ ├────────┼───────────────────────────────────────┤ │dimtol │ set to 1 to enable tolerances │ ├────────┼───────────────────────────────────────┤ │dimtp │ set the maximum (or upper) tolerance │ │ │ limit for dimension text │ ├────────┼───────────────────────────────────────┤ │dimtm │ set the minimum (or lower) tolerance │ │ │ limit for dimension text │ ├────────┼───────────────────────────────────────┤ │dimtfac │ specifies a scale factor for the text │ │ │ height of limits and tolerance values │ │ │ relative to the dimension text │ │ │ height, as set by dimtxt. │ ├────────┼───────────────────────────────────────┤ │dimtzin │ 4 to suppress leading zeros, 8 to │ │ │ suppress trailing zeros or 12 to │ │ │ suppress both, like dimzin for │ │ │ dimension text, see also Text │ │ │ Formatting │ ├────────┼───────────────────────────────────────┤ │dimtolj │ set the vertical justification for │ │ │ tolerance values relative to the │ │ │ nominal dimension text. │ ├────────┼───────────────────────────────────────┤ │dimtdec │ set the number of decimal places to │ │ │ display in tolerance values │ └────────┴───────────────────────────────────────┘ Limits The geometrical limits are shown as upper and lower measurement limit and replaces the usual measurement text. It is recommend to use set_limits() method in DimStyleOverride or DimStyle. For limits the tolerance values are drawing units scaled by measurement factor dimlfac, the upper limit is scaled measurement value + dimtp and the lower limit is scaled measurement value - dimtm. The attributes dimtfac, dimtzin and dimtdec have the same meaning for limits as for tolerances. dim = msp.add_linear_dim(base=(0, 3), p1=(3, 0), p2=(6.5, 0)) dim.set_limits(upper=.1, lower=.15, hfactor=.4, dec=2) dim.render() [image] ┌───────┬───────────────────────────┐ │DIMVAR │ Description │ ├───────┼───────────────────────────┤ │dimlim │ set to 1 to enable limits │ └───────┴───────────────────────────┘ Alternative Units Alternative units are not supported. Tutorial for Radius Dimensions Please read the tut_linear_dimension before, if you haven’t. import ezdxf # DXF R2010 drawing, official DXF version name: 'AC1024', # setup=True setups the default dimension styles doc = ezdxf.new('R2010', setup=True) msp = doc.modelspace() # add new dimension entities to the modelspace msp.add_circle((0, 0), radius=3) # add a CIRCLE entity, not required # add default radius dimension, measurement text is located outside dim = msp.add_radius_dim(center=(0, 0), radius=3, angle=45, dimstyle='EZ_RADIUS') # necessary second step, to create the BLOCK entity with the dimension geometry. dim.render() doc.saveas('radius_dimension.dxf') The example above creates a 45 degrees slanted radius Dimension entity, the default dimension style 'EZ_RADIUS' is defined as 1 drawing unit is 1m in reality, drawing scale 1:100 and the length factor is 100, which creates a measurement text in cm, the default location for the measurement text is outside of the circle. The center point defines the the center of the circle but there doesn’t have to exist a circle entity, radius defines the circle radius, which is also the measurement, and angle defines the slope of the dimension line, it is also possible to define the circle by a measurement point mpoint on the circle. The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the dimension entity is stored as dim.dimension. Placing Measurement Text There are different predefined DIMSTYLES to achieve various text placing locations. DIMSTYLE 'EZ_RADIUS' settings are: 1 drawing unit is 1m, scale 1:100, length_factor is 100 which creates measurement text in cm, and a closed filled arrow with size 0.25 is used. NOTE: Not all possibles features of DIMSTYLE are supported and especially for radial dimension there are less features supported as for linear dimension because of the lack of good documentation. SEE ALSO: • Graphical reference of many DIMVARS and some advanced information: dimstyle_table_internals • Source code file standards.py shows how to create your own DIMSTYLES. • dimension_radius.py for radius dimension examples. Default Text Locations Outside 'EZ_RADIUS' default settings for to place text outside: ┌───────┬───────────────────────────────────────┐ │tmove │ 1 to keep dim line with text, this is │ │ │ the best setting for text outside to │ │ │ preserve appearance of the DIMENSION │ │ │ entity, if editing afterwards in │ │ │ BricsCAD or AutoCAD. │ └───────┴───────────────────────────────────────┘ │dimtad │ 1 to place text vertical above the │ │ │ dimension line │ └───────┴───────────────────────────────────────┘ dim = msp.add_radius_dim(center=(0, 0), radius=2.5, angle=45, dimstyle='EZ_RADIUS' ) dim.render() # required, but not shown in the following examples [image] To force text outside horizontal set dimtoh to 1: dim = msp.add_radius_dim(center=(0, 0), radius=2.5, angle=45, dimstyle='EZ_RADIUS', override={'dimtoh': 1} ) [image] Default Text Locations Inside DIMSTYLE 'EZ_RADIUS_INSIDE' can be used to place the dimension text inside the circle at a default location. Default DIMSTYLE settings are: 1 drawing unit is 1m, scale 1:100, length_factor is 100 which creates measurement text in cm, and a closed filled arrow with size 0.25 is used. 'EZ_RADIUS_INSIDE' default settings: ┌─────────┬───────────────────────────────────────┐ │tmove │ 0 to keep dim line with text, this is │ │ │ the best setting for text inside to │ │ │ preserve appearance of the DIMENSION │ │ │ entity, if editing afterwards in │ │ │ BricsCAD or AutoCAD. │ ├─────────┼───────────────────────────────────────┤ │dimtix │ 1 to force text inside │ ├─────────┼───────────────────────────────────────┤ │dimatfit │ 0 to force text inside, required by │ │ │ BricsCAD and AutoCAD │ ├─────────┼───────────────────────────────────────┤ │dimtad │ 0 to center text vertical, BricsCAD │ │ │ and AutoCAD always create vertical │ │ │ centered text, ezdxf let you choose │ │ │ the vertical placement (above, below, │ │ │ center), but editing the DIMENSION in │ │ │ BricsCAD or AutoCAD will reset text │ │ │ to center placement. │ └─────────┴───────────────────────────────────────┘ dim = msp.add_radius_dim(center=(0, 0), radius=2.5, angle=45, dimstyle='EZ_RADIUS_INSIDE' ) [image] [image] To force text inside horizontal set dimtih to 1: dim = msp.add_radius_dim(center=(0, 0), radius=2.5, angle=45, dimstyle='EZ_RADIUS_INSIDE', override={'dimtih': 1} ) [image] User Defined Text Locations Beside the default location it is always possible to override the text location by a user defined location. This location also determines the angle of the dimension line and overrides the argument angle. For user defined locations it is not necessary to force text inside (dimtix=1), because the location of the text is explicit given, therefore the DIMSTYLE 'EZ_RADIUS' can be used for all this examples. User defined location outside of the circle: dim = msp.add_radius_dim(center=(0, 0), radius=2.5, location=(4, 4), dimstyle='EZ_RADIUS' ) [image] User defined location outside of the circle and forced horizontal text: dim = msp.add_radius_dim(center=(0, 0), radius=2.5, location=(4, 4), dimstyle='EZ_RADIUS', override={'dimtoh': 1} ) [image] User defined location inside of the circle: dim = msp.add_radius_dim(center=(0, 0), radius=2.5, location=(1, 1), dimstyle='EZ_RADIUS' ) [image] [image] User defined location inside of the circle and forced horizontal text: dim = msp.add_radius_dim(center=(0, 0), radius=2.5, location=(1, 1), dimstyle='EZ_RADIUS', override={'dimtih': 1}, ) [image] Center Mark/Lines Center mark/lines are controlled by dimcen, default value is 0 for predefined dimstyles 'EZ_RADIUS' and 'EZ_RADIUS_INSIDE' : ┌───┬──────────────────────────────────┐ │0 │ Center mark is off │ ├───┼──────────────────────────────────┤ │>0 │ Create center mark of given size │ ├───┼──────────────────────────────────┤ │<0 │ Create center lines │ └───┴──────────────────────────────────┘ dim = msp.add_radius_dim(center=(0, 0), radius=2.5, angle=45, dimstyle='EZ_RADIUS', override={'dimcen': 0.25}, ) [image] Overriding Measurement Text See Linear Dimension Tutorial: tut_overriding_measurement_text Measurement Text Formatting and Styling See Linear Dimension Tutorial: tut_measurement_text_formatting_and_styling Tutorial for Diameter Dimensions Please read the tut_radius_dimension before, if you haven’t. This is a repetition of the radius tutorial, just with diameter dimensions. import ezdxf # setup=True setups the default dimension styles doc = ezdxf.new('R2010', setup=True) msp = doc.modelspace() # add new dimension entities to the modelspace msp.add_circle((0, 0), radius=3) # add a CIRCLE entity, not required # add default diameter dimension, measurement text is located outside dim = msp.add_diameter_dim(center=(0, 0), radius=3, angle=45, dimstyle='EZ_RADIUS') dim.render() doc.saveas('diameter_dimension.dxf') The example above creates a 45 degrees slanted diameter Dimension entity, the default dimension style 'EZ_RADIUS' (same as for radius dimensions) is defined as 1 drawing unit is 1m in reality, drawing scale 1:100 and the length factor is 100, which creates a measurement text in cm, the default location for the measurement text is outside of the circle. The center point defines the the center of the circle but there doesn’t have to exist a circle entity, radius defines the circle radius and angle defines the slope of the dimension line, it is also possible to define the circle by a measurement point mpoint on the circle. The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the dimension entity is stored as dim.dimension. Placing Measurement Text There are different predefined DIMSTYLES to achieve various text placing locations. DIMSTYLE 'EZ_RADIUS' settings are: 1 drawing unit is 1m, scale 1:100, length_factor is 100 which creates measurement text in cm, and a closed filled arrow with size 0.25 is used. NOTE: Not all possibles features of DIMSTYLE are supported and especially for diameter dimension there are less features supported as for linear dimension because of the lack of good documentation. SEE ALSO: • Graphical reference of many DIMVARS and some advanced information: dimstyle_table_internals • Source code file standards.py shows how to create your own DIMSTYLES. • dimension_diameter.py for diameter dimension examples. Default Text Locations Outside 'EZ_RADIUS' default settings for to place text outside: ┌───────┬───────────────────────────────────────┐ │tmove │ 1 to keep dim line with text, this is │ │ │ the best setting for text outside to │ │ │ preserve appearance of the DIMENSION │ │ │ entity, if editing afterwards in │ │ │ BricsCAD or AutoCAD. │ ├───────┼───────────────────────────────────────┤ │dimtad │ 1 to place text vertical above the │ │ │ dimension line │ └───────┴───────────────────────────────────────┘ dim = msp.add_diameter_dim(center=(0, 0), radius=2.5, angle=45, dimstyle='EZ_RADIUS') dim.render() # required, but not shown in the following examples [image] To force text outside horizontal set dimtoh to 1: dim = msp.add_diameter_dim(center=(0, 0), radius=2.5, angle=45, dimstyle='EZ_RADIUS', override={'dimtoh': 1} ) [image] Default Text Locations Inside DIMSTYLE 'EZ_RADIUS_INSIDE' can be used to place the dimension text inside the circle at a default location. Default DIMSTYLE settings are: 1 drawing unit is 1m, scale 1:100, length_factor is 100 which creates measurement text in cm, and a closed filled arrow with size 0.25 is used. 'EZ_RADIUS_INSIDE' default settings: ┌─────────┬───────────────────────────────────────┐ │tmove │ 0 to keep dim line with text, this is │ │ │ the best setting for text inside to │ │ │ preserve appearance of the DIMENSION │ │ │ entity, if editing afterwards in │ │ │ BricsCAD or AutoCAD. │ ├─────────┼───────────────────────────────────────┤ │dimtix │ 1 to force text inside │ ├─────────┼───────────────────────────────────────┤ │dimatfit │ 0 to force text inside, required by │ │ │ BricsCAD and AutoCAD │ ├─────────┼───────────────────────────────────────┤ │dimtad │ 0 to center text vertical, BricsCAD │ │ │ and AutoCAD always create vertical │ │ │ centered text, ezdxf let you choose │ │ │ the vertical placement (above, below, │ │ │ center), but editing the DIMENSION in │ │ │ BricsCAD or AutoCAD will reset text │ │ │ to center placement. │ └─────────┴───────────────────────────────────────┘ dim = msp.add_diameter_dim(center=(0, 0), radius=2.5, angle=45, dimstyle='EZ_RADIUS_INSIDE' ) [image] To force text inside horizontal set dimtih to 1: dim = msp.add_diameter_dim(center=(0, 0), radius=2.5, angle=45, dimstyle='EZ_RADIUS_INSIDE', override={'dimtih': 1} ) [image] User Defined Text Locations Beside the default location it is always possible to override the text location by a user defined location. This location also determines the angle of the dimension line and overrides the argument angle. For user defined locations it is not necessary to force text inside (dimtix=1), because the location of the text is explicit given, therefore the DIMSTYLE 'EZ_RADIUS' can be used for all this examples. User defined location outside of the circle: dim = msp.add_diameter_dim(center=(0, 0), radius=2.5, location=(4, 4), dimstyle='EZ_RADIUS' ) [image] User defined location outside of the circle and forced horizontal text: dim = msp.add_diameter_dim(center=(0, 0), radius=2.5, location=(4, 4), dimstyle='EZ_RADIUS', override={'dimtoh': 1} ) [image] User defined location inside of the circle: dim = msp.add_diameter_dim(center=(0, 0), radius=2.5, location=(1, 1), dimstyle='EZ_RADIUS' ) [image] User defined location inside of the circle and forced horizontal text: dim = msp.add_diameter_dim(center=(0, 0), radius=2.5, location=(1, 1), dimstyle='EZ_RADIUS', override={'dimtih': 1}, ) [image] Center Mark/Lines See Radius Dimension Tutorial: tut_center_mark Overriding Measurement Text See Linear Dimension Tutorial: tut_overriding_measurement_text Measurement Text Formatting and Styling See Linear Dimension Tutorial: tut_measurement_text_formatting_and_styling
REFERENCE
The DXF Reference is online available at Autodesk. Quoted from the original DXF 12 Reference which is not available on the web: Since the AutoCAD drawing database (.dwg file) is written in a compact format that changes significantly as new features are added to AutoCAD, we do not document its format and do not recommend that you attempt to write programs to read it directly. To assist in interchanging drawings between AutoCAD and other programs, a Drawing Interchange file format (DXF) has been defined. All implementations of AutoCAD accept this format and are able to convert it to and from their internal drawing file representation. DXF Document Document Management Create New Drawings ezdxf.new(dxfversion='AC1027', setup=False) -> Drawing Create a new Drawing from scratch, dxfversion can be either “AC1009” the official DXF version name or “R12” the AutoCAD release name. new() can create drawings for following DXF versions: ┌────────┬─────────────────┐ │Version │ AutoCAD Release │ ├────────┼─────────────────┤ │AC1009 │ AutoCAD R12 │ ├────────┼─────────────────┤ │AC1015 │ AutoCAD R2000 │ ├────────┼─────────────────┤ │AC1018 │ AutoCAD R2004 │ ├────────┼─────────────────┤ │AC1021 │ AutoCAD R2007 │ ├────────┼─────────────────┤ │AC1024 │ AutoCAD R2010 │ ├────────┼─────────────────┤ │AC1027 │ AutoCAD R2013 │ ├────────┼─────────────────┤ │AC1032 │ AutoCAD R2018 │ └────────┴─────────────────┘ Parameters • dxfversion – DXF version specifier as string, default is “AC1027” respectively “R2013” • setup – setup default styles, False for no setup, True to setup everything or a list of topics as strings, e.g. [“linetypes”, “styles”] to setup only some topics: ┌─────────────┬──────────────────────────────────────┐ │Topic │ Description │ ├─────────────┼──────────────────────────────────────┤ │linetypes │ setup line types │ ├─────────────┼──────────────────────────────────────┤ │styles │ setup text styles │ ├─────────────┼──────────────────────────────────────┤ │dimstyles │ setup default ezdxf dimension styles │ ├─────────────┼──────────────────────────────────────┤ │visualstyles │ setup 25 standard visual styles │ └─────────────┴──────────────────────────────────────┘ Open Drawings Open DXF drawings from file system or text stream, byte stream usage is not supported. DXF files prior to R2007 requires file encoding defined by header variable $DWGCODEPAGE, DXF R2007 and later requires an UTF-8 encoding. ezdxf supports reading of files for following DXF versions: ┌─────────┬─────────┬──────────────┬────────────────────────┐ │Version │ Release │ Encoding │ Remarks │ ├─────────┼─────────┼──────────────┼────────────────────────┤ │< AC1009 │ │ $DWGCODEPAGE │ pre AutoCAD R12 │ │ │ │ │ upgraded to AC1009 │ ├─────────┼─────────┼──────────────┼────────────────────────┤ │AC1009 │ R12 │ $DWGCODEPAGE │ AutoCAD R12 │ ├─────────┼─────────┼──────────────┼────────────────────────┤ │AC1012 │ R13 │ $DWGCODEPAGE │ AutoCAD R13 upgraded │ │ │ │ │ to AC1015 │ ├─────────┼─────────┼──────────────┼────────────────────────┤ │AC1014 │ R14 │ $DWGCODEPAGE │ AutoCAD R14 upgraded │ │ │ │ │ to AC1015 │ ├─────────┼─────────┼──────────────┼────────────────────────┤ │AC1015 │ R2000 │ $DWGCODEPAGE │ AutoCAD R2000 │ ├─────────┼─────────┼──────────────┼────────────────────────┤ │AC1018 │ R2004 │ $DWGCODEPAGE │ AutoCAD R2004 │ ├─────────┼─────────┼──────────────┼────────────────────────┤ │AC1021 │ R2007 │ UTF-8 │ AutoCAD R2007 │ ├─────────┼─────────┼──────────────┼────────────────────────┤ │AC1024 │ R2010 │ UTF-8 │ AutoCAD R2010 │ └─────────┴─────────┴──────────────┴────────────────────────┘ │AC1027 │ R2013 │ UTF-8 │ AutoCAD R2013 │ ├─────────┼─────────┼──────────────┼────────────────────────┤ │AC1032 │ R2018 │ UTF-8 │ AutoCAD R2018 │ └─────────┴─────────┴──────────────┴────────────────────────┘ ezdxf.readfile(filename: str, encoding: str = None, errors: str = 'surrogateescape') -> Drawing Read the DXF document filename from the file-system. This is the preferred method to load existing ASCII or Binary DXF files, the required text encoding will be detected automatically and decoding errors will be ignored. Override encoding detection by setting argument encoding to the estimated encoding. (use Python encoding names like in the open() function). If this function struggles to load the DXF document and raises a DXFStructureError exception, try the ezdxf.recover.readfile() function to load this corrupt DXF document. Parameters • filename – filename of the ASCII- or Binary DXF document • encoding – use None for auto detect (default), or set a specific encoding like “utf-8”, argument is ignored for Binary DXF files • errors – specify decoding error handler • ”surrogateescape” to preserve possible binary data (default) • ”ignore” to use the replacement char U+FFFD “�” for invalid data • ”strict” to raise an UnicodeDecodeError exception for invalid data Raises • IOError – not a DXF file or file does not exist • DXFStructureError – for invalid or corrupted DXF structures • UnicodeDecodeError – if errors is “strict” and a decoding error occurs Deprecated since version v0.14: argument legacy_mode, use module ezdxf.recover to load DXF documents with structural flaws. ezdxf.read(stream: TextIO) -> Drawing Read a DXF document from a text-stream. Open stream in text mode (mode='rt') and set correct text encoding, the stream requires at least a readline() method. Since DXF version R2007 (AC1021) file encoding is always “utf-8”, use the helper function dxf_stream_info() to detect the required text encoding for prior DXF versions. To preserve possible binary data in use errors='surrogateescape' as error handler for the import stream. If this function struggles to load the DXF document and raises a DXFStructureError exception, try the ezdxf.recover.read() function to load this corrupt DXF document. Parameters stream – input text stream opened with correct encoding Raises DXFStructureError – for invalid or corrupted DXF structures Deprecated since version v0.14: argument legacy_mode, use module ezdxf.recover to load DXF documents with structural flaws. ezdxf.readzip(zipfile: str, filename: str = None, errors: str = 'surrogateescape') -> Drawing Load a DXF document specified by filename from a zip archive, or if filename is None the first DXF document in the zip archive. Parameters • zipfile – name of the zip archive • filename – filename of DXF file, or None to load the first DXF document from the zip archive. • errors – specify decoding error handler • ”surrogateescape” to preserve possible binary data (default) • ”ignore” to use the replacement char U+FFFD “�” for invalid data • ”strict” to raise an UnicodeDecodeError exception for invalid data Raises • IOError – not a DXF file or file does not exist or if filename is None - no DXF file found • DXFStructureError – for invalid or corrupted DXF structures • UnicodeDecodeError – if errors is “strict” and a decoding error occurs ezdxf.decode_base64(data: bytes, errors: str = 'surrogateescape') -> Drawing Load a DXF document from base64 encoded binary data, like uploaded data to web applications. Parameters • data – DXF document base64 encoded binary data • errors – specify decoding error handler • ”surrogateescape” to preserve possible binary data (default) • ”ignore” to use the replacement char U+FFFD “�” for invalid data • ”strict” to raise an UnicodeDecodeError exception for invalid data Raises • DXFStructureError – for invalid or corrupted DXF structures • UnicodeDecodeError – if errors is “strict” and a decoding error occurs HINT: This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with minor or major flaws look at the ezdxf.recover module. Save Drawings Save the DXF document to the file system by Drawing methods save() or saveas(). Write the DXF document to a text stream with write(), the text stream requires at least a write() method. Get required output encoding for text streams by property Drawing.output_encoding Drawing Settings The HeaderSection stores meta data like modelspace extensions, user name or saving time and current application settings, like actual layer, text style or dimension style settings. These settings are not necessary to process DXF data and therefore many of this settings are not maintained by ezdxf automatically. Header variables set at new ┌─────────────────┬───────────────────────────────────┐ │$ACADVER │ DXF version │ ├─────────────────┼───────────────────────────────────┤ │$TDCREATE │ date/time at creating the drawing │ ├─────────────────┼───────────────────────────────────┤ │$FINGERPRINTGUID │ every drawing gets a GUID │ └─────────────────┴───────────────────────────────────┘ Header variables updated at saving ───────────────────────────────────────────────────── $TDUPDATE actual date/time at saving ───────────────────────────────────────────────────── $HANDSEED next available handle as hex string ───────────────────────────────────────────────────── $DWGCODEPAGE encoding setting ───────────────────────────────────────────────────── $VERSIONGUID every saved version gets a new GUID ┌─────────────┬─────────────────────────────────────┐ │ │ │ SEE ALSO: │ │ │ │ │ │ • Howto: set/get header│variables │ │ │ │ │ --
HOWTO
The Howto section show how to accomplish specific tasks with ezdxf in a straight forward way without teaching basics or internals, if you are looking for more information about the ezdxf internals look at the Reference section or if you want to learn how to use ezdxf go to the Tutorials section or to the Basic Concepts section. General Document General preconditions: import sys import ezdxf try: doc = ezdxf.readfile("your_dxf_file.dxf") except IOError: print(f'Not a DXF file or a generic I/O error.') sys.exit(1) except ezdxf.DXFStructureError: print(f'Invalid or corrupted DXF file.') sys.exit(2) msp = doc.modelspace() This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with minor or major flaws look at the ezdxf.recover module. Load DXF Files with Structure Errors If you know the files you will process have most likely minor or major flaws, use the ezdxf.recover module: import sys from ezdxf import recover try: # low level structure repair: doc, auditor = recover.readfile(name) except IOError: print(f'Not a DXF file or a generic I/O error.') sys.exit(1) except ezdxf.DXFStructureError: print(f'Invalid or corrupted DXF file: {name}.') sys.exit(2) # DXF file can still have unrecoverable errors, but this is maybe # just a problem when saving the recovered DXF file. if auditor.has_errors: print(f'Found unrecoverable errors in DXF file: {name}.') auditor.print_error_report() For more loading scenarios follow the link: ezdxf.recover Set/Get Header Variables ezdxf has an interface to get and set HEADER variables: doc.header['VarName'] = value value = doc.header['VarName'] SEE ALSO: HeaderSection and online documentation from Autodesk for available header variables. Set DXF Drawing Units Use this HEADER variables to setup the default units for CAD applications opening the DXF file. This settings are not relevant for ezdxf API calls, which are unitless for length values and coordinates and decimal degrees for angles (in most cases). Sets drawing units: $MEASUREMENT controls whether the current drawing uses imperial or metric hatch pattern and linetype files: doc.header['$MEASUREMENT'] = 1 ┌──┬─────────┐ │0 │ English │ ├──┼─────────┤ │1 │ Metric │ └──┴─────────┘ $LUNITS sets the linear units format for creating objects: doc.header['$LUNITS'] = 2 ┌──┬───────────────────┐ │1 │ Scientific │ ├──┼───────────────────┤ │2 │ Decimal (default) │ ├──┼───────────────────┤ │3 │ Engineering │ ├──┼───────────────────┤ │4 │ Architectural │ ├──┼───────────────────┤ │5 │ Fractional │ └──┴───────────────────┘ $AUNITS set units format for angles: doc.header['$AUNITS'] = 0 ┌──┬─────────────────────────┐ │0 │ Decimal degrees │ ├──┼─────────────────────────┤ │1 │ Degrees/minutes/seconds │ ├──┼─────────────────────────┤ │2 │ Grad │ ├──┼─────────────────────────┤ │3 │ Radians │ └──┴─────────────────────────┘ $INSUNITS set default drawing units for AutoCAD DesignCenter blocks: doc.header['$INSUNITS'] = 6 ┌───┬────────────────────┐ │0 │ Unitless │ ├───┼────────────────────┤ │1 │ Inches │ ├───┼────────────────────┤ │2 │ Feet │ ├───┼────────────────────┤ │3 │ Miles │ ├───┼────────────────────┤ │4 │ Millimeters │ ├───┼────────────────────┤ │5 │ Centimeters │ ├───┼────────────────────┤ │6 │ Meters │ ├───┼────────────────────┤ │7 │ Kilometers │ ├───┼────────────────────┤ │8 │ Microinches │ ├───┼────────────────────┤ │9 │ Mils │ ├───┼────────────────────┤ │10 │ Yards │ ├───┼────────────────────┤ │11 │ Angstroms │ ├───┼────────────────────┤ │12 │ Nanometers │ ├───┼────────────────────┤ │13 │ Microns │ ├───┼────────────────────┤ │14 │ Decimeters │ ├───┼────────────────────┤ │15 │ Decameters │ ├───┼────────────────────┤ │16 │ Hectometers │ ├───┼────────────────────┤ │17 │ Gigameters │ └───┴────────────────────┘ │18 │ Astronomical units │ ├───┼────────────────────┤ │19 │ Light years │ ├───┼────────────────────┤ │20 │ Parsecs │ ├───┼────────────────────┤ │21 │ US Survey Feet │ ├───┼────────────────────┤ │22 │ US Survey Inch │ ├───┼────────────────────┤ │23 │ US Survey Yard │ ├───┼────────────────────┤ │24 │ US Survey Mile │ └───┴────────────────────┘ Create More Readable DXF Files (DXF Pretty Printer) DXF files are plain text files, you can open this files with every text editor which handles bigger files. But it is not really easy to get quick the information you want. Create a more readable HTML file (DXF Pretty Printer): # on Windows py -3 -m ezdxf.pp your_dxf_file.dxf # on Linux/Mac python3 -m ezdxf.pp your_dxf_file.dxf This produces a HTML file your_dxf_file.html with a nicer layout than a plain DXF file and DXF handles as links between DXF entities, this simplifies the navigation between the DXF entities. Changed in version 0.8.3: Since ezdxf v0.8.3, a script called dxfpp will be added to your Python script path: usage: dxfpp [-h] [-o] [-r] [-x] [-l] FILE [FILE ...] positional arguments: FILE DXF files pretty print optional arguments: -h, --help show this help message and exit -o, --open open generated HTML file with the default web browser -r, --raw raw mode - just print tags, no DXF structure interpretation -x, --nocompile don't compile points coordinates into single tags (only in raw mode) -l, --legacy legacy mode - reorders DXF point coordinates IMPORTANT: This does not render the graphical content of the DXF file to a HTML canvas element. Set Initial View/Zoom for the Modelspace To show an arbitrary location of the modelspace centered in the CAD application window, set the '*Active' VPORT to this location. The DXF attribute dxf.center defines the location in the modelspace, and the dxf.height specifies the area of the modelspace to view. Shortcut function: doc.set_modelspace_vport(height=10, center=(10, 10)) New in version 0.11. DXF Viewer A360 Viewer Problems AutoDesk web service A360 seems to be more picky than the AutoCAD desktop applications, may be it helps to use the latest DXF version supported by ezdxf, which is DXF R2018 (AC1032) in the year of writing this lines (2018). DXF Entities Are Not Displayed in the Viewer ezdxf does not automatically locate the main viewport of the modelspace at the entities, you have to perform the “Zoom to Extends” command, here in TrueView 2020: [image] And here in the Autodesk Online Viewer: [image] Add this line to your code to relocate the main viewport, adjust the center (in modelspace coordinates) and the height (in drawing units) arguments to your needs: doc.set_modelspace_vport(height=10, center=(0, 0)) Show IMAGES/XREFS on Loading in AutoCAD If you are adding XREFS and IMAGES with relative paths to existing drawings and they do not show up in AutoCAD immediately, change the HEADER variable $PROJECTNAME='' to (not really) solve this problem. The ezdxf templates for DXF R2004 and later have $PROJECTNAME='' as default value. Thanks to David Booth: If the filename in the IMAGEDEF contains the full path (absolute in AutoCAD) then it shows on loading, otherwise it won’t display (reports as unreadable) until you manually reload using XREF manager. A workaround (to show IMAGES on loading) appears to be to save the full file path in the DXF or save it as a DWG. So far - no solution for showing IMAGES with relative paths on loading. Set Initial View/Zoom for the Modelspace To show an arbitrary location of the modelspace centered in the CAD application window, set the '*Active' VPORT to this location. The DXF attribute dxf.center defines the location in the modelspace, and the dxf.height specifies the area of the modelspace to view. Shortcut function: doc.set_modelspace_vport(height=10, center=(10, 10)) New in version 0.11. DXF Content General preconditions: import sys import ezdxf try: doc = ezdxf.readfile("your_dxf_file.dxf") except IOError: print(f'Not a DXF file or a generic I/O error.') sys.exit(1) except ezdxf.DXFStructureError: print(f'Invalid or corrupted DXF file.') sys.exit(2) msp = doc.modelspace() Get/Set Entity Color The entity color is stored as ACI (AutoCAD Color Index): aci = entity.dxf.color Default value is 256 which means BYLAYER: layer = doc.layers.get(entity.dxf.layer) aci = layer.get_color() The special get_color() method is required, because the color attribute Layer.dxf.color is misused as layer on/off flag, a negative color value means the layer is off. ACI value 0 means BYBLOCK, which means the color from the block reference (INSERT entity). Set color as ACI value as int in range [0, 256]: entity.dxf.color = 1 The RGB values of the AutoCAD default colors are not officially documented, but an accurate translation table is included in ezdxf: from ezdxf.tools.rgb import DXF_DEFAULT_COLORS, int2rgb # 24 bit value RRRRRRRRGGGGGGGGBBBBBBBB rgb24 = DXF_DEFAULT_COLORS[aci] print(f'RGB Hex Value: #{rgb24:06X}') r, g, b = int2rgb(rgb24) print(f'RGB Channel Values: R={r:02X} G={g:02X} b={b:02X}') The ACI value 7 has a special meaning, it is white on dark backgrounds and white on light backgrounds. Get/Set Entity RGB Color RGB true color values are supported since DXF R13 (AC1012), the 24-bit RGB value is stored as integer in the DXF attribute true_color: # set true color value to red entity.dxf.true_color = 0xFF0000 The rgb property of the DXFGraphic entity add support to get/set RGB value as (r, g, b)-tuple: # set true color value to red entity.rgb = (255, 0, 0) If color and true_color values are set, BricsCAD and AutoCAD use the true_color value as display color for the entity. Get/Set Block Reference Attributes Block references (Insert) can have attached attributes (Attrib), these are simple text annotations with an associated tag appended to the block reference. Iterate over all appended attributes: # get all INSERT entities with entity.dxf.name == "Part12" blockrefs = msp.query('INSERT[name=="Part12"]') if len(blockrefs): entity = blockrefs[0] # process first entity found for attrib in entity.attribs: if attrib.dxf.tag == "diameter": # identify attribute by tag attrib.dxf.text = "17mm" # change attribute content Get attribute by tag: diameter = entity.get_attrib('diameter') if diameter is not None: diameter.dxf.text = "17mm" Adding XDATA to Entities Adding XDATA as list of tuples (group code, value) by set_xdata(), overwrites data if already present: doc.appids.new('YOUR_APPID') # IMPORTANT: create an APP ID entry circle = msp.add_circle((10, 10), 100) circle.set_xdata( 'YOUR_APPID', [ (1000, 'your_web_link.org'), (1002, '{'), (1000, 'some text'), (1002, '{'), (1071, 1), (1002, '}'), (1002, '}') ]) For group code meaning see DXF reference section DXF Group Codes in Numerical Order Reference, valid group codes are in the range 1000 - 1071. Method get_xdata() returns the extended data for an entity as Tags object. Get Overridden DIMSTYLE Values from DIMENSION In general the Dimension styling and config attributes are stored in the Dimstyle entity, but every attribute can be overridden for each DIMENSION entity individually, get overwritten values by the DimstyleOverride object as shown in the following example: for dimension in msp.query('DIMENSION'): dimstyle_override = dimension.override() # requires v0.12 dimtol = dimstyle_override['dimtol'] if dimtol: print(f'{str(dimension)} has tolerance values:') dimtp = dimstyle_override['dimtp'] dimtm = dimstyle_override['dimtm'] print(f'Upper tolerance: {dimtp}') print(f'Lower tolerance: {dimtm}') The DimstyleOverride object returns the value of the underlying DIMSTYLE objects if the value in DIMENSION was not overwritten, or None if the value was neither defined in DIMSTYLE nor in DIMENSION. Override DIMSTYLE Values for DIMENSION Same as above, the DimstyleOverride object supports also overriding DIMSTYLE values. But just overriding this values have no effect on the graphical representation of the DIMENSION entity, because CAD applications just show the associated anonymous block which contains the graphical representation on the DIMENSION entity as simple DXF entities. Call the render method of the DimstyleOverride object to recreate this graphical representation by ezdxf, but ezdxf does not support all DIMENSION types and DIMVARS yet, and results will differ from AutoCAD or BricsCAD renderings. dimstyle_override = dimension.override() dimstyle_override.set_tolerance(0.1) # delete associated geometry block del doc.blocks[dimension.dxf.geometry] # recreate geometry block dimstyle_override.render()
FAQ
What is the Relationship between ezdxf, dxfwrite and dxfgrabber? In 2010 I started my first Python package for creating DXF documents called dxfwrite, this package can’t read DXF files and writes only the DXF R12 (AC1009) version. While dxfwrite works fine, I wanted a more versatile package, that can read and write DXF files and maybe also supports newer DXF formats than DXF R12. This was the start of the ezdxf package in 2011, but the progress was so slow, that I created a spin off in 2012 called dxfgrabber, which implements only the reading part of ezdxf, which I needed for my work and I wasn’t sure if ezdxf will ever be usable. Luckily in 2014 the first usable version of ezdxf could be released. The ezdxf package has all the features of dxfwrite and dxfgrabber and much more, but with a different API. So ezdxf is not a drop-in replacement for dxfgrabber or dxfwrite. Since ezdxf can do all the things that dxfwrite and dxfgrabber can do, I focused on the development of ezdxf, dxfwrite and dxfgrabber are in maintenance mode only and will not get any new features, just bugfixes. There are no advantages of dxfwrite over ezdxf, dxfwrite has the smaller memory footprint, but the r12writer add-on does the same job as dxfwrite without any in memory structures by writing direct to a stream or file and there is also no advantage of dxfgrabber over ezdxf for normal DXF files the smaller memory footprint of dxfgrabber is not noticeable and for really big files the iterdxf add-on does a better job.
RENDERING
The ezdxf.render subpackage provides helpful utilities to create complex forms. • create complex meshes as Mesh entity. • render complex curves like bezier curves, euler spirals or splines as Polyline entity • vertex generators for simple and complex forms like circle, ellipse or euler spiral Content Spline Render a B-spline as 2D/3D Polyline, can be used with DXF R12. The advantage over R12Spline is the real 3D support which means the B-spline curve vertices has not to be in a plane and no hassle with UCS for 3D placing. class ezdxf.render.Spline __init__(points: Iterable[Vertex] = None, segments: int = 100) Parameters • points – spline definition points as Vector or (x, y, z) tuple • segments – count of line segments for approximation, vertex count is segments + 1 subdivide(segments: int = 4) -> None Calculate overall segment count, where segments is the sub-segment count, segments = 4, means 4 line segments between two definition points e.g. 4 definition points and 4 segments = 12 overall segments, useful for fit point rendering. Parameters segments – sub-segments count between two definition points render_as_fit_points(layout: BaseLayout, degree: int = 3, method: str = 'chord', dxfattribs: dict = None) -> None Render a B-spline as 2D/3D Polyline, where the definition points are fit points. • 2D spline vertices uses: add_polyline2d() • 3D spline vertices uses: add_polyline3d() Parameters • layout – BaseLayout object • degree – degree of B-spline (order = degree + 1) • method – “uniform”, “distance”/”chord”, “centripetal”/”sqrt_chord” or “arc” calculation method for parameter t • dxfattribs – DXF attributes for Polyline render_open_bspline(layout: BaseLayout, degree: int = 3, dxfattribs: dict = None) -> None Render an open uniform BSpline as 3D Polyline. Definition points are control points. Parameters • layout – BaseLayout object • degree – degree of B-spline (order = degree + 1) • dxfattribs – DXF attributes for Polyline render_uniform_bspline(layout: BaseLayout, degree: int = 3, dxfattribs: dict = None) -> None Render a uniform BSpline as 3D Polyline. Definition points are control points. Parameters • layout – BaseLayout object • degree – degree of B-spline (order = degree + 1) • dxfattribs – DXF attributes for Polyline render_closed_bspline(layout: BaseLayout, degree: int = 3, dxfattribs: dict = None) -> None Render a closed uniform BSpline as 3D Polyline. Definition points are control points. Parameters • layout – BaseLayout object • degree – degree of B-spline (order = degree + 1) • dxfattribs – DXF attributes for Polyline render_open_rbspline(layout: BaseLayout, weights: Iterable[float], degree: int = 3, dxfattribs: dict = None) -> None Render a rational open uniform BSpline as 3D Polyline. Definition points are control points. Parameters • layout – BaseLayout object • weights – list of weights, requires a weight value (float) for each definition point. • degree – degree of B-spline (order = degree + 1) • dxfattribs – DXF attributes for Polyline render_uniform_rbspline(layout: BaseLayout, weights: Iterable[float], degree: int = 3, dxfattribs: dict = None) -> None Render a rational uniform BSpline as 3D Polyline. Definition points are control points. Parameters • layout – BaseLayout object • weights – list of weights, requires a weight value (float) for each definition point. • degree – degree of B-spline (order = degree + 1) • dxfattribs – DXF attributes for Polyline render_closed_rbspline(layout: BaseLayout, weights: Iterable[float], degree: int = 3, dxfattribs: dict = None) -> None Render a rational BSpline as 3D Polyline. Definition points are control points. Parameters • layout – BaseLayout object • weights – list of weights, requires a weight value (float) for each definition point. • degree – degree of B-spline (order = degree + 1) • dxfattribs – DXF attributes for Polyline R12Spline DXF R12 supports 2D B-splines, but Autodesk do not document the usage in the DXF Reference. The base entity for splines in DXF R12 is the POLYLINE entity. The spline itself is always in a plane, but as any 2D entity, the spline can be transformed into the 3D object by elevation and extrusion (OCS, UCS). The result is not better than Spline, it is also just a POLYLINE entity, but as with all tools, you never know if someone needs it some day. class ezdxf.render.R12Spline __init__(control_points: Iterable[Vertex], degree: int = 2, closed: bool = True) Parameters • control_points – B-spline control frame vertices as (x, y) tuples or Vector objects • degree – degree of B-spline, 2 or 3 are valid values • closed – True for closed curve render(layout: BaseLayout, segments: int = 40, ucs: UCS = None, dxfattribs: dict = None) -> Polyline Renders the B-spline into layout as 2D Polyline entity. Use an UCS to place the 2D spline in 3D space, see approximate() for more information. Parameters • layout – BaseLayout object • segments – count of line segments for approximation, vertex count is segments + 1 • ucs – UCS definition, control points in ucs coordinates. • dxfattribs – DXF attributes for Polyline approximate(segments: int = 40, ucs: UCS = None) -> List[Vertex] Approximate B-spline by a polyline with segments line segments. If ucs is not None, ucs defines an UCS, to transformed the curve into OCS. The control points are placed xy-plane of the UCS, don’t use z-axis coordinates, if so make sure all control points are in a plane parallel to the OCS base plane (UCS xy-plane), else the result is unpredictable and depends on the CAD application used to open the DXF file, it maybe crash. Parameters • segments – count of line segments for approximation, vertex count is segments + 1 • ucs – UCS definition, control points in ucs coordinates. Returns list of vertices in OCS as Vector objects Bezier Render a bezier curve as 2D/3D Polyline. The Bezier class is implemented with multiple segments, each segment is an optimized 4 point bezier curve, the 4 control points of the curve are: the start point (1) and the end point (4), point (2) is start point + start vector and point (3) is end point + end vector. Each segment has its own approximation count. class ezdxf.render.Bezier start(point: Vertex, tangent: Vertex) -> None Set start point and start tangent. Parameters • point – start point as Vector or (x, y, z) tuple • tangent – start tangent as vector, example: (5, 0, 0) means a horizontal tangent with a length of 5 drawing units append(point: Vertex, tangent1: Vertex, tangent2: Vertex = None, segments: int = 20) Append a control point with two control tangents. Parameters • point – control point as Vector or (x, y, z) tuple • tangent1 – first control tangent as vector “left” of control point • tangent2 – second control tangent as vector “right” of control point, if omitted tangent2 = -tangent1 • segments – count of line segments for polyline approximation, count of line segments from previous control point to appended control point. render(layout: BaseLayout, force3d: bool = False, dxfattribs: dict = None) -> None Render bezier curve as 2D/3D Polyline. Parameters • layout – BaseLayout object • force3d – force 3D polyline rendering • dxfattribs – DXF attributes for Polyline EulerSpiral Render an euler spiral as 3D Polyline or Spline. This is a parametric curve, which always starts at the origin (0, 0). class ezdxf.render.EulerSpiral __init__(curvature: float = 1) Parameters curvature – Radius of curvature render_polyline(layout: BaseLayout, length: float = 1, segments: int = 100, matrix: Matrix44 = None, dxfattribs: dict = None) Render curve as Polyline. Parameters • layout – BaseLayout object • length – length measured along the spiral curve from its initial position • segments – count of line segments to use, vertex count is segments + 1 • matrix – transformation matrix as Matrix44 • dxfattribs – DXF attributes for Polyline Returns Polyline render_spline(layout: BaseLayout, length: float = 1, fit_points: int = 10, degree: int = 3, matrix: Matrix44 = None, dxfattribs: dict = None) Render curve as Spline. Parameters • layout – BaseLayout object • length – length measured along the spiral curve from its initial position • fit_points – count of spline fit points to use • degree – degree of B-spline • matrix – transformation matrix as Matrix44 • dxfattribs – DXF attributes for Spline Returns Spline Random Paths Random path generators for testing purpose. ezdxf.render.random_2d_path(steps=100, max_step_size=1, max_heading=pi / 2, retarget=20) -> Iterable[Vec2] Returns a random 2D path as iterable of Vec2 objects. Parameters • steps – count of vertices to generate • max_step_size – max step size • max_heading – limit heading angle change per step to ± max_heading/2 in radians • retarget – specifies steps before changing global walking target ezdxf.render.random_3d_path(steps=100, max_step_size=1, max_heading=pi / 2, max_pitch=pi / 8, retarget=20) -> Iterable[Vector] Returns a random 3D path as iterable of Vector objects. Parameters • steps – count of vertices to generate • max_step_size – max step size • max_heading – limit heading angle change per step to ± max_heading/2, rotation about the z-axis in radians • max_pitch – limit pitch angle change per step to ± max_pitch/2, rotation about the x-axis in radians • retarget – specifies steps before changing global walking target Forms This module provides functions to create 2D and 3D forms as vertices or mesh objects. 2D Forms • circle() • square() • box() • ellipse() • euler_spiral() • ngon() • star() • gear() 3D Forms • cube() • cylinder() • cylinder_2p() • cone() • cone_2p() • sphere() 3D Form Builder • extrude() • from_profiles_linear() • from_profiles_spline() • rotation_form() 2D Forms Basic 2D shapes as iterable of Vector. ezdxf.render.forms.circle(count: int, radius: float = 1, elevation: float = 0, close: bool = False) -> Iterable[Vector] Create polygon vertices for a circle with radius and count corners, elevation is the z-axis for all vertices. Parameters • count – count of polygon vertices • radius – circle radius • elevation – z-axis for all vertices • close – yields first vertex also as last vertex if True. Returns vertices in counter clockwise orientation as Vector objects ezdxf.render.forms.square(size: float = 1.) -> Tuple[Vector, Vector, Vector, Vector] Returns 4 vertices for a square with a side length of size, lower left corner is (0, 0), upper right corner is (size, size). ezdxf.render.forms.box(sx: float = 1., sy: float = 1.) -> Tuple[Vector, Vector, Vector, Vector] Returns 4 vertices for a box sx by sy, lower left corner is (0, 0), upper right corner is (sx, sy). ezdxf.render.forms.ellipse(count: int, rx: float = 1, ry: float = 1, start_param: float = 0, end_param: float = 2 * pi, elevation: float = 0) -> Iterable[Vector] Create polygon vertices for an ellipse with rx as x-axis radius and ry for y-axis radius with count vertices, elevation is the z-axis for all vertices. The ellipse goes from start_param to end_param in counter clockwise orientation. Parameters • count – count of polygon vertices • rx – ellipse x-axis radius • ry – ellipse y-axis radius • start_param – start of ellipse in range 0 .. 2*pi • end_param – end of ellipse in range 0 .. 2*pi • elevation – z-axis for all vertices Returns vertices in counter clockwise orientation as Vector objects ezdxf.render.forms.euler_spiral(count: int, length: float = 1, curvature: float = 1, elevation: float = 0) -> Iterable[Vector] Create polygon vertices for an euler spiral of a given length and radius of curvature. This is a parametric curve, which always starts at the origin (0, 0). Parameters • count – count of polygon vertices • length – length of curve in drawing units • curvature – radius of curvature • elevation – z-axis for all vertices Returns vertices as Vector objects ezdxf.render.forms.ngon(count: int, length: float = None, radius: float = None, rotation: float = 0., elevation: float = 0., close: bool = False) -> Iterable[Vector] Returns the corner vertices of a regular polygon. The polygon size is determined by the edge length or the circum radius argument. If both are given length has higher priority. Parameters • count – count of polygon corners >= 3 • length – length of polygon side • radius – circum radius • rotation – rotation angle in radians • elevation – z-axis for all vertices • close – yields first vertex also as last vertex if True. Returns vertices as Vector objects ezdxf.render.forms.star(count: int, r1: float, r2: float, rotation: float = 0., elevation: float = 0., close: bool = False) -> Iterable[Vector] Returns corner vertices for star shapes. Argument count defines the count of star spikes, r1 defines the radius of the “outer” vertices and r2 defines the radius of the “inner” vertices, but this does not mean that r1 has to be greater than r2. Parameters • count – spike count >= 3 • r1 – radius 1 • r2 – radius 2 • rotation – rotation angle in radians • elevation – z-axis for all vertices • close – yields first vertex also as last vertex if True. Returns vertices as Vector objects ezdxf.render.forms.gear(count: int, top_width: float, bottom_width: float, height: float, outside_radius: float, elevation: float = 0, close: bool = False) -> Iterable[Vector] Returns gear (cogwheel) corner vertices. WARNING: This function does not create correct gears for mechanical engineering! Parameters • count – teeth count >= 3 • top_width – teeth width at outside radius • bottom_width – teeth width at base radius • height – teeth height; base radius = outside radius - height • outside_radius – outside radius • elevation – z-axis for all vertices • close – yields first vertex also as last vertex if True. Returns vertices in counter clockwise orientation as Vector objects 3D Forms Create 3D forms as MeshTransformer objects. ezdxf.render.forms.cube(center: bool = True) -> MeshTransformer Create a cube as MeshTransformer object. Parameters center – ‘mass’ center of cube, (0, 0, 0) if True, else first corner at (0, 0, 0) Returns: MeshTransformer ezdxf.render.forms.cylinder(count: int, radius: float = 1., top_radius: float = None, top_center: Vertex = (0, 0, 1), caps=True, ngons=True) -> MeshTransformer Create a cylinder as MeshTransformer object, the base center is fixed in the origin (0, 0, 0). Parameters • count – profiles edge count • radius – radius for bottom profile • top_radius – radius for top profile, if None top_radius == radius • top_center – location vector for the center of the top profile • caps – close hull with bottom cap and top cap (as N-gons) • ngons – use ngons for caps if True else subdivide caps into triangles Returns: MeshTransformer ezdxf.render.forms.cylinder_2p(count: int = 16, radius: float = 1, base_center=(0, 0, 0), top_center=(0, 0, 1)) -> MeshTransformer Create a cylinder as MeshTransformer object from two points, base_center is the center of the base circle and, top_center the center of the top circle. Parameters • count – profiles edge count • radius – radius for bottom profile • base_center – center of base circle • top_center – center of top circle Returns: MeshTransformer New in version 0.11. ezdxf.render.forms.cone(count: int, radius: float, apex: Vertex = (0, 0, 1), caps=True, ngons=True) -> MeshTransformer Create a cone as MeshTransformer object, the base center is fixed in the origin (0, 0, 0). Parameters • count – edge count of basis_vector • radius – radius of basis_vector • apex – tip of the cone • caps – add a bottom face if True • ngons – use ngons for caps if True else subdivide caps into triangles Returns: MeshTransformer ezdxf.render.forms.cone_2p(count: int, radius: float, apex: Vertex = (0, 0, 1)) -> MeshTransformer Create a cone as MeshTransformer object from two points, base_center is the center of the base circle and apex as the tip of the cone. Parameters • count – edge count of basis_vector • radius – radius of basis_vector • base_center – center point of base circle • apex – tip of the cone Returns: MeshTransformer New in version 0.11. ezdxf.render.forms.sphere(count: int = 16, stacks: int = 8, radius: float = 1, quads=True) -> MeshTransformer Create a sphere as MeshTransformer object, center is fixed at origin (0, 0, 0). Parameters • count – longitudinal slices • stacks – latitude slices • radius – radius of sphere • quads – use quads for body faces if True else triangles Returns: MeshTransformer New in version 0.11. 3D Form Builder ezdxf.render.forms.extrude(profile: Iterable[Vertex], path: Iterable[Vertex], close=True) -> MeshTransformer Extrude a profile polygon along a path polyline, vertices of profile should be in counter clockwise order. Parameters • profile – sweeping profile as list of (x, y, z) tuples in counter clock wise order • path – extrusion path as list of (x, y, z) tuples • close – close profile polygon if True Returns: MeshTransformer ezdxf.render.forms.from_profiles_linear(profiles: Iterable[Iterable[Vertex]], close=True, caps=False, ngons=True) -> MeshTransformer Create MESH entity by linear connected profiles. Parameters • profiles – list of profiles • close – close profile polygon if True • caps – close hull with bottom cap and top cap • ngons – use ngons for caps if True else subdivide caps into triangles Returns: MeshTransformer ezdxf.render.forms.from_profiles_spline(profiles: Iterable[Iterable[Vertex]], subdivide: int = 4, close=True, caps=False, ngons=True) -> MeshTransformer Create MESH entity by spline interpolation between given profiles. Requires at least 4 profiles. A subdivide value of 4, means, create 4 face loops between two profiles, without interpolation two profiles create one face loop. Parameters • profiles – list of profiles • subdivide – count of face loops • close – close profile polygon if True • caps – close hull with bottom cap and top cap • ngons – use ngons for caps if True else subdivide caps into triangles Returns: MeshTransformer ezdxf.render.forms.rotation_form(count: int, profile: Iterable[Vertex], angle: float = 2 * pi, axis: Vertex = (1, 0, 0)) -> MeshTransformer Create MESH entity by rotating a profile around an axis. Parameters • count – count of rotated profiles • profile – profile to rotate as list of vertices • angle – rotation angle in radians • axis – rotation axis Returns: MeshTransformer MeshBuilder The MeshBuilder is a helper class to create Mesh entities. Stores a list of vertices, a list of edges where an edge is a list of indices into the vertices list, and a faces list where each face is a list of indices into the vertices list. The MeshBuilder.render() method, renders the mesh into a Mesh entity. The Mesh entity supports ngons in AutoCAD, ngons are polygons with more than 4 vertices. The basic MeshBuilder class does not support transformations. class ezdxf.render.MeshBuilder vertices List of vertices as Vector or (x, y, z) tuple edges List of edges as 2-tuple of vertex indices, where a vertex index is the index of the vertex in the vertices list. faces List of faces as list of vertex indices, where a vertex index is the index of the vertex in the vertices list. A face requires at least three vertices, Mesh supports ngons, so the count of vertices is not limited. copy() Returns a copy of mesh. faces_as_vertices() -> Iterable[List[Vector]] Iterate over all mesh faces as list of vertices. edges_as_vertices() -> Iterable[Tuple[Vector, Vector]] Iterate over all mesh edges as tuple of two vertices. add_vertices(vertices: Iterable[Vertex]) -> Sequence[int] Add new vertices to the mesh, each vertex is a (x, y, z) tuple or a Vector object, returns the indices of the vertices added to the vertices list. e.g. adding 4 vertices to an empty mesh, returns the indices (0, 1, 2, 3), adding additional 4 vertices returns the indices (4, 5, 6, 7). Parameters vertices – list of vertices, vertex as (x, y, z) tuple or Vector objects Returns indices of the vertices added to the vertices list Return type tuple add_edge(vertices: Iterable[Vertex]) -> None An edge consist of two vertices [v1, v2], each vertex is a (x, y, z) tuple or a Vector object. The new vertex indices are stored as edge in the edges list. Parameters vertices – list of 2 vertices : [(x1, y1, z1), (x2, y2, z2)] add_face(vertices: Iterable[Vertex]) -> None Add a face as vertices list to the mesh. A face requires at least 3 vertices, each vertex is a (x, y, z) tuple or Vector object. The new vertex indices are stored as face in the faces list. Parameters vertices – list of at least 3 vertices [(x1, y1, z1), (x2, y2, z2), (x3, y3, y3), ...] add_mesh(vertices=None, faces=None, edges=None, mesh=None) -> None Add another mesh to this mesh. A mesh can be a MeshBuilder, MeshVertexMerger or Mesh object or requires the attributes vertices, edges and faces. Parameters • vertices – list of vertices, a vertex is a (x, y, z) tuple or Vector object • faces – list of faces, a face is a list of vertex indices • edges – list of edges, an edge is a list of vertex indices • mesh – another mesh entity has_none_planar_faces() -> bool Returns True if any face is none planar. render(layout: BaseLayout, dxfattribs: dict = None, matrix: Matrix44 = None, ucs: UCS = None) Render mesh as Mesh entity into layout. Parameters • layout – BaseLayout object • dxfattribs – dict of DXF attributes e.g. {'layer': 'mesh', 'color': 7} • matrix – transformation matrix of type Matrix44 • ucs – transform vertices by UCS to WCS render_polyface(layout: BaseLayout, dxfattribs: dict = None, matrix: Matrix44 = None, ucs: UCS = None) Render mesh as Polyface entity into layout. New in version 0.11.1. Parameters • layout – BaseLayout object • dxfattribs – dict of DXF attributes e.g. {'layer': 'mesh', 'color': 7} • matrix – transformation matrix of type Matrix44 • ucs – transform vertices by UCS to WCS render_3dfaces(layout: BaseLayout, dxfattribs: dict = None, matrix: Matrix44 = None, ucs: UCS = None) Render mesh as Face3d entities into layout. New in version 0.12. Parameters • layout – BaseLayout object • dxfattribs – dict of DXF attributes e.g. {'layer': 'mesh', 'color': 7} • matrix – transformation matrix of type Matrix44 • ucs – transform vertices by UCS to WCS render_normals(layout: BaseLayout, length: float = 1, relative=True, dxfattribs: dict = None) Render face normals as Line entities into layout, useful to check orientation of mesh faces. Parameters • layout – BaseLayout object • length – visual length of normal, use length < 0 to point normals in opposite direction • relative – scale length relative to face size if True • dxfattribs – dict of DXF attributes e.g. {'layer': 'normals', 'color': 6} classmethod from_mesh(other) -> ezdxf.render.mesh.MeshBuilder Create new mesh from other mesh as class method. Parameters other – mesh of type MeshBuilder and inherited or DXF Mesh entity or any object providing attributes vertices, edges and faces. classmethod from_polyface(other: Union[Polymesh, Polyface]) -> MeshBuilder Create new mesh from a Polyface or Polymesh object. New in version 0.11.1. classmethod from_builder(other: MeshBuilder) Create new mesh from other mesh builder, faster than from_mesh() but supports only MeshBuilder and inherited classes. MeshTransformer Same functionality as MeshBuilder but supports inplace transformation. class ezdxf.render.MeshTransformer Subclass of MeshBuilder subdivide(level: int = 1, quads=True, edges=False) -> MeshTransformer Returns a new MeshTransformer object with subdivided faces and edges. Parameters • level – subdivide levels from 1 to max of 5 • quads – create quad faces if True else create triangles • edges – also subdivide edges if True transform(matrix: Matrix44) Transform mesh inplace by applying the transformation matrix. Parameters matrix – 4x4 transformation matrix as Matrix44 object translate(dx: float = 0, dy: float = 0, dz: float = 0) Translate mesh inplace. Parameters • dx – translation in x-axis • dy – translation in y-axis • dz – translation in z-axis scale(sx: float = 1, sy: float = 1, sz: float = 1) Scale mesh inplace. Parameters • sx – scale factor for x-axis • sy – scale factor for y-axis • sz – scale factor for z-axis scale_uniform(s: float) Scale mesh uniform inplace. Parameters s – scale factor for x-, y- and z-axis rotate_x(angle: float) Rotate mesh around x-axis about angle inplace. Parameters angle – rotation angle in radians rotate_y(angle: float) Rotate mesh around y-axis about angle inplace. Parameters angle – rotation angle in radians rotate_z(angle: float) Rotate mesh around z-axis about angle inplace. Parameters angle – rotation angle in radians rotate_axis(axis: Vertex, angle: float) Rotate mesh around an arbitrary axis located in the origin (0, 0, 0) about angle. Parameters • axis – rotation axis as Vector • angle – rotation angle in radians MeshVertexMerger Same functionality as MeshBuilder, but created meshes with unique vertices and no doublets, but MeshVertexMerger needs extra memory for bookkeeping and also does not support transformations. Location of merged vertices is the location of the first vertex with the same key. This class is intended as intermediate object to create a compact meshes and convert them to MeshTransformer objects to apply transformations to the mesh: mesh = MeshVertexMerger() # create your mesh mesh.add_face(...) # convert mesh to MeshTransformer object return MeshTransformer.from_builder(mesh) class ezdxf.render.MeshVertexMerger(precision: int = 6) Subclass of MeshBuilder Mesh with unique vertices and no doublets, but needs extra memory for bookkeeping. MeshVertexMerger creates a key for every vertex by rounding its components by the Python round() function and a given precision value. Each vertex with the same key gets the same vertex index, which is the index of first vertex with this key, so all vertices with the same key will be located at the location of this first vertex. If you want an average location of and for all vertices with the same key look at the MeshAverageVertexMerger class. Parameters precision – floating point precision for vertex rounding MeshAverageVertexMerger This is an extended version of MeshVertexMerger. Location of merged vertices is the average location of all vertices with the same key, this needs extra memory and runtime in comparision to MeshVertexMerger and this class also does not support transformations. class ezdxf.render.MeshAverageVertexMerger(precision: int = 6) Subclass of MeshBuilder Mesh with unique vertices and no doublets, but needs extra memory for bookkeeping and runtime for calculation of average vertex location. MeshAverageVertexMerger creates a key for every vertex by rounding its components by the Python round() function and a given precision value. Each vertex with the same key gets the same vertex index, which is the index of first vertex with this key, the difference to the MeshVertexMerger class is the calculation of the average location for all vertices with the same key, this needs extra memory to keep track of the count of vertices for each key and extra runtime for updating the vertex location each time a vertex with an existing key is added. Parameters precision – floating point precision for vertex rounding Trace This module provides tools to create banded lines like LWPOLYLINE with width information. Path rendering as quadrilaterals: Trace, Solid or Face3d. class ezdxf.render.trace.TraceBuilder Sequence of 2D banded lines like polylines with start- and end width or curves with start- and end width. Accepts 3D input, but z-axis is ignored. abs_tol Absolute tolerance for floating point comparisons append(trace: ezdxf.render.trace.AbstractTrace) -> None Append a new trace. close() Close multi traces by merging first and last trace, if linear traces. faces() -> Iterable[Tuple[Vec2, Vec2, Vec2, Vec2] Yields all faces as 4-tuples of Vec2 objects. virtual_entities(dxftype='TRACE', dxfattribs: Dict = None, doc: Drawing = None) -> Union[Solid, Trace, Face3d] Yields faces as SOLID, TRACE or 3DFACE entities with DXF attributes given in dxfattribs. If a document is given, the doc attribute of the new entities will be set and the new entities will be automatically added to the entity database of that document. Parameters • dxftype – DXF type as string, “SOLID”, “TRACE” or “3DFACE” • dxfattribs – DXF attributes for SOLID, TRACE or 3DFACE entities • doc – associated document classmethod from_polyline(polyline: DXFGraphic, segments: int = 64) -> TraceBuilder Create a complete trace from a LWPOLYLINE or a 2D POLYLINE entity, the trace consist of multiple sub-traces if bulge values are present. Parameters • polyline – LWPolyline or 2D Polyline • segments – count of segments for bulge approximation, given count is for a full circle, partial arcs have proportional less segments, but at least 3 __len__() __getitem__(item) class ezdxf.render.trace.LinearTrace Linear 2D banded lines like polylines with start- and end width. Accepts 3D input, but z-axis is ignored. abs_tol Absolute tolerance for floating point comparisons is_started True if at least one station exist. add_station(point: Vertex, start_width: float, end_width: float = None) -> None Add a trace station (like a vertex) at location point, start_width is the width of the next segment starting at this station, end_width is the end width of the next segment. Adding the last location again, replaces the actual last location e.g. adding lines (a, b), (b, c), creates only 3 stations (a, b, c), this is very important to connect to/from splines. Parameters • point – 2D location (vertex), z-axis of 3D vertices is ignored. • start_width – start width of next segment • end_width – end width of next segment faces() -> Iterable[Tuple[Vec2, Vec2, Vec2, Vec2] Yields all faces as 4-tuples of Vec2 objects. First and last miter is 90 degrees if the path is not closed, otherwise the intersection of first and last segment is taken into account, a closed path has to have explicit the same last and first vertex. virtual_entities(dxftype='TRACE', dxfattribs: Dict = None, doc: Drawing = None) -> Union[Solid, Trace, Face3d] Yields faces as SOLID, TRACE or 3DFACE entities with DXF attributes given in dxfattribs. If a document is given, the doc attribute of the new entities will be set and the new entities will be automatically added to the entity database of that document. Parameters • dxftype – DXF type as string, “SOLID”, “TRACE” or “3DFACE” • dxfattribs – DXF attributes for SOLID, TRACE or 3DFACE entities • doc – associated document class ezdxf.render.trace.CurvedTrace 2D banded curves like arcs or splines with start- and end width. Represents always only one curved entity and all miter of curve segments are perpendicular to curve tangents. Accepts 3D input, but z-axis is ignored. faces() -> Iterable[Tuple[Vec2, Vec2, Vec2, Vec2] Yields all faces as 4-tuples of Vec2 objects. virtual_entities(dxftype='TRACE', dxfattribs: Dict = None, doc: Drawing = None) -> Union[Solid, Trace, Face3d] Yields faces as SOLID, TRACE or 3DFACE entities with DXF attributes given in dxfattribs. If a document is given, the doc attribute of the new entities will be set and the new entities will be automatically added to the entity database of that document. Parameters • dxftype – DXF type as string, “SOLID”, “TRACE” or “3DFACE” • dxfattribs – DXF attributes for SOLID, TRACE or 3DFACE entities • doc – associated document classmethod from_arc(arc: ezdxf.math.arc.ConstructionArc, start_width: float, end_width: float, segments: int = 64) -> ezdxf.render.trace.CurvedTrace Create curved trace from an arc. Parameters • arc – ConstructionArc object • start_width – start width • end_width – end width • segments – count of segments for full circle (360 degree) approximation, partial arcs have proportional less segments, but at least 3 Raises ValueError – if arc.radius <= 0 classmethod from_spline(spline: ezdxf.math.bspline.BSpline, start_width: float, end_width: float, segments: int) -> ezdxf.render.trace.CurvedTrace Create curved trace from a B-spline. Parameters • spline – BSpline object • start_width – start width • end_width – end width • segments – count of segments for approximation Path This module implements a geometrical Path supported by several render backends, with the goal to create such paths from LWPOLYLINE, POLYLINE and HATCH boundary paths and send them to the render backend, see ezdxf.addons.drawing. Minimum common interface: • matplotlib: PathPatch • matplotlib.path.Path() codes: • MOVETO • LINETO • CURVE4 - cubic Bèzier-curve • PyQt: QPainterPath • moveTo() • lineTo() • cubicTo() - cubic Bèzier-curve • PyCairo: Context • move_to() • line_to() • curve_to() - cubic Bèzier-curve • SVG: SVG-Path • “M” - absolute move to • “L” - absolute line to • “C” - absolute cubic Bèzier-curve ARC and ELLIPSE entities are approximated by multiple cubic Bézier-curves, which are close enough for display rendering. Non-rational SPLINES of 3rd degree can be represented exact as multiple cubic Bézier-curves, other B-splines will be approximated. class ezdxf.render.path.Path start Path start point, resetting the start point of an empty path is possible. end Path end point. is_closed Returns True if the start point is close to the end point. classmethod from_lwpolyline(lwpolyline: LWPolyline) -> Path Returns a Path from a LWPolyline entity, all vertices transformed to WCS. classmethod from_polyline(polyline: Polyline) -> Path Returns a Path from a Polyline entity, all vertices transformed to WCS. classmethod from_spline(spline: Spline, level: int = 4) -> Path Returns a Path from a Spline. classmethod from_ellipse(ellipse: Ellipse, segments: int = 1) -> Path Returns a Path from a Ellipse. classmethod from_arc(arc: Arc, segments: int = 1) -> Path Returns a Path from an Arc. classmethod from_circle(circle: Circle, segments: int = 1) -> Path Returns a Path from a Circle. classmethod from_hatch_polyline_path(polyline: PolylinePath, ocs: ezdxf.math.ucs.OCS = None, elevation: float = 0) -> Path Returns a Path from a Hatch polyline path. classmethod from_hatch_edge_path(edges: EdgePath, ocs: ezdxf.math.ucs.OCS = None, elevation: float = 0) -> Path Returns a Path from a Hatch edge path. control_vertices() Yields all path control vertices in consecutive order. has_clockwise_orientation() -> bool Returns True if 2D path has clockwise orientation, ignores z-axis of all control vertices. line_to(location: Vector) Add a line from actual path end point to location. curve_to(location: Vector, ctrl1: Vector, ctrl2: Vector) Add a cubic Bèzier-curve from actual path end point to location, ctrl1 and ctrl2 are the control points for the cubic Bèzier-curve. close() -> None Close path by adding a line segment from the end point to the start point. clone() -> Path Returns a new copy of Path with shared immutable data. reversed() -> Path Returns a new Path with reversed segments and control vertices. clockwise() -> Path Returns new Path in clockwise orientation. counter_clockwise() -> Path Returns new Path in counter-clockwise orientation. add_curves(curves: Iterable[Bezier4P]) Add multiple cubic Bèzier-curves to the path. Auto-detect if the path end point is connected to the start- or end point of the curves, if none of them is close to the path end point a line from the path end point to the curves start point will be added. add_ellipse(ellipse: ConstructionEllipse, segments=1) Add an elliptical arc as multiple cubic Bèzier-curves, use from_arc() constructor of class ConstructionEllipse to add circular arcs. Auto-detect connection point, if none is close a line from the path end point to the ellipse start point will be added (see add_curves()). By default the start of an empty path is set to the start point of the ellipse, setting argument reset to False prevents this behavior. Parameters • ellipse – ellipse parameters as ConstructionEllipse object • segments – count of Bèzier-curve segments, at least one segment for each quarter (pi/2), 1 for as few as possible. • reset – set start point to start of ellipse if path is empty add_spline(spline: BSpline, level=4) Add a B-spline as multiple cubic Bèzier-curves. Non-rational B-splines of 3rd degree gets a perfect conversion to cubic bezier curves with a minimal count of curve segments, all other B-spline require much more curve segments for approximation. Auto-detect connection point, if none is close a line from the path end point to the spline start point will be added (see add_curves()). By default the start of an empty path is set to the start point of the spline, setting argument reset to False prevents this behavior. Parameters • spline – B-spline parameters as BSpline object • level – subdivision level of approximation segments • reset – set start point to start of spline if path is empty transform(m: Matrix44) -> Path Returns a new transformed path. Parameters m – transformation matrix of type Matrix44 approximate(segments: int) -> Iterable[Vector] Approximate path by vertices, segments is the count of approximation segments for each cubic bezier curve.
ADD-ONS
r12writer The fast file/stream writer creates simple DXF R12 drawings with just an ENTITIES section. The HEADER, TABLES and BLOCKS sections are not present except FIXED-TABLES are written. Only LINE, CIRCLE, ARC, TEXT, POINT, SOLID, 3DFACE and POLYLINE entities are supported. FIXED-TABLES is a predefined TABLES section, which will be written, if the init argument fixed_tables of R12FastStreamWriter is True. The R12FastStreamWriter writes the DXF entities as strings direct to the stream without creating an in-memory drawing and therefore the processing is very fast. Because of the lack of a BLOCKS section, BLOCK/INSERT can not be used. Layers can be used, but this layers have a default setting color = 7 (black/white) and linetype = 'Continuous'. If writing the FIXED-TABLES, some predefined text styles and line types are available, else text style is always 'STANDARD' and line type is always 'ByLayer'. If using FIXED-TABLES, following predefined line types are available: • CONTINUOUS • CENTER ____ _ ____ _ ____ _ ____ _ ____ _ ____ • CENTERX2 ________ __ ________ __ ________ • CENTER2 ____ _ ____ _ ____ _ ____ _ ____ • DASHED __ __ __ __ __ __ __ __ __ __ __ __ __ _ • DASHEDX2 ____ ____ ____ ____ ____ ____ • DASHED2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ • PHANTOM ______ __ __ ______ __ __ ______ • PHANTOMX2 ____________ ____ ____ ____________ • PHANTOM2 ___ _ _ ___ _ _ ___ _ _ ___ _ _ ___ • DASHDOT __ . __ . __ . __ . __ . __ . __ . __ • DASHDOTX2 ____ . ____ . ____ . ____ • DASHDOT2 _ . _ . _ . _ . _ . _ . _ . _ • DOT . . . . . . . . . . . . . . . . • DOTX2 . . . . . . . . • DOT2 . . . . . . . . . . . . . . . . . . . • DIVIDE __ . . __ . . __ . . __ . . __ . . __ • DIVIDEX2 ____ . . ____ . . ____ . . ____ • DIVIDE2 _ . _ . _ . _ . _ . _ . _ . _ If using FIXED-TABLES, following predefined text styles are available: • OpenSans • OpenSansCondensed-Light New in version 0.12: Write Binary DXF files. Tutorial A simple example with different DXF entities: from random import random from ezdxf.addons import r12writer with r12writer("quick_and_dirty_dxf_r12.dxf") as dxf: dxf.add_line((0, 0), (17, 23)) dxf.add_circle((0, 0), radius=2) dxf.add_arc((0, 0), radius=3, start=0, end=175) dxf.add_solid([(0, 0), (1, 0), (0, 1), (1, 1)]) dxf.add_point((1.5, 1.5)) # 2d polyline, new in v0.12 dxf.add_polyline_2d([(5, 5), (7, 3), (7, 6)]) # 2d polyline with bulge value, new in v0.12 dxf.add_polyline_2d([(5, 5), (7, 3, 0.5), (7, 6)], format='xyb') # 3d polyline only, changed in v0.12 dxf.add_polyline([(4, 3, 2), (8, 5, 0), (2, 4, 9)]) dxf.add_text("test the text entity", align="MIDDLE_CENTER") A simple example of writing really many entities in a short time: from random import random from ezdxf.addons import r12writer MAX_X_COORD = 1000.0 MAX_Y_COORD = 1000.0 CIRCLE_COUNT = 1000000 with r12writer("many_circles.dxf") as dxf: for i in range(CIRCLE_COUNT): dxf.add_circle((MAX_X_COORD*random(), MAX_Y_COORD*random()), radius=2) Show all available line types: import ezdxf LINETYPES = [ 'CONTINUOUS', 'CENTER', 'CENTERX2', 'CENTER2', 'DASHED', 'DASHEDX2', 'DASHED2', 'PHANTOM', 'PHANTOMX2', 'PHANTOM2', 'DASHDOT', 'DASHDOTX2', 'DASHDOT2', 'DOT', 'DOTX2', 'DOT2', 'DIVIDE', 'DIVIDEX2', 'DIVIDE2', ] with r12writer('r12_linetypes.dxf', fixed_tables=True) as dxf: for n, ltype in enumerate(LINETYPES): dxf.add_line((0, n), (10, n), linetype=ltype) dxf.add_text(ltype, (0, n+0.1), height=0.25, style='OpenSansCondensed-Light') Reference ezdxf.addons.r12writer.r12writer(stream: Union[TextIO, BinaryIO, str], fixed_tables=False, fmt='asc') -> R12FastStreamWriter Context manager for writing DXF entities to a stream/file. stream can be any file like object with a write() method or just a string for writing DXF entities to the file system. If fixed_tables is True, a standard TABLES section is written in front of the ENTITIES section and some predefined text styles and line types can be used. New in version 0.12: Set argument fmt to 'asc' to write ASCII DXF file (default) or 'bin' to write Binary DXF files. ASCII DXF require a TextIO stream and Binary DXF require a BinaryIO stream. class ezdxf.addons.r12writer.R12FastStreamWriter(stream: [<class 'typing.TextIO'>, <class 'ezdxf.addons.r12writer.BinaryDXFWriter'>], fixed_tables=False) Fast stream writer to create simple DXF R12 drawings. Parameters • stream – a file like object with a write() method. • fixed_tables – if fixed_tables is True, a standard TABLES section is written in front of the ENTITIES section and some predefined text styles and line types can be used. close() -> None Writes the DXF tail. Call is not necessary when using the context manager r12writer(). add_line(start: Sequence[float], end: Sequence[float], layer: str = '0', color: int = None, linetype: str = None) -> None Add a LINE entity from start to end. Parameters • start – start vertex as (x, y[, z]) tuple • end – end vertex as as (x, y[, z]) tuple • layer – layer name as string, without a layer definition the assigned color = 7 (black/white) and line type is 'Continuous'. • color – color as ACI in the range from 0 to 256, 0 is ByBlock and 256 is ByLayer, default is ByLayer which is always color = 7 (black/white) without a layer definition. • linetype – line type as string, if FIXED-TABLES are written some predefined line types are available, else line type is always ByLayer, which is always 'Continuous' without a LAYERS table. add_circle(center: Sequence[float], radius: float, layer: str = '0', color: int = None, linetype: str = None) -> None Add a CIRCLE entity. Parameters • center – circle center point as (x, y) tuple • radius – circle radius as float • layer – layer name as string see add_line() • color – color as ACI see add_line() • linetype – line type as string see add_line() add_arc(center: Sequence[float], radius: float, start: float = 0, end: float = 360, layer: str = '0', color: int = None, linetype: str = None) -> None Add an ARC entity. The arc goes counter clockwise from start angle to end angle. Parameters • center – arc center point as (x, y) tuple • radius – arc radius as float • start – arc start angle in degrees as float • end – arc end angle in degrees as float • layer – layer name as string see add_line() • color – color as ACI see add_line() • linetype – line type as string see add_line() add_point(location: Sequence[float], layer: str = '0', color: int = None, linetype: str = None) -> None Add a POINT entity. Parameters • location – point location as (x, y [,z]) tuple • layer – layer name as string see add_line() • color – color as ACI see add_line() • linetype – line type as string see add_line() add_3dface(vertices: Iterable[Sequence[float]], invisible: int = 0, layer: str = '0', color: int = None, linetype: str = None) -> None Add a 3DFACE entity. 3DFACE is a spatial area with 3 or 4 vertices, all vertices have to be in the same plane. Parameters • vertices – iterable of 3 or 4 (x, y, z) vertices. • invisible – bit coded flag to define the invisible edges, 1. edge = 1 2. edge = 2 3. edge = 4 4. edge = 8 Add edge values to set multiple edges invisible, 1. edge + 3. edge = 1 + 4 = 5, all edges = 15 • layer – layer name as string see add_line() • color – color as ACI see add_line() • linetype – line type as string see add_line() add_solid(vertices: Iterable[Sequence[float]], layer: str = '0', color: int = None, linetype: str = None) -> None Add a SOLID entity. SOLID is a solid filled area with 3 or 4 edges and SOLID is a 2D entity. Parameters • vertices – iterable of 3 or 4 (x, y[, z]) tuples, z-axis will be ignored. • layer – layer name as string see add_line() • color – color as ACI see add_line() • linetype – line type as string see add_line() add_polyline_2d(points: Iterable[Sequence], format: str = 'xy', closed: bool = False, start_width: float = 0, end_width: float = 0, layer: str = '0', color: int = None, linetype: str = None) -> None Add a 2D POLYLINE entity with start width, end width and bulge value support. Format codes: ┌──┬──────────────────────────────────┐ │x │ x-coordinate │ ├──┼──────────────────────────────────┤ │y │ y-coordinate │ ├──┼──────────────────────────────────┤ │s │ start width │ ├──┼──────────────────────────────────┤ │e │ end width │ ├──┼──────────────────────────────────┤ │b │ bulge value │ ├──┼──────────────────────────────────┤ │v │ (x, y) tuple (z-axis is ignored) │ └──┴──────────────────────────────────┘ Parameters • points – iterable of (x, y, [start_width, [end_width, [bulge]]]) tuple, value order according to the format string, unset values default to 0 • format – format: format string, default is 'xy' • closed – True creates a closed polyline • start_width – default start width, default is 0 • end_width – default end width, default is 0 • layer – layer name as string see add_line() • color – color as ACI see add_line() • linetype – line type as string see add_line() add_polyline(vertices: Iterable[Sequence[float]], closed: bool = False, layer: str = '0', color: int = None, linetype: str = None) -> None Add a 3D POLYLINE entity. Parameters • vertices – iterable of (x, y[, z]) tuples, z-axis is 0 by default • closed – True creates a closed polyline • layer – layer name as string see add_line() • color – color as ACI see add_line() • linetype – line type as string see add_line() Changed in version 0.12: Write only 3D POLYLINE entity, added closed argument. add_polyface(vertices: Iterable[Sequence[float]], faces: Iterable[Sequence[int]], layer: str = '0', color: int = None, linetype: str = None) -> None Add a POLYFACE entity. The POLYFACE entity supports only faces of maximum 4 vertices, more indices will be ignored. A simple square would be: v0 = (0, 0, 0) v1 = (1, 0, 0) v2 = (1, 1, 0) v3 = (0, 1, 0) dxf.add_polyface(vertices=[v0, v1, v2, v3], faces=[(0, 1, 2, 3)]) All 3D form functions of the ezdxf.render.forms module return MeshBuilder objects, which provide the required vertex and face lists. See sphere example: https://github.com/mozman/ezdxf/blob/master/examples/r12writer.py Parameters • vertices – iterable of (x, y, z) tuples • faces – iterable of 3 or 4 vertex indices, indices have to be 0-based • layer – layer name as string see add_line() • color – color as ACI see add_line() • linetype – line type as string see add_line() add_polymesh(vertices: Iterable[Sequence[float]], size: Tuple[int, int], closed=(False, False), layer: str = '0', color: int = None, linetype: str = None) -> None Add a POLYMESH entity. A POLYMESH is a mesh of m rows and n columns, each mesh vertex has its own x-, y- and z coordinates. The mesh can be closed in m- and/or n-direction. The vertices have to be in column order: (m0, n0), (m0, n1), (m0, n2), (m1, n0), (m1, n1), (m1, n2), … See example: https://github.com/mozman/ezdxf/blob/master/examples/r12writer.py Parameters • vertices – iterable of (x, y, z) tuples, in column order • size – mesh dimension as (m, n)-tuple, requirement: len(vertices) == m*n • closed – (m_closed, n_closed) tuple, for closed mesh in m and/or n direction • layer – layer name as string see add_line() • color – color as ACI see add_line() • linetype – line type as string see add_line() add_text(text: str, insert: Sequence[float] = (0, 0), height: float = 1.0, width: float = 1.0, align: str = 'LEFT', rotation: float = 0.0, oblique: float = 0.0, style: str = 'STANDARD', layer: str = '0', color: int = None) -> None Add a one line TEXT entity. Parameters • text – the text as string • insert – insert location as (x, y) tuple • height – text height in drawing units • width – text width as factor • align – text alignment, see table below • rotation – text rotation in degrees as float • oblique – oblique in degrees as float, vertical = 0 (default) • style – text style name as string, if FIXED-TABLES are written some predefined text styles are available, else text style is always 'STANDARD'. • layer – layer name as string see add_line() • color – color as ACI see add_line() ┌───────────┬─────────────┬───────────────┬──────────────┐ │Vert/Horiz │ Left │ Center │ Right │ ├───────────┼─────────────┼───────────────┼──────────────┤ │Top │ TOP_LEFT │ TOP_CENTER │ TOP_RIGHT │ ├───────────┼─────────────┼───────────────┼──────────────┤ │Middle │ MIDDLE_LEFT │ MIDDLE_CENTER │ MIDDLE_RIGHT │ ├───────────┼─────────────┼───────────────┼──────────────┤ │Bottom │ BOTTOM_LEFT │ BOTTOM_CENTER │ BOTTOM_RIGHT │ ├───────────┼─────────────┼───────────────┼──────────────┤ │Baseline │ LEFT │ CENTER │ RIGHT │ └───────────┴─────────────┴───────────────┴──────────────┘ The special alignments ALIGNED and FIT are not available. iterdxf This add-on allows iterating over entities of the modelspace of really big (> 5GB) DXF files which do not fit into memory by only loading one entity at the time. Only ASCII DXF files are supported. The entities are regular DXFGraphic objects with access to all supported DXF attributes, this entities can be written to new DXF files created by the IterDXF.export() method. The new add_foreign_entity() method allows also to add this entities to new regular ezdxf drawings (except for the INSERT entity), but resources like linetype and style are removed, only layer will be preserved but only with default attributes like color 7 and linetype CONTINUOUS. The following example shows how to split a big DXF files into several separated DXF files which contains only LINE, TEXT or POLYLINE entities. from ezdxf.addons import iterdxf doc = iterdxf.opendxf('big.dxf') line_exporter = doc.export('line.dxf') text_exporter = doc.export('text.dxf') polyline_exporter = doc.export('polyline.dxf') try: for entity in doc.modelspace(): if entity.dxftype() == 'LINE': line_exporter.write(entity) elif entity.dxftype() == 'TEXT': text_exporter.write(entity) elif entity.dxftype() == 'POLYLINE': polyline_exporter.write(entity) finally: line_exporter.close() text_exporter.close() polyline_exporter.close() doc.close() Supported DXF types: 3DFACE, ARC, ATTDEF, ATTRIB, CIRCLE, DIMENSION, ELLIPSE, HATCH, HELIX, IMAGE, INSERT, LEADER, LINE, LWPOLYLINE, MESH, MLEADER, MLINE, MTEXT, POINT, POLYLINE, RAY, SHAPE, SOLID, SPLINE, TEXT, TRACE, VERTEX, WIPEOUT, XLINE Transfer simple entities to another DXF document, this works for some supported entities, except for entities with strong dependencies to the original document like INSERT look at add_foreign_entity() for all supported types: newdoc = ezdxf.new() msp = newdoc.modelspace() # line is an entity from a big source file msp.add_foreign_entity(line) # and so on ... msp.add_foreign_entity(lwpolyline) msp.add_foreign_entity(mesh) msp.add_foreign_entity(polyface) Transfer MESH and POLYFACE (dxftype for POLYFACE and POLYMESH is POLYLINE!) entities into a new DXF document by the MeshTransformer class: from ezdxf.render import MeshTransformer # mesh is MESH from a big source file t = MeshTransformer.from_mesh(mesh) # create a new MESH entity from MeshTransformer t.render(msp) # polyface is POLYFACE from a big source file t = MeshTransformer.from_polyface(polyface) # create a new POLYMESH entity from MeshTransformer t.render_polyface(msp) Another way to import entities from a big source file into new DXF documents is to split the big file into smaller parts and use the Importer add-on for a more safe entity import. ezdxf.addons.iterdxf.opendxf(filename: str, errors: str = 'surrogateescape') -> IterDXF Open DXF file for iterating, be sure to open valid DXF files, no DXF structure checks will be applied. Use this function to split up big DXF files as shown in the example above. Parameters • filename – DXF filename of a seekable DXF file. • errors – specify decoding error handler • ”surrogateescape” to preserve possible binary data (default) • ”ignore” to use the replacement char U+FFFD “�” for invalid data • ”strict” to raise an UnicodeDecodeError exception for invalid data Raises • DXFStructureError – invalid or incomplete DXF file • UnicodeDecodeError – if errors is “strict” and a decoding error occurs ezdxf.addons.iterdxf.modelspace(filename: str, types: Iterable[str] = None, errors: str = 'surrogateescape') -> Iterable[DXFGraphic] Iterate over all modelspace entities as DXFGraphic objects of a seekable file. Use this function to iterate “quick” over modelspace entities of a DXF file, filtering DXF types may speed up things if many entity types will be skipped. Parameters • filename – filename of a seekable DXF file • types – DXF types like ['LINE', '3DFACE'] which should be returned, None returns all supported types. • errors – specify decoding error handler • ”surrogateescape” to preserve possible binary data (default) • ”ignore” to use the replacement char U+FFFD “�” for invalid data • ”strict” to raise an UnicodeDecodeError exception for invalid data Raises • DXFStructureError – invalid or incomplete DXF file • UnicodeDecodeError – if errors is “strict” and a decoding error occurs ezdxf.addons.iterdxf.single_pass_modelspace(stream: BinaryIO, types: Iterable[str] = None, errors: str = 'surrogateescape') -> Iterable[DXFGraphic] Iterate over all modelspace entities as DXFGraphic objects in one single pass. Use this function to ‘quick’ iterate over modelspace entities of a not seekable binary DXF stream, filtering DXF types may speed up things if many entity types will be skipped. Parameters • stream – (not seekable) binary DXF stream • types – DXF types like ['LINE', '3DFACE'] which should be returned, None returns all supported types. • errors – specify decoding error handler • ”surrogateescape” to preserve possible binary data (default) • ”ignore” to use the replacement char U+FFFD “�” for invalid data • ”strict” to raise an UnicodeDecodeError exception for invalid data Raises • DXFStructureError – Invalid or incomplete DXF file • UnicodeDecodeError – if errors is “strict” and a decoding error occurs class ezdxf.addons.iterdxf.IterDXF export(name: str) -> IterDXFWriter Returns a companion object to export parts from the source DXF file into another DXF file, the new file will have the same HEADER, CLASSES, TABLES, BLOCKS and OBJECTS sections, which guarantees all necessary dependencies are present in the new file. Parameters name – filename, no special requirements modelspace(types: Iterable[str] = None) -> Iterable[DXFGraphic] Returns an iterator for all supported DXF entities in the modelspace. These entities are regular DXFGraphic objects but without a valid document assigned. It is not possible to add these entities to other ezdxf documents. It is only possible to recreate the objects by factory functions base on attributes of the source entity. For MESH, POLYMESH and POLYFACE it is possible to use the MeshTransformer class to render (recreate) this objects as new entities in another document. Parameters types – DXF types like ['LINE', '3DFACE'] which should be returned, None returns all supported types. close() Safe closing source DXF file. class ezdxf.addons.iterdxf.IterDXFWriter write(entity: DXFGraphic) Write a DXF entity from the source DXF file to the export file. Don’t write entities from different documents than the source DXF file, dependencies and resources will not match, maybe it will work once, but not in a reliable way for different DXF documents. close() Safe closing of exported DXF file. Copying of OBJECTS section happens only at closing the file, without closing the new DXF file is invalid. Importer This add-on is meant to import graphical entities from another DXF drawing and their required table entries like LAYER, LTYPE or STYLE. Because of complex extensibility of the DXF format and the lack of sufficient documentation, I decided to remove most of the possible source drawing dependencies from imported entities, therefore imported entities may not look the same as the original entities in the source drawing, but at least the geometry should be the same and the DXF file does not break. Removed data which could contain source drawing dependencies: Extension Dictionaries, AppData and XDATA. WARNING: DON’T EXPECT PERFECT RESULTS! The Importer supports following data import: • entities which are really safe to import: LINE, POINT, CIRCLE, ARC, TEXT, SOLID, TRACE, 3DFACE, SHAPE, POLYLINE, ATTRIB, ATTDEF, INSERT, ELLIPSE, MTEXT, LWPOLYLINE, SPLINE, HATCH, MESH, XLINE, RAY, DIMENSION, LEADER, VIEWPORT • table and table entry import is restricted to LAYER, LTYPE, STYLE, DIMSTYLE • import of BLOCK definitions is supported • import of paper space layouts is supported Import of DXF objects from the OBJECTS section is not supported. DIMSTYLE override for entities DIMENSION and LEADER is not supported. Example: import ezdxf from ezdxf.addons import Importer sdoc = ezdxf.readfile('original.dxf') tdoc = ezdxf.new() importer = Importer(sdoc, tdoc) # import all entities from source modelspace into modelspace of the target drawing importer.import_modelspace() # import all paperspace layouts from source drawing importer.import_paperspace_layouts() # import all CIRCLE and LINE entities from source modelspace into an arbitrary target layout. # create target layout tblock = tdoc.blocks.new('SOURCE_ENTS') # query source entities ents = sdoc.modelspace().query('CIRCLE LINE') # import source entities into target block importer.import_entities(ents, tblock) # This is ALWAYS the last & required step, without finalizing the target drawing is maybe invalid! # This step imports all additional required table entries and block definitions. importer.finalize() tdoc.saveas('imported.dxf') class ezdxf.addons.importer.Importer(source: Drawing, target: Drawing) The Importer class is central element for importing data from other DXF drawings. Parameters • source – source Drawing • target – target Drawing Variables • source – source drawing • target – target drawing • used_layer – Set of used layer names as string, AutoCAD accepts layer names without a LAYER table entry. • used_linetypes – Set of used linetype names as string, these linetypes require a TABLE entry or AutoCAD will crash. • used_styles – Set of used text style names, these text styles require a TABLE entry or AutoCAD will crash. • used_dimstyles – Set of used dimension style names, these dimension styles require a TABLE entry or AutoCAD will crash. finalize() -> None Finalize import by importing required table entries and block definition, without finalization the target drawing is maybe invalid fore AutoCAD. Call finalize() as last step of the import process. import_block(block_name: str, rename=True) -> str Import one block definition. If block already exist the block will be renamed if argument rename is True, else the existing target block will be used instead of the source block. Required name resolving for imported block references (INSERT), will be done in Importer.finalize(). To replace an existing block in the target drawing, just delete it before importing: target.blocks.delete_block(block_name, safe=False) Parameters • block_name – name of block to import • rename – rename block if exists in target drawing Returns: block name (renamed) Raises ValueError – source block not found import_blocks(block_names: Iterable[str], rename=False) -> None Import all block definitions. If block already exist the block will be renamed if argument rename is True, else the existing target block will be used instead of the source block. Required name resolving for imported block references (INSERT), will be done in Importer.finalize(). Parameters • block_names – names of blocks to import • rename – rename block if exists in target drawing Raises ValueError – source block not found import_entities(entities: Iterable[DXFEntity], target_layout: BaseLayout = None) -> None Import all entities into target_layout or the modelspace of the target drawing, if target_layout is None. Parameters • entities – Iterable of DXF entities • target_layout – any layout (modelspace, paperspace or block) from the target drawing Raises DXFStructureError – target_layout is not a layout of target drawing import_entity(entity: DXFEntity, target_layout: BaseLayout = None) -> None Imports a single DXF entity into target_layout or the modelspace of the target drawing, if target_layout is None. Parameters • entity – DXF entity to import • target_layout – any layout (modelspace, paperspace or block) from the target drawing Raises DXFStructureError – target_layout is not a layout of target drawing import_modelspace(target_layout: BaseLayout = None) -> None Import all entities from source modelspace into target_layout or the modelspace of the target drawing, if target_layout is None. Parameters target_layout – any layout (modelspace, paperspace or block) from the target drawing Raises DXFStructureError – target_layout is not a layout of target drawing import_paperspace_layout(name: str) -> Layout Import paperspace layout name into target drawing. Recreates the source paperspace layout in the target drawing, renames the target paperspace if already a paperspace with same name exist and imports all entities from source paperspace into target paperspace. Parameters name – source paper space name as string Returns: new created target paperspace Layout Raises • KeyError – source paperspace does not exist • DXFTypeError – invalid modelspace import import_paperspace_layouts() -> None Import all paperspace layouts and their content into target drawing. Target layouts will be renamed if already a layout with same name exist. Layouts will be imported in original tab order. import_table(name: str, entries: Union[str, Iterable[str]] = '*', replace=False) -> None Import specific table entries from source drawing into target drawing. Parameters • name – valid table names are layers, linetypes and styles • entries – Iterable of table names as strings, or a single table name or * for all table entries • replace – True to replace already existing table entry else ignore existing entry Raises TypeError – unsupported table type import_tables(table_names: Union[str, Iterable[str]] = '*', replace=False) -> None Import DXF tables from source drawing into target drawing. Parameters • table_names – iterable of tables names as strings, or a single table name as string or * for all supported tables • replace – True to replace already existing table entries else ignore existing entries Raises TypeError – unsupported table type recreate_source_layout(name: str) -> Layout Recreate source paperspace layout name in the target drawing. The layout will be renamed if name already exist in the target drawing. Returns target modelspace for layout name “Model”. Parameters name – layout name as string Raises KeyError – if source layout name not exist Drawing / Export Addon This add-on provides the functionality to render a DXF document to produce a rasterized or vector-graphic image which can be saved to a file or viewed interactively depending on the backend being used. The module provides two example scripts in the folder examples/addons/drawing which can be run to save rendered images to files or view an interactive visualisation $ ./draw_cad.py --supported_formats # will list the file formats supported by the matplotlib backend. # Many formats are supported including vector graphics formats # such as pdf and svg $ ./draw_cad.py <my_file.dxf> --out image.png # draw a layout other than the model space $ ./draw_cad.py <my_file.dxf> --layout Layout1 --out image.png # opens a GUI application to view CAD files $ ./cad_viewer.py Example for the usage of the matplotlib backend: import sys import matplotlib.pyplot as plt from ezdxf import recover from ezdxf.addons.drawing import RenderContext, Frontend from ezdxf.addons.drawing.matplotlib import MatplotlibBackend # Safe loading procedure (requires ezdxf v0.14): try: doc, auditor = recover.readfile('your.dxf') except IOError: print(f'Not a DXF file or a generic I/O error.') sys.exit(1) except ezdxf.DXFStructureError: print(f'Invalid or corrupted DXF file.') sys.exit(2) # The auditor.errors attribute stores severe errors, # which may raise exceptions when rendering. if not auditor.has_errors: fig = plt.figure() ax = fig.add_axes([0, 0, 1, 1]) ctx = RenderContext(doc) out = MatplotlibBackend(ax) Frontend(ctx, out).draw_layout(doc.modelspace(), finalize=True) fig.savefig('your.png', dpi=300) Simplified render workflow but with less control: from ezdxf import recover from ezdxf.addons.drawing import matplotlib # Exception handling left out for compactness: doc, auditor = recover.readfile('your.dxf') if not auditor.has_errors: matplotlib.qsave(doc.modelspace(), 'your.png') Details The rendering is performed in two stages. The front-end traverses the DXF document structure, converting each encountered entity into primitive drawing commands. These commands are fed to a back-end which implements the interface: Backend. Currently a PyQt5 (QGraphicsScene based) and Matplotlib backend are implemented. Although the resulting images will not be pixel-perfect with AutoCAD (which was taken as the ground truth when developing this add-on) great care has been taken to achieve similar behavior in some areas: • The algorithm for determining color should match AutoCAD. However, the color palette is not stored in the dxf file, so the chosen colors may be different to what is expected. The RenderContext class supports passing a plot style table (CTB-file) as custom color palette but uses the same palette as AutoCAD by default. • Text rendering is quite accurate, text positioning, alignment and word wrapping are very faithful. Differences may occur if a different font from what was used by the CAD application but even in that case, for supported backends, measurements are taken of the font being used to match text as closely as possible. • Visibility determination (based on which layers are visible) should match AutoCAD see examples/addons/drawing/cad_viewer.py for an advanced use of the module. See examples/addons/drawing/draw_cad.py for a simple use of the module. see drawing.md in the ezdxf repository for additional behaviours documented during the development of this add-on. Limitations • Line types and hatch patterns/gradients are ignored • rich text formatting is ignored (drawn as plain text) • If the backend does not match the font then the exact text placement and wrapping may appear slightly different • No support for MULTILEADER • The style which POINT entities are drawn in are not stored in the dxf file and so cannot be replicated exactly • only basic support for: • infinite lines (rendered as lines with a finite length) • hatches with holes (holes are rendered filled) • viewports (rendered as rectangles) • 3D (some entities may not display correctly in 3D (see possible improvements below)) however many things should already work in 3D. • vertical text (will render as horizontal text) • multiple columns of text (placement of additional columns may be incorrect) Future Possible Improvements • pass the font to backend if available • deal with nested polygons/hatches by triangulating them: Triangulation • both the matplotlib and pyqt backends have built-in support for rendering hatched patterns (see MatplotlibHatch and QtBrushHatch) so the interface could pass that information through or query the backend to determine whether it automatically supports complex drawing commands such as hatching, or whether the frontend should break the shape into simpler commands (i.e. calculate and draw each line of a hatch) • text formatting commands could be interpreted and broken into text chunks which can be drawn with a single font weight or modification such as italics dxf2code Translate DXF entities and structures into Python source code. Short example: import ezdxf from ezdxf.addons.dxf2code import entities_to_code, block_to_code doc = ezdxf.readfile('original.dxf') msp = doc.modelspace() source = entities_to_code(msp) # create source code for a block definition block_source = block_to_code(doc.blocks['MyBlock']) # merge source code objects source.merge(block_source) with open('source.py', mode='wt') as f: f.write(source.import_str()) f.write('\n\n') f.write(source.code_str()) f.write('\n') ezdxf.addons.dxf2code.entities_to_code(entities: Iterable[DXFEntity], layout: str = 'layout', ignore: Iterable[str] = None) -> Code Translates DXF entities into Python source code to recreate this entities by ezdxf. Parameters • entities – iterable of DXFEntity • layout – variable name of the layout (model space or block) as string • ignore – iterable of entities types to ignore as strings like ['IMAGE', 'DIMENSION'] Returns Code ezdxf.addons.dxf2code.block_to_code(block: BlockLayout, drawing: str = 'doc', ignore: Iterable[str] = None) -> Code Translates a BLOCK into Python source code to recreate the BLOCK by ezdxf. Parameters • block – block definition layout • drawing – variable name of the drawing as string • ignore – iterable of entities types to ignore as strings like [‘IMAGE’, ‘DIMENSION’] Returns Code ezdxf.addons.dxf2code.table_entries_to_code(entities: Iterable[DXFEntity], drawing='doc') -> Code class ezdxf.addons.dxf2code.Code Source code container. code Source code line storage, store lines without line ending \\n imports source code line storage for global imports, store lines without line ending \\n layers Layers used by the generated source code, AutoCAD accepts layer names without a LAYER table entry. linetypes Linetypes used by the generated source code, these linetypes require a TABLE entry or AutoCAD will crash. styles Text styles used by the generated source code, these text styles require a TABLE entry or AutoCAD will crash. dimstyles Dimension styles used by the generated source code, these dimension styles require a TABLE entry or AutoCAD will crash. blocks Blocks used by the generated source code, these blocks require a BLOCK definition in the BLOCKS section or AutoCAD will crash. code_str(indent: int = 0) -> str Returns the source code as a single string. Parameters indent – source code indentation count by spaces import_str(indent: int = 0) -> str Returns required imports as a single string. Parameters indent – source code indentation count by spaces merge(code: ezdxf.addons.dxf2code.Code, indent: int = 0) -> None Add another Code object. add_import(statement: str) -> None Add import statement, identical import statements are merged together. add_line(code: str, indent: int = 0) -> None Add a single source code line without line ending \n. add_lines(code: Iterable[str], indent: int = 0) -> None Add multiple source code lines without line ending \n. Plot Style Files (CTB/STB) CTB and STB files store plot styles used by AutoCAD and BricsCAD for printing and plotting. If the plot style table is attached to a Paperspace or the Modelspace, a change of a plot style affects any object that uses that plot style. CTB files contain color dependent plot style tables, STB files contain named plot style tables. SEE ALSO: • Using plot style tables in AutoCAD • AutoCAD Plot Style Table Editor • BricsCAD Plot Style Table Editor • AUTODESK KNOWLEDGE NETWORK: How to install CTB files in AutoCAD ezdxf.addons.acadctb.load(filename: str) -> Union[ColorDependentPlotStyles, NamedPlotStyles] Load the CTB or STB file filename from file system. ezdxf.addons.acadctb.new_ctb() -> ColorDependentPlotStyles Create a new CTB file. Changed in version 0.10: renamed from new() ezdxf.addons.acadctb.new_stb() -> NamedPlotStyles Create a new STB file. New in version 0.10. ColorDependentPlotStyles Color dependent plot style table (CTB file), table entries are PlotStyle objects. class ezdxf.addons.acadctb.ColorDependentPlotStyles description Custom description of plot style file. scale_factor Specifies the factor by which to scale non-ISO linetypes and fill patterns. apply_factor Specifies whether or not you want to apply the scale_factor. custom_lineweight_display_units Set 1 for showing lineweight in inch in AutoCAD CTB editor window, but lineweights are always defined in millimeters. lineweights Lineweights table as array.array __getitem__(aci: int) -> PlotStyle Returns PlotStyle for ACI aci. __iter__() -> Iterable[PlotStyle] Iterable of all plot styles. new_style(aci: int, data: dict = None) -> PlotStyle Set aci to new attributes defined by data dict. Parameters • aci – ACI • data – dict of PlotStyle attributes: description, color, physical_pen_number, virtual_pen_number, screen, linepattern_size, linetype, adaptive_linetype, lineweight, end_style, join_style, fill_style get_lineweight(aci: int) Returns the assigned lineweight for PlotStyle aci in millimeter. get_lineweight_index(lineweight: float) -> int Get index of lineweight in the lineweight table or append lineweight to lineweight table. get_table_lineweight(index: int) -> float Returns lineweight in millimeters of lineweight table entry index. Parameters index – lineweight table index = PlotStyle.lineweight Returns lineweight in mm or 0.0 for use entity lineweight set_table_lineweight(index: int, lineweight: float) -> int Argument index is the lineweight table index, not the ACI. Parameters • index – lineweight table index = PlotStyle.lineweight • lineweight – in millimeters save(filename: str) -> None Save CTB file as filename to the file system. write(stream: BinaryIO) -> None Compress and write CTB file to binary stream. NamedPlotStyles Named plot style table (STB file), table entries are PlotStyle objects. class ezdxf.addons.acadctb.NamedPlotStyles description Custom description of plot style file. scale_factor Specifies the factor by which to scale non-ISO linetypes and fill patterns. apply_factor Specifies whether or not you want to apply the scale_factor. custom_lineweight_display_units Set 1 for showing lineweight in inch in AutoCAD CTB editor window, but lineweights are always defined in millimeters. lineweights Lineweights table as array.array __getitem__(name: str) -> PlotStyle Returns PlotStyle by name. __delitem__(name: str) Delete plot style name. Plot style 'Normal' is not deletable. __iter__() -> Iterable[str] Iterable of all plot style names. new_style(name: str, localized_name: str = None, data: dict = None) -> PlotStyle Create new class:PlotStyle name by attribute dict data, replaces existing class:PlotStyle objects. Parameters • name – plot style name • localized_name – name shown in plot style editor, uses name if None • data – dict of PlotStyle attributes: description, color, physical_pen_number, virtual_pen_number, screen, linepattern_size, linetype, adaptive_linetype, lineweight, end_style, join_style, fill_style get_lineweight(name: str) Returns the assigned lineweight for PlotStyle name in millimeter. get_lineweight_index(lineweight: float) -> int Get index of lineweight in the lineweight table or append lineweight to lineweight table. get_table_lineweight(index: int) -> float Returns lineweight in millimeters of lineweight table entry index. Parameters index – lineweight table index = PlotStyle.lineweight Returns lineweight in mm or 0.0 for use entity lineweight set_table_lineweight(index: int, lineweight: float) -> int Argument index is the lineweight table index, not the ACI. Parameters • index – lineweight table index = PlotStyle.lineweight • lineweight – in millimeters save(filename: str) -> None Save STB file as filename to the file system. write(stream: BinaryIO) -> None Compress and write STB file to binary stream. PlotStyle class ezdxf.addons.acadctb.PlotStyle index Table index (0-based). (int) aci ACI in range from 1 to 255. Has no meaning for named plot styles. (int) description Custom description of plot style. (str) physical_pen_number Specifies physical plotter pen, valid range from 1 to 32 or AUTOMATIC. (int) virtual_pen_number Only used by non-pen plotters and only if they are configured for virtual pens. valid range from 1 to 255 or AUTOMATIC. (int) screen Specifies the color intensity of the plot on the paper, valid range is from 0 to 100. (int) If you select 100 the drawing will plotted with its full color intensity. In order for screening to work, the dithering option must be active. linetype Overrides the entity linetype, default value is OBJECT_LINETYPE. (bool) adaptive_linetype True if a complete linetype pattern is more important than a correct linetype scaling, default is True. (bool) linepattern_size Line pattern size, default = 0.5. (float) lineweight Overrides the entity lineWEIGHT, default value is OBJECT_LINEWEIGHT. This is an index into the UserStyles.lineweights table. (int) end_style Line end cap style, see table below, default is END_STYLE_OBJECT (int) join_style Line join style, see table below, default is JOIN_STYLE_OBJECT (int) fill_style Line fill style, see table below, default is FILL_STYLE_OBJECT (int) dithering Depending on the capabilities of your plotter, dithering approximates the colors with dot patterns. When this option is False, the colors are mapped to the nearest color, resulting in a smaller range of colors when plotting. Dithering is available only whether you select the object’s color or assign a plot style color. grayscale Plot colors in grayscale. (bool) Default Line Weights ┌───┬──────┐ │# │ [mm] │ ├───┼──────┤ │0 │ 0.00 │ ├───┼──────┤ │1 │ 0.05 │ ├───┼──────┤ │2 │ 0.09 │ ├───┼──────┤ │3 │ 0.10 │ ├───┼──────┤ │4 │ 0.13 │ ├───┼──────┤ │5 │ 0.15 │ ├───┼──────┤ │6 │ 0.18 │ ├───┼──────┤ │7 │ 0.20 │ ├───┼──────┤ │8 │ 0.25 │ ├───┼──────┤ │9 │ 0.30 │ ├───┼──────┤ │10 │ 0.35 │ ├───┼──────┤ │11 │ 0.40 │ ├───┼──────┤ │12 │ 0.45 │ ├───┼──────┤ │13 │ 0.50 │ ├───┼──────┤ │14 │ 0.53 │ ├───┼──────┤ │15 │ 0.60 │ ├───┼──────┤ │16 │ 0.65 │ ├───┼──────┤ │17 │ 0.70 │ ├───┼──────┤ │18 │ 0.80 │ ├───┼──────┤ │19 │ 0.90 │ ├───┼──────┤ │20 │ 1.00 │ ├───┼──────┤ │21 │ 1.06 │ ├───┼──────┤ │22 │ 1.20 │ ├───┼──────┤ │23 │ 1.40 │ ├───┼──────┤ │24 │ 1.58 │ ├───┼──────┤ │25 │ 2.00 │ ├───┼──────┤ │26 │ 2.11 │ └───┴──────┘ Predefined Values ezdxf.addons.acadctb.AUTOMATIC ezdxf.addons.acadctb.OBJECT_LINEWEIGHT ezdxf.addons.acadctb.OBJECT_LINETYPE ezdxf.addons.acadctb.OBJECT_COLOR ezdxf.addons.acadctb.OBJECT_COLOR2 Line End Style [image] ┌──────────────────┬───┐ │END_STYLE_BUTT │ 0 │ ├──────────────────┼───┤ │END_STYLE_SQUARE │ 1 │ ├──────────────────┼───┤ │END_STYLE_ROUND │ 2 │ ├──────────────────┼───┤ │END_STYLE_DIAMOND │ 3 │ ├──────────────────┼───┤ │END_STYLE_OBJECT │ 4 │ └──────────────────┴───┘ Line Join Style [image] ┌───────────────────┬───┐ │JOIN_STYLE_MITER │ 0 │ ├───────────────────┼───┤ │JOIN_STYLE_BEVEL │ 1 │ ├───────────────────┼───┤ │JOIN_STYLE_ROUND │ 2 │ ├───────────────────┼───┤ │JOIN_STYLE_DIAMOND │ 3 │ └───────────────────┴───┘ │JOIN_STYLE_OBJECT │ 5 │ └───────────────────┴───┘ Fill Style [image] ┌───────────────────────────┬────┐ │FILL_STYLE_SOLID │ 64 │ ├───────────────────────────┼────┤ │FILL_STYLE_CHECKERBOARD │ 65 │ ├───────────────────────────┼────┤ │FILL_STYLE_CROSSHATCH │ 66 │ ├───────────────────────────┼────┤ │FILL_STYLE_DIAMONDS │ 67 │ ├───────────────────────────┼────┤ │FILL_STYLE_HORIZONTAL_BARS │ 68 │ ├───────────────────────────┼────┤ │FILL_STYLE_SLANT_LEFT │ 69 │ ├───────────────────────────┼────┤ │FILL_STYLE_SLANT_RIGHT │ 70 │ ├───────────────────────────┼────┤ │FILL_STYLE_SQUARE_DOTS │ 71 │ ├───────────────────────────┼────┤ │FILL_STYLE_VERICAL_BARS │ 72 │ ├───────────────────────────┼────┤ │FILL_STYLE_OBJECT │ 73 │ └───────────────────────────┴────┘ Linetypes [image] [image] ┌──────────────────────────────────┬───────┐ │Linetype name │ Value │ ├──────────────────────────────────┼───────┤ │Solid │ 0 │ ├──────────────────────────────────┼───────┤ │Dashed │ 1 │ ├──────────────────────────────────┼───────┤ │Dotted │ 2 │ ├──────────────────────────────────┼───────┤ │Dash Dot │ 3 │ ├──────────────────────────────────┼───────┤ │Short Dash │ 4 │ ├──────────────────────────────────┼───────┤ │Medium Dash │ 5 │ ├──────────────────────────────────┼───────┤ │Long Dash │ 6 │ ├──────────────────────────────────┼───────┤ │Short Dash x2 │ 7 │ ├──────────────────────────────────┼───────┤ │Medium Dash x2 │ 8 │ ├──────────────────────────────────┼───────┤ │Long Dash x2 │ 9 │ ├──────────────────────────────────┼───────┤ │Medium Lang Dash │ 10 │ ├──────────────────────────────────┼───────┤ │Medium Dash Short Dash Short Dash │ 11 │ ├──────────────────────────────────┼───────┤ │Long Dash Short Dash │ 12 │ ├──────────────────────────────────┼───────┤ │Long Dash Dot Dot │ 13 │ ├──────────────────────────────────┼───────┤ │Long Dash Dot │ 14 │ ├──────────────────────────────────┼───────┤ │Medium Dash Dot Short Dash Dot │ 15 │ ├──────────────────────────────────┼───────┤ │Sparse Dot │ 16 │ ├──────────────────────────────────┼───────┤ │ISO Dash │ 17 │ ├──────────────────────────────────┼───────┤ │ISO Dash Space │ 18 │ ├──────────────────────────────────┼───────┤ │ISO Long Dash Dot │ 19 │ ├──────────────────────────────────┼───────┤ │ISO Long Dash Double Dot │ 20 │ ├──────────────────────────────────┼───────┤ │ISO Long Dash Triple Dot │ 21 │ ├──────────────────────────────────┼───────┤ │ISO Dot │ 22 │ ├──────────────────────────────────┼───────┤ │ISO Long Dash Short Dash │ 23 │ ├──────────────────────────────────┼───────┤ │ISO Long Dash Double Short Dash │ 24 │ ├──────────────────────────────────┼───────┤ │ISO Dash Dot │ 25 │ ├──────────────────────────────────┼───────┤ │ISO Double Dash Dot │ 26 │ ├──────────────────────────────────┼───────┤ │ISO Dash Double Dot │ 27 │ ├──────────────────────────────────┼───────┤ │ISO Double Dash Double Dot │ 28 │ ├──────────────────────────────────┼───────┤ │ISO Dash Triple Dot │ 29 │ ├──────────────────────────────────┼───────┤ │ISO Double Dash Triple Dot │ 30 │ ├──────────────────────────────────┼───────┤ │Use entity linetype │ 31 │ └──────────────────────────────────┴───────┘ PyCSG Constructive Solid Geometry (CSG) is a modeling technique that uses Boolean operations like union and intersection to combine 3D solids. This library implements CSG operations on meshes elegantly and concisely using BSP trees, and is meant to serve as an easily understandable implementation of the algorithm. All edge cases involving overlapping coplanar polygons in both solids are correctly handled. New in version 0.11. Example for usage: import ezdxf from ezdxf.render.forms import cube, cylinder_2p from ezdxf.addons.pycsg import CSG # create new DXF document doc = ezdxf.new() msp = doc.modelspace() # create same geometric primitives as MeshTransformer() objects cube1 = cube() cylinder1 = cylinder_2p(count=32, base_center=(0, -1, 0), top_center=(0, 1, 0), radius=.25) # build solid union union = CSG(cube1) + CSG(cylinder1) # convert to mesh and render mesh to modelspace union.mesh().render(msp, dxfattribs={'color': 1}) # build solid difference difference = CSG(cube1) - CSG(cylinder1) # convert to mesh, translate mesh and render mesh to modelspace difference.mesh().translate(1.5).render(msp, dxfattribs={'color': 3}) # build solid intersection intersection = CSG(cube1) * CSG(cylinder1) # convert to mesh, translate mesh and render mesh to modelspace intersection.mesh().translate(2.75).render(msp, dxfattribs={'color': 5}) doc.saveas('csg.dxf') [image: Cube vs Cylinder] [image] This CSG kernel supports only meshes as MeshBuilder objects, which can be created from and converted to DXF Mesh entities. This CSG kernel is not compatible with ACIS objects like Solid3d, Body, Surface or Region. NOTE: This is a pure Python implementation, don’t expect great performance and the implementation is based on an unbalanced BSP tree, so in the case of RecursionError, increase the recursion limit: import sys actual_limit = sys.getrecursionlimit() # default is 1000, increasing too much may cause a seg fault sys.setrecursionlimit(10000) ... # do the CSG stuff sys.setrecursionlimit(actual_limit) CSG works also with spheres, but with really bad runtime behavior and most likely RecursionError exceptions, and use quadrilaterals as body faces to reduce face count by setting argument quads to True. import ezdxf from ezdxf.render.forms import sphere, cube from ezdxf.addons.pycsg import CSG doc = ezdxf.new() doc.set_modelspace_vport(6, center=(5, 0)) msp = doc.modelspace() cube1 = cube().translate(-.5, -.5, -.5) sphere1 = sphere(count=32, stacks=16, radius=.5, quads=True) union = (CSG(cube1) + CSG(sphere1)).mesh() union.render(msp, dxfattribs={'color': 1}) subtract = (CSG(cube1) - CSG(sphere1)).mesh().translate(2.5) subtract.render(msp, dxfattribs={'color': 3}) intersection = (CSG(cube1) * CSG(sphere1)).mesh().translate(4) intersection.render(msp, dxfattribs={'color': 5}) [image: Cube vs Sphere] [image] Hard Core CSG - Menger Sponge Level 3 vs Sphere Required runtime on an old Xeon E5-1620 Workstation @ 3.60GHz, with default recursion limit of 1000 on Windows 10: • CPython 3.8.1 64bit: ~60 seconds, • pypy3 [PyPy 7.2.0] 32bit: ~6 seconds, and using __slots__ reduced runtime below 5 seconds, yes - pypy is worth a look for long running scripts! from ezdxf.render.forms import sphere from ezdxf.addons import MengerSponge from ezdxf.addons.pycsg import CSG doc = ezdxf.new() doc.layers.new('sponge', dxfattribs={'color': 5}) doc.layers.new('sphere', dxfattribs={'color': 6}) doc.set_modelspace_vport(6, center=(5, 0)) msp = doc.modelspace() sponge1 = MengerSponge(level=3).mesh() sphere1 = sphere(count=32, stacks=16, radius=.5, quads=True).translate(.25, .25, 1) subtract = (CSG(sponge1, meshid=1) - CSG(sphere1, meshid=2)) # get mesh result by id subtract.mesh(1).render(msp, dxfattribs={'layer': 'sponge'}) subtract.mesh(2).render(msp, dxfattribs={'layer': 'sphere'}) [image: Menger Sponge vs Sphere] [image] CSG Class class ezdxf.addons.pycsg.CSG(mesh: MeshBuilder, meshid: int = 0) Constructive Solid Geometry (CSG) is a modeling technique that uses Boolean operations like union and intersection to combine 3D solids. This class implements CSG operations on meshes. New 3D solids are created from MeshBuilder objects and results can be exported as MeshTransformer objects to ezdxf by method mesh(). Parameters • mesh – ezdxf.render.MeshBuilder or inherited object • meshid – individual mesh ID to separate result meshes, 0 is default mesh(meshid: int = 0) -> MeshTransformer Returns a ezdxf.render.MeshTransformer object. Parameters meshid – individual mesh ID, 0 is default union(other: CSG) -> CSG Return a new CSG solid representing space in either this solid or in the solid other. Neither this solid nor the solid other are modified: A.union(B) +-------+ +-------+ | | | | | A | | | | +--+----+ = | +----+ +----+--+ | +----+ | | B | | | | | | | +-------+ +-------+ __add__(other: CSG) -> CSG union = A + B subtract(other: CSG) -> CSG Return a new CSG solid representing space in this solid but not in the solid other. Neither this solid nor the solid other are modified: A.subtract(B) +-------+ +-------+ | | | | | A | | | | +--+----+ = | +--+ +----+--+ | +----+ | B | | | +-------+ __sub__(other: CSG) -> CSG difference = A - B intersect(other: CSG) -> CSG Return a new CSG solid representing space both this solid and in the solid other. Neither this solid nor the solid other are modified: A.intersect(B) +-------+ | | | A | | +--+----+ = +--+ +----+--+ | +--+ | B | | | +-------+ __mul__(other: CSG) -> CSG intersection = A * B inverse() -> CSG Return a new CSG solid with solid and empty space switched. This solid is not modified. License • Original implementation csg.js, Copyright (c) 2011 Evan Wallace (http://madebyevan.com/), under the MIT license. • Python port pycsg, Copyright (c) 2012 Tim Knip (http://www.floorplanner.com), under the MIT license. • Additions by Alex Pletzer (Pennsylvania State University) • Integration as ezdxf add-on, Copyright (c) 2020, Manfred Moitzi, MIT License. Showcase Forms MengerSponge Build a 3D Menger sponge. class ezdxf.addons.MengerSponge(location: Vertex = (0.0, 0.0, 0.0), length: float = 1.0, level: int = 1, kind: int = 0) Parameters • location – location of lower left corner as (x, y, z) tuple • length – side length • level – subdivide level • kind – type of menger sponge ┌──┬────────────────────────┐ │0 │ Original Menger Sponge │ ├──┼────────────────────────┤ │1 │ Variant XOX │ ├──┼────────────────────────┤ │2 │ Variant OXO │ ├──┼────────────────────────┤ │3 │ Jerusalem Cube │ └──┴────────────────────────┘ render(layout: GenericLayoutType, merge: bool = False, dxfattribs: dict = None, matrix: Matrix44 = None, ucs: UCS = None) -> None Renders the menger sponge into layout, set merge to True for rendering the whole menger sponge into one MESH entity, set merge to False for rendering the individual cubes of the menger sponge as MESH entities. Parameters • layout – DXF target layout • merge – True for one MESH entity, False for individual MESH entities per cube • dxfattribs – DXF attributes for the MESH entities • matrix – apply transformation matrix at rendering • ucs – apply UCS transformation at rendering cubes() -> Iterable[ezdxf.render.mesh.MeshTransformer] Yields all cubes of the menger sponge as individual MeshTransformer objects. mesh() -> ezdxf.render.mesh.MeshTransformer Returns geometry as one MeshTransformer object. Menger Sponge kind=0: [image] Menger Sponge kind=1: [image] Menger Sponge kind=2: [image] Jerusalem Cube kind=3: [image] SierpinskyPyramid Build a 3D Sierpinsky Pyramid. class ezdxf.addons.SierpinskyPyramid(location: Vertex = (0.0, 0.0, 0.0), length: float = 1.0, level: int = 1, sides: int = 4) Parameters • location – location of base center as (x, y, z) tuple • length – side length • level – subdivide level • sides – sides of base geometry render(layout: GenericLayoutType, merge: bool = False, dxfattribs: dict = None, matrix: Matrix44 = None, ucs: UCS = None) -> None Renders the sierpinsky pyramid into layout, set merge to True for rendering the whole sierpinsky pyramid into one MESH entity, set merge to False for individual pyramids as MESH entities. Parameters • layout – DXF target layout • merge – True for one MESH entity, False for individual MESH entities per pyramid • dxfattribs – DXF attributes for the MESH entities • matrix – apply transformation matrix at rendering • ucs – apply UCS at rendering pyramids() -> Iterable[ezdxf.render.mesh.MeshTransformer] Yields all pyramids of the sierpinsky pyramid as individual MeshTransformer objects. mesh() -> ezdxf.render.mesh.MeshTransformer Returns geometry as one MeshTransformer object. Sierpinsky Pyramid with triangle base: [image] Sierpinsky Pyramid with square base: [image] ODA File Converter Support Use an installed ODA File Converter for converting between different versions of .dwg, .dxb and .dxf. WARNING: Execution of an external application is a big security issue! Especially when the path to the executable can be altered. To avoid this problem delete the ezdxf.addons.odafc.py module. The ODA File Converter has to be installed by the user, the application is available for Windows XP, Windows 7 or later, Mac OS X, and Linux in 32/64-bit RPM and DEB format. At least at Windows the GUI of the ODA File Converter pops up on every call. ODA File Converter version strings, you can use any of this strings to specify a version, 'R..' and 'AC....' strings will be automatically mapped to 'ACAD....' strings: ┌─────────┬───────────────┬─────────┐ │ODAFC │ ezdxf │ Version │ ├─────────┼───────────────┼─────────┤ │ACAD9 │ not supported │ AC1004 │ ├─────────┼───────────────┼─────────┤ │ACAD10 │ not supported │ AC1006 │ ├─────────┼───────────────┼─────────┤ │ACAD12 │ R12 │ AC1009 │ ├─────────┼───────────────┼─────────┤ │ACAD13 │ R13 │ AC1012 │ ├─────────┼───────────────┼─────────┤ │ACAD14 │ R14 │ AC1014 │ ├─────────┼───────────────┼─────────┤ │ACAD2000 │ R2000 │ AC1015 │ ├─────────┼───────────────┼─────────┤ │ACAD2004 │ R2004 │ AC1018 │ ├─────────┼───────────────┼─────────┤ │ACAD2007 │ R2007 │ AC1021 │ ├─────────┼───────────────┼─────────┤ │ACAD2010 │ R2010 │ AC1024 │ ├─────────┼───────────────┼─────────┤ │ACAD2013 │ R2013 │ AC1027 │ ├─────────┼───────────────┼─────────┤ │ACAD2018 │ R2018 │ AC1032 │ └─────────┴───────────────┴─────────┘ Usage: from ezdxf.addons import odafc # Load a DWG file doc = odafc.readfile('my.dwg') # Use loaded document like any other ezdxf document print(f'Document loaded as DXF version: {doc.dxfversion}.') msp = doc.modelspace() ... # Export document as DWG file for AutoCAD R2018 odafc.export_dwg(doc, 'my_R2018.dwg', version='R2018') ezdxf.addons.odafc.exec_path Path to installed ODA File Converter executable, default is "C:\Program Files\ODA\ODAFileConverter\ODAFileConverter.exe". ezdxf.addons.odafc.temp_path Path to a temporary folder by default the system temp folder defined by environment variable TMP or TEMP. ezdxf.addons.odafc.readfile(filename: str, version: str = None, audit=False) -> Drawing Use an installed ODA File Converter to convert a DWG/DXB/DXF file into a temporary DXF file and load this file by ezdxf. Parameters • filename – file to load by ODA File Converter • version – load file as specific DXF version, by default the same version as the source file or if not detectable the latest by ezdxf supported version. • audit – audit source file before loading ezdxf.addons.odafc.export_dwg(doc: Drawing, filename: str, version: str = None, audit=False) Use an installed ODA File Converter to export a DXF document doc as a DWG file. Saves a temporary DXF file and convert this DXF file into a DWG file by the ODA File Converter. If version is not specified the DXF version of the source document is used. Parameters • doc – ezdxf DXF document as Drawing object • filename – export filename of DWG file, extension will be changed to '.dwg' • version – export file as specific version, by default the same version as the source document. • audit – audit source file by ODA File Converter at exporting
DXF INTERNALS
• DXF Reference provided by Autodesk. • DXF Developer Documentation provided by Autodesk. Basic DXF Structures DXF File Encoding DXF R2004 and prior Drawing files of DXF R2004 (AC1018) and prior are saved as ASCII files with the encoding set by the header variable $DWGCODEPAGE, which is ANSI_1252 by default if $DWGCODEPAGE is not set. Characters used in the drawing which do not exist in the chosen ASCII encoding are encoded as unicode characters with the schema \U+nnnn. see Unicode table Known $DWGCODEPAGE encodings ┌──────────┬────────┬────────────────┐ │DXF │ Python │ Name │ ├──────────┼────────┼────────────────┤ │ANSI_874 │ cp874 │ Thai │ ├──────────┼────────┼────────────────┤ │ANSI_932 │ cp932 │ Japanese │ ├──────────┼────────┼────────────────┤ │ANSI_936 │ gbk │ UnifiedChinese │ ├──────────┼────────┼────────────────┤ │ANSI_949 │ cp949 │ Korean │ ├──────────┼────────┼────────────────┤ │ANSI_950 │ cp950 │ TradChinese │ ├──────────┼────────┼────────────────┤ │ANSI_1250 │ cp1250 │ CentralEurope │ └──────────┴────────┴────────────────┘ │ANSI_1251 │ cp1251 │ Cyrillic │ ├──────────┼────────┼────────────────┤ │ANSI_1252 │ cp1252 │ WesternEurope │ ├──────────┼────────┼────────────────┤ │ANSI_1253 │ cp1253 │ Greek │ ├──────────┼────────┼────────────────┤ │ANSI_1254 │ cp1254 │ Turkish │ ├──────────┼────────┼────────────────┤ │ANSI_1255 │ cp1255 │ Hebrew │ ├──────────┼────────┼────────────────┤ │ANSI_1256 │ cp1256 │ Arabic │ ├──────────┼────────┼────────────────┤ │ANSI_1257 │ cp1257 │ Baltic │ ├──────────┼────────┼────────────────┤ │ANSI_1258 │ cp1258 │ Vietnam │ └──────────┴────────┴────────────────┘ DXF R2007 and later Starting with DXF R2007 (AC1021) the drawing file is UTF-8 encoded, the header variable $DWGCODEPAGE is still in use, but I don’t know, if the setting still has any meaning. Encoding characters in the unicode schema \U+nnnn is still functional. SEE ALSO: String Value Encoding DXF Tags A Drawing Interchange File is simply an ASCII text file with a file type of .dxf and special formatted text. The basic file structure are DXF tags, a DXF tag consist of a DXF group code as an integer value on its own line and a the DXF value on the following line. In the ezdxf documentation DXF tags will be written as (group code, value). Group codes are indicating the value type: ┌───────────┬───────────────────────────────────────┐ │Group Code │ Value Type │ ├───────────┼───────────────────────────────────────┤ │0-9 │ String (with the introduction of │ │ │ extended symbol names in DXF R2000, │ │ │ the 255-character limit has been │ │ │ increased to 2049 single-byte │ │ │ characters not including the newline │ │ │ at the end of the line) │ ├───────────┼───────────────────────────────────────┤ │10-39 │ Double precision 3D point value │ ├───────────┼───────────────────────────────────────┤ │40-59 │ Double-precision floating-point value │ ├───────────┼───────────────────────────────────────┤ │40-59 │ Double-precision floating-point value │ ├───────────┼───────────────────────────────────────┤ │60-79 │ 16-bit integer value │ ├───────────┼───────────────────────────────────────┤ │90-99 │ 32-bit integer value │ ├───────────┼───────────────────────────────────────┤ │100 │ String (255-character maximum, less │ │ │ for Unicode strings) │ ├───────────┼───────────────────────────────────────┤ │102 │ String (255-character maximum, less │ │ │ for Unicode strings) │ ├───────────┼───────────────────────────────────────┤ │105 │ String representing hexadecimal (hex) │ │ │ handle value │ ├───────────┼───────────────────────────────────────┤ │110-119 │ Double precision floating-point value │ ├───────────┼───────────────────────────────────────┤ │120-129 │ Double precision floating-point value │ ├───────────┼───────────────────────────────────────┤ │130-139 │ Double precision floating-point value │ ├───────────┼───────────────────────────────────────┤ │140-149 │ Double precision scalar │ │ │ floating-point value │ ├───────────┼───────────────────────────────────────┤ │160-169 │ 64-bit integer value │ ├───────────┼───────────────────────────────────────┤ │170-179 │ 16-bit integer value │ ├───────────┼───────────────────────────────────────┤ │210-239 │ Double-precision floating-point value │ ├───────────┼───────────────────────────────────────┤ │270-279 │ 16-bit integer value │ ├───────────┼───────────────────────────────────────┤ │280-289 │ 16-bit integer value │ ├───────────┼───────────────────────────────────────┤ │290-299 │ Boolean flag value │ ├───────────┼───────────────────────────────────────┤ │300-309 │ Arbitrary text string │ ├───────────┼───────────────────────────────────────┤ │310-319 │ String representing hex value of │ │ │ binary chunk │ ├───────────┼───────────────────────────────────────┤ │320-329 │ String representing hex handle value │ ├───────────┼───────────────────────────────────────┤ │330-369 │ String representing hex object IDs │ ├───────────┼───────────────────────────────────────┤ │370-379 │ 16-bit integer value │ ├───────────┼───────────────────────────────────────┤ │380-389 │ 16-bit integer value │ ├───────────┼───────────────────────────────────────┤ │390-399 │ String representing hex handle value │ ├───────────┼───────────────────────────────────────┤ │400-409 │ 16-bit integer value │ ├───────────┼───────────────────────────────────────┤ │410-419 │ String │ ├───────────┼───────────────────────────────────────┤ │420-429 │ 32-bit integer value │ ├───────────┼───────────────────────────────────────┤ │430-439 │ String │ ├───────────┼───────────────────────────────────────┤ │440-449 │ 32-bit integer value │ ├───────────┼───────────────────────────────────────┤ │450-459 │ Long │ ├───────────┼───────────────────────────────────────┤ │460-469 │ Double-precision floating-point value │ ├───────────┼───────────────────────────────────────┤ │470-479 │ String │ ├───────────┼───────────────────────────────────────┤ │480-481 │ String representing hex handle value │ ├───────────┼───────────────────────────────────────┤ │999 │ Comment (string) │ ├───────────┼───────────────────────────────────────┤ │1000-1009 │ String (same limits as indicated with │ │ │ 0-9 code range) │ ├───────────┼───────────────────────────────────────┤ │1010-1059 │ Double-precision floating-point value │ ├───────────┼───────────────────────────────────────┤ │1060-1070 │ 16-bit integer value │ ├───────────┼───────────────────────────────────────┤ │1071 │ 32-bit integer value │ └───────────┴───────────────────────────────────────┘ Explanation for some important group codes: ┌──────────────┬───────────────────────────────────────┐ │Group Code │ Meaning │ ├──────────────┼───────────────────────────────────────┤ │0 │ DXF structure tag, entity start/end │ │ │ or table entries │ ├──────────────┼───────────────────────────────────────┤ │1 │ The primary text value for an entity │ ├──────────────┼───────────────────────────────────────┤ │2 │ A name: Attribute tag, Block name, │ │ │ and so on. Also used to identify a │ │ │ DXF section or table name. │ ├──────────────┼───────────────────────────────────────┤ │3-4 │ Other textual or name values │ ├──────────────┼───────────────────────────────────────┤ │5 │ Entity handle as hex string (fixed) │ ├──────────────┼───────────────────────────────────────┤ │6 │ Line type name (fixed) │ ├──────────────┼───────────────────────────────────────┤ │7 │ Text style name (fixed) │ ├──────────────┼───────────────────────────────────────┤ │8 │ Layer name (fixed) │ ├──────────────┼───────────────────────────────────────┤ │9 │ Variable name identifier (used only │ │ │ in HEADER section of the DXF file) │ ├──────────────┼───────────────────────────────────────┤ │10 │ Primary X coordinate (start point of │ │ │ a Line or Text entity, center of a │ │ │ Circle, etc.) │ ├──────────────┼───────────────────────────────────────┤ │11-18 │ Other X coordinates │ ├──────────────┼───────────────────────────────────────┤ │20 │ Primary Y coordinate. 2n values │ │ │ always correspond to 1n values and │ │ │ immediately follow them in the file │ │ │ (expected by ezdxf!) │ ├──────────────┼───────────────────────────────────────┤ │21-28 │ Other Y coordinates │ ├──────────────┼───────────────────────────────────────┤ │30 │ Primary Z coordinate. 3n values │ │ │ always correspond to 1n and 2n values │ │ │ and immediately follow them in the │ │ │ file (expected by ezdxf!) │ ├──────────────┼───────────────────────────────────────┤ │31-38 │ Other Z coordinates │ └──────────────┴───────────────────────────────────────┘ │39 │ This entity’s thickness if nonzero │ │ │ (fixed) │ ├──────────────┼───────────────────────────────────────┤ │40-48 │ Float values (text height, scale │ │ │ factors, etc.) │ ├──────────────┼───────────────────────────────────────┤ │49 │ Repeated value - multiple 49 groups │ │ │ may appear in one entity for variable │ │ │ length tables (such as the dash │ │ │ lengths in the LTYPE table). A 7x │ │ │ group always appears before the first │ │ │ 49 group to specify the table length │ ├──────────────┼───────────────────────────────────────┤ │50-58 │ Angles in degree │ ├──────────────┼───────────────────────────────────────┤ │62 │ Color number (fixed) │ ├──────────────┼───────────────────────────────────────┤ │66 │ “Entities follow” flag (fixed), only │ │ │ in INSERT and POLYLINE entities │ ├──────────────┼───────────────────────────────────────┤ │67 │ Identifies whether entity is in │ │ │ modelspace (0) or paperspace (1) │ ├──────────────┼───────────────────────────────────────┤ │68 │ Identifies whether viewport is on but │ │ │ fully off screen, is not active, or │ │ │ is off │ ├──────────────┼───────────────────────────────────────┤ │69 │ Viewport identification number │ ├──────────────┼───────────────────────────────────────┤ │70-78 │ Integer values such as repeat counts, │ │ │ flag bits, or modes │ ├──────────────┼───────────────────────────────────────┤ │210, 220, 230 │ X, Y, and Z components of extrusion │ │ │ direction (fixed) │ ├──────────────┼───────────────────────────────────────┤ │310 │ Proxy entity graphics as binary │ │ │ encoded data │ ├──────────────┼───────────────────────────────────────┤ │330 │ Owner handle as hex string │ ├──────────────┼───────────────────────────────────────┤ │347 │ MATERIAL handle as hex string │ ├──────────────┼───────────────────────────────────────┤ │348 │ VISUALSTYLE handle as hex string │ ├──────────────┼───────────────────────────────────────┤ │370 │ Lineweight in mm times 100 (e.g. │ │ │ 0.13mm = 13). │ ├──────────────┼───────────────────────────────────────┤ │390 │ PLOTSTYLE handle as hex string │ ├──────────────┼───────────────────────────────────────┤ │420 │ True color value as 0x00RRGGBB 24-bit │ │ │ value │ ├──────────────┼───────────────────────────────────────┤ │430 │ Color name as string │ ├──────────────┼───────────────────────────────────────┤ │440 │ Transparency value 0x020000TT 0 = │ │ │ fully transparent / 255 = opaque │ ├──────────────┼───────────────────────────────────────┤ │999 │ Comments │ └──────────────┴───────────────────────────────────────┘ For explanation of all group codes see: DXF Group Codes in Numerical Order Reference provided by Autodesk Extended Data Extended data (XDATA) is created by AutoLISP or ObjectARX applications but any other application like ezdxf can also define XDATA. If an entity contains extended data, it follows the entity’s normal definition data but ends before Embedded Objects. But extended group codes (>=1000) can appear before the XDATA section, an example is the BLOCKBASEPOINTPARAMETER entity in AutoCAD Civil 3D or AutoCAD Map 3D. ┌─────────────────┬───────────────────────────────────────┐ │Group Code │ Description │ ├─────────────────┼───────────────────────────────────────┤ │1000 │ Strings in extended data can be up to │ │ │ 255 bytes long (with the 256th byte │ │ │ reserved for the null character) │ ├─────────────────┼───────────────────────────────────────┤ │1001 │ (fixed) Registered application name │ │ │ (ASCII string up to 31 bytes long) │ │ │ for XDATA │ ├─────────────────┼───────────────────────────────────────┤ │1002 │ (fixed) An extended data control │ │ │ string can be either '{' or '}'. │ │ │ These braces enable applications to │ │ │ organize their data by subdividing │ │ │ the data into lists. Lists can be │ │ │ nested. │ ├─────────────────┼───────────────────────────────────────┤ │1003 │ Name of the layer associated with the │ │ │ extended data │ ├─────────────────┼───────────────────────────────────────┤ │1004 │ Binary data is organized into │ │ │ variable-length chunks. The maximum │ │ │ length of each chunk is 127 bytes. In │ │ │ ASCII DXF files, binary data is │ │ │ represented as a string of │ │ │ hexadecimal digits, two per binary │ │ │ byte │ ├─────────────────┼───────────────────────────────────────┤ │1005 │ Database Handle of entities in the │ │ │ drawing database, see also: About │ │ │ 1005 Group Codes │ ├─────────────────┼───────────────────────────────────────┤ │1010, 1020, 1030 │ Three real values, in the order X, Y, │ │ │ Z. They can be used as a point or │ │ │ vector record. │ ├─────────────────┼───────────────────────────────────────┤ │1011, 1021, 1031 │ Unlike a simple 3D point, the world │ │ │ space coordinates are moved, scaled, │ │ │ rotated, mirrored, and stretched │ │ │ along with the parent entity to which │ │ │ the extended data belongs. │ ├─────────────────┼───────────────────────────────────────┤ │1012, 1012, 1022 │ Also a 3D point that is scaled, │ │ │ rotated, and mirrored along with the │ │ │ parent (but is not moved or │ │ │ stretched) │ ├─────────────────┼───────────────────────────────────────┤ │1013, 1023, 1033 │ Also a 3D point that is scaled, │ │ │ rotated, and mirrored along with the │ │ │ parent (but is not moved or │ │ │ stretched) │ ├─────────────────┼───────────────────────────────────────┤ │1040 │ A real value │ ├─────────────────┼───────────────────────────────────────┤ │1041 │ Distance, a real value that is scaled │ │ │ along with the parent entity │ ├─────────────────┼───────────────────────────────────────┤ │1042 │ Scale Factor, also a real value that │ │ │ is scaled along with the parent. The │ │ │ difference between a distance and a │ │ │ scale factor is application-defined │ ├─────────────────┼───────────────────────────────────────┤ │1070 │ A 16-bit integer (signed or unsigned) │ ├─────────────────┼───────────────────────────────────────┤ │1071 │ A 32-bit signed (long) integer │ └─────────────────┴───────────────────────────────────────┘ The (1001, ...) tag indicates the beginning of extended data. In contrast to normal entity data, with extended data the same group code can appear multiple times, and order is important. Extended data is grouped by registered application name. Each registered application group begins with a (1001, APPID) tag, with the application name as APPID string value. Registered application names correspond to APPID symbol table entries. An application can use as many APPID names as needed. APPID names are permanent, although they can be purged if they aren’t currently used in the drawing. Each APPID name can have no more than one data group attached to each entity. Within an application group, the sequence of extended data groups and their meaning is defined by the application. String value encoding String values stored in a DXF file is plain ASCII or UTF-8, AutoCAD also supports CIF (Common Interchange Format) and MIF (Maker Interchange Format) encoding. The UTF-8 format is only supported in DXF R2007 and later. ezdxf on import converts all strings into Python unicode strings without encoding or decoding CIF/MIF. String values containing Unicode characters are represented with control character sequences \U+nnnn. (e.g. r'TEST\U+7F3A\U+4E4F\U+89E3\U+91CA\U+6B63THIS\U+56FE') To support the DXF unicode encoding ezdxf registers an encoding codec dxf_backslash_replace, defined in ezdxf.lldxf.encoding(). String values can be stored with these dxf group codes: • 0 - 9 • 100 - 101 • 300 - 309 • 410 - 419 • 430 - 439 • 470 - 479 • 999 - 1003 Multi tag text (MTEXT) If the text string is less than 250 characters, all characters appear in tag (1, ...). If the text string is longer than 250 characters, the string is divided into 250-character chunks, which appear in one or more (3, ...) tags. If (3, ...) tags are used, the last group is a (1, ...) tag and has fewer than 250 characters: 3 ... TwoHundredAndFifty Characters .... 3 ... TwoHundredAndFifty Characters .... 1 less than TwoHundredAndFifty Characters As far I know this is only supported by the MTEXT entity. SEE ALSO: DXF File Encoding DXF R13 and later tag structure With the introduction of DXF R13 Autodesk added additional group codes and DXF tag structures to the DXF Standard. Subclass Markers Subclass markers (100, Subclass Name) divides DXF objects into several sections. Group codes can be reused in different sections. A subclass ends with the following subclass marker or at the beginning of xdata or the end of the object. See Subclass Marker Example in the DXF Reference. Quote about group codes from the DXF reference Some group codes that define an entity always appear; others are optional and appear only if their values differ from the defaults. Do not write programs that rely on the order given here. The end of an entity is indicated by the next 0 group, which begins the next entity or indicates the end of the section. Note: Accommodating DXF files from future releases of AutoCAD will be easier if you write your DXF processing program in a table-driven way, ignore undefined group codes, and make no assumptions about the order of group codes in an entity. With each new AutoCAD release, new group codes will be added to entities to accommodate additional features. Usage of group codes in subclasses twice Some later entities entities contains the same group code twice for different purposes, so order in the sense of which one comes first is important. (e.g. ATTDEF group code 280) Tag order is sometimes important especially for AutoCAD In LWPOLYLINE the order of tags is important, if the count tag is not the first tag in the AcDbPolyline subclass, AutoCAD will not close the polyline when the close flag is set, by the way other applications like BricsCAD ignores the tag order and renders the polyline always correct. Extension Dictionary The extension dictionary is an optional sequence that stores the handle of a DICTIONARY object that belongs to the current object, which in turn may contain entries. This facility allows attachment of arbitrary database objects to any database object. Any object or entity may have this section. The extension dictionary tag sequence: 102 {ACAD_XDICTIONARY 360 Hard-owner ID/handle to owner dictionary 102 } Persistent Reactors Persistent reactors are an optional sequence that stores object handles of objects registering themselves as reactors on the current object. Any object or entity may have this section. The persistent reactors tag sequence: 102 {ACAD_REACTORS 330 first Soft-pointer ID/handle to owner dictionary 330 second Soft-pointer ID/handle to owner dictionary ... 102 } Application-Defined Codes Starting at DXF R13, DXF objects can contain application-defined codes outside of XDATA. This application-defined codes can contain any tag except (0, ...) and (102, '{...'). “{YOURAPPID” means the APPID string with an preceding “{“. The application defined data tag sequence: 102 {YOURAPPID ... 102 } (102, 'YOURAPPID}') is also a valid closing tag: 102 {YOURAPPID ... 102 YOURAPPID} All groups defined with a beginning (102, ...) appear in the DXF reference before the first subclass marker, I don’t know if these groups can appear after the first or any subclass marker. ezdxf accepts them at any position, and by default ezdxf adds new app data in front of the first subclass marker to the first tag section of an DXF object. Exception XRECORD: Tags with group code 102 and a value string without a preceding “{” or the scheme “YOURAPPID}”, should be treated as usual group codes. Embedded Objects The concept of embedded objects was introduced with AutoCAD 2018 (DXF version AC1032) and this is the only information I found about it at the Autodesk knowledge base: Embedded and Encapsulated Objects Quote from Embedded and Encapsulated Objects: For DXF filing, the embedded object must be filed out and in after all the data of the encapsulating object has been filed out and in. A separator is needed between the encapsulating object’s data and the subsequent embedded object’s data. The separator must be similar in function to the group 0 or 100 in that it must cause the filer to stop reading data. The normal DXF group code 0 cannot be used because DXF proxies use it to determine when to stop reading data. The group code 100 could have been used, but it might have caused confusion when manually reading a DXF file, and there was a need to distinguish when an embedded object is about to be written out in order to do some internal bookkeeping. Therefore, the DXF group code 101 was introduced. Hard facts: • Embedded object start with (101, "Embedded Object") tag • Embedded object is appended to the encapsulated object • (101, "Embedded Object") tag is the end of the encapsulating object, also of its Extended Data • Embedded object tags can contain any group code except the DXF structure tag (0, ...) Unconfirmed assumptions: • The encapsulating object can contain more than one embedded object. • Embedded objects separated by (101, "Embedded Object") tags • every entity can contain embedded objects • XDATA sections replaced by embedded objects, at least for the MTEXT entity Real world example from an AutoCAD 2018 file: 100 <<< start of encapsulating object AcDbMText 10 2762.148 20 2327.073 30 0.0 40 2.5 41 18.852 46 0.0 71 1 72 5 1 {\fArial|b0|i0|c162|p34;CHANGE;\P\P\PTEXT} 73 1 44 1.0 101 <<< start of embedded object Embedded Object 70 1 10 1.0 20 0.0 30 0.0 11 2762.148 21 2327.073 31 0.0 40 18.852 41 0.0 42 15.428 43 15.043 71 2 72 1 44 18.852 45 12.5 73 0 74 0 46 0.0 Handles A handle is an arbitrary but in your DXF file unique hex value as string like ‘10FF’. It is common to to use uppercase letters for hex numbers. Handle can have up to 16 hexadecimal digits (8 bytes). For DXF R10 until R12 the usage of handles was optional. The header variable $HANDLING set to 1 indicate the usage of handles, else $HANDLING is 0 or missing. For DXF R13 and later the usage of handles is mandatory and the header variable $HANDLING was removed. The $HANDSEED variable in the header section should be greater than the biggest handle used in the DXF file, so a CAD application can assign handle values starting with the $HANDSEED value. But as always, don’t rely on the header variable it could be wrong, AutoCAD ignores this value. Handle Definition Entity handle definition is always the (5, ...), except for entities of the DIMSTYLE table (105, ...), because the DIMSTYLE entity has also a group code 5 tag for DIMBLK. Handle Pointer A pointer is a reference to a DXF object in the same DXF file. There are four types of pointers: • Soft-pointer handle • Hard-pointer handle • Soft-owner handle • Hard-owner handle Also, a group code range for “arbitrary” handles is defined to allow convenient storage of handle values that are unchanged at any operation (AutoCAD). Pointer and Ownership A pointer is a reference that indicates usage, but not possession or responsibility, for another object. A pointer reference means that the object uses the other object in some way, and shares access to it. An ownership reference means that an owner object is responsible for the objects for which it has an owner handle. An object can have any number of pointer references associated with it, but it can have only one owner. Hard and Soft References Hard references, whether they are pointer or owner, protect an object from being purged. Soft references do not. In AutoCAD, block definitions and complex entities are hard owners of their elements. A symbol table and dictionaries are soft owners of their elements. Polyline entities are hard owners of their vertex and seqend entities. Insert entities are hard owners of their attrib and seqend entities. When establishing a reference to another object, it is recommended that you think about whether the reference should protect an object from the PURGE command. Arbitrary Handles Arbitrary handles are distinct in that they are not translated to session-persistent identifiers internally, or to entity names in AutoLISP, and so on. They are stored as handles. When handle values are translated in drawing-merge operations, arbitrary handles are ignored. In all environments, arbitrary handles can be exchanged for entity names of the current drawing by means of the handent functions. A common usage of arbitrary handles is to refer to objects in external DXF and DWG files. About 1005 Group Codes (1005, ...) xdata have the same behavior and semantics as soft pointers, which means that they are translated whenever the host object is merged into a different drawing. However, 1005 items are not translated to session-persistent identifiers or internal entity names in AutoLISP and ObjectARX. They are stored as handles. DXF File Structure A DXF File is simply an ASCII text file with a file type of .dxf and special formatted text. The basic file structure are DXF tags, a DXF tag consist of a DXF group code as an integer value on its own line and a the DXF value on the following line. In the ezdxf documentation DXF tags will be written as (group code, value). There exist a binary DXF format, but it seems that it is not often used and for reducing file size, zipping is much more efficient. ezdxf does support reading binary encoded DXF files. SEE ALSO: For more information about DXF tags see: dxf_tags_internals A usual DXF file is organized in sections, starting with the DXF tag (0, ‘SECTION’) and ending with the DXF tag (0, ‘ENDSEC’). The (0, ‘EOF’) tag signals the end of file. 1. HEADER: General information about the drawing is found in this section of the DXF file. Each parameter has a variable name starting with ‘$’ and an associated value. Has to be the first section. 2. CLASSES: Holds the information for application defined classes. (DXF R13 and later) 3. TABLES:: Contains several tables for style and property definitions. • Linetype table (LTYPE) • Layer table (LAYER) • Text Style table (STYLE) • View table (VIEW): (IMHO) layout of the CAD working space, only interesting for interactive CAD applications • Viewport configuration table (VPORT): The VPORT table is unique in that it may contain several entries with the same name (indicating a multiple-viewport configuration). The entries corresponding to the active viewport configuration all have the name *ACTIVE. The first such entry describes the current viewport. • Dimension Style table (DIMSTYLE) • User Coordinate System table (UCS) (IMHO) only interesting for interactive CAD applications • Application Identification table (APPID): Table of names for all applications registered with a drawing. • Block Record table (BLOCK_RECORD) (DXF R13 and Later) 4. BLOCKS: Contains all block definitions. The block name *Model_Space or *MODEL_SPACE is reserved for the drawing modelspace and the block name *Paper_Space or *PAPER_SPACE is reserved for the active paperspace layout. Both block definitions are empty, the content of the modelspace and the active paperspace is stored in the ENTITIES section. The entities of other layouts are stored in special block definitions called *Paper_Spacennn, nnn is an arbitrary but unique number. 5. ENTITIES: Contains all graphical entities of the modelspace and the active paperspace layout. Entities of other layouts are stored in the BLOCKS sections. 6. OBJECTS: Contains all non-graphical objects of the drawing (DXF R13 and later) 7. THUMBNAILIMAGE: Contains a preview image of the DXF file, it is optional and can usually be ignored. (DXF R13 and later) 8. ACDSDATA: (DXF R2013 and later) No information in the DXF reference about this section 9. END OF FILE For further information read the original DXF Reference. Structure of a usual DXF R12 file: 0 <<< Begin HEADER section, has to be the first section SECTION 2 HEADER <<< Header variable items go here 0 <<< End HEADER section ENDSEC 0 <<< Begin TABLES section SECTION 2 TABLES 0 TABLE 2 VPORT 70 <<< viewport table maximum item count <<< viewport table items go here 0 ENDTAB 0 TABLE 2 APPID, DIMSTYLE, LTYPE, LAYER, STYLE, UCS, VIEW, or VPORT 70 <<< Table maximum item count, a not reliable value and ignored by AutoCAD <<< Table items go here 0 ENDTAB 0 <<< End TABLES section ENDSEC 0 <<< Begin BLOCKS section SECTION 2 BLOCKS <<< Block definition entities go here 0 <<< End BLOCKS section ENDSEC 0 <<< Begin ENTITIES section SECTION 2 ENTITIES <<< Drawing entities go here 0 <<< End ENTITIES section ENDSEC 0 <<< End of file marker (required) EOF Minimal DXF Content DXF R12 Contrary to the previous chapter, the DXF R12 format (AC1009) and prior requires just the ENTITIES section: 0 SECTION 2 ENTITIES 0 ENDSEC 0 EOF DXF R13/R14 and later DXF version R13/14 and later needs much more DXF content than DXF R12. Required sections: HEADER, CLASSES, TABLES, ENTITIES, OBJECTS The HEADER section requires two entries: • $ACADVER • $HANDSEED The CLASSES section can be empty, but some DXF entities requires class definitions to work in AutoCAD. The TABLES section requires following tables: • VPORT entry *ACTIVE is not required! Empty table is ok for AutoCAD. • LTYPE with at least the following line types defined: • BYBLOCK • BYLAYER • CONTINUOUS • LAYER with at least an entry for layer ‘0’ • STYLE with at least an entry for style STANDARD • VIEW can be empty • UCS can be empty • APPID with at least an entry for ACAD • DIMSTYLE with at least an entry for style STANDARD • BLOCK_RECORDS with two entries: • *MODEL_SPACE • *PAPER_SPACE The BLOCKS section requires two BLOCKS: • *MODEL_SPACE • *PAPER_SPACE The ENTITIES section can be empty. The OBJECTS section requires following entities: • DICTIONARY - the root dict - one entry named ACAD_GROUP • DICTONARY ACAD_GROUP can be empty Minimal DXF to download: https://bitbucket.org/mozman/ezdxf/downloads/Minimal_DXF_AC1021.dxf Data Model Database Objects (from the DXF Reference) AutoCAD drawings consist largely of structured containers for database objects. Database objects each have the following features: • A handle whose value is unique to the drawing/DXF file, and is constant for the lifetime of the drawing. This format has existed since AutoCAD Release 10, and as of AutoCAD Release 13, handles are always enabled. • An optional XDATA table, as entities have had since AutoCAD Release 11. • An optional persistent reactor table. • An optional ownership pointer to an extension dictionary which, in turn, owns subobjects placed in it by an application. Symbol tables and symbol table records are database objects and, thus, have a handle. They can also have xdata and persistent reactors in their DXF records. DXF R12 Data Model The DXF R12 data model is identical to the file structure: • HEADER section: common settings for the DXF drawing • TABLES section: definitions for LAYERS, LINETYPE, STYLES …. • BLOCKS section: block definitions and its content • ENTITIES section: modelspace and paperspace content References are realized by simple names. The INSERT entity references the BLOCK definition by the BLOCK name, a TEXT entity defines the associated STYLE and LAYER by its name and so on, handles are not needed. Layout association of graphical entities in the ENTITIES section by the paper_space tag (67, 0 or 1), 0 or missing tag means model space, 1 means paperspace. The content of BLOCK definitions is enclosed by the BLOCK and the ENDBLK entity, no additional references are needed. A clean and simple file structure and data model, which seems to be the reason why the DXF R12 Reference (released 1992) is still a widely used file format and Autodesk/AutoCAD supports the format by reading and writing DXF R12 files until today (DXF R13/R14 has no writing support by AutoCAD!). TODO: list of available entities SEE ALSO: More information about the DXF File Structure DXF R13+ Data Model With the DXF R13 file format, handles are mandatory and they are really used for organizing the new data structures introduced with DXF R13. The HEADER section is still the same with just more available settings. The new CLASSES section contains AutoCAD specific data, has to be written like AutoCAD it does, but must not be understood. The TABLES section got a new BLOCK_RECORD table - see Block Management Structures for more information. The BLOCKS sections is mostly the same, but with handles, owner tags and new ENTITY types. Not active paperspace layouts store their content also in the BLOCKS section - see Layout Management Structures for more information. The ENTITIES section is also mostly same, but with handles, owner tags and new ENTITY types. TODO: list of new available entities And the new OBJECTS section - now its getting complicated! Most information about the OBJECTS section is just guessed or gathered by trail and error, because the documentation of the OBJECTS section and its objects in the DXF reference provided by Autodesk is very shallow. This is also the reason why I started the DXF Internals section, may be it helps other developers to start one or two steps above level zero. The OBJECTS sections stores all the non-graphical entities of the DXF drawing. Non-graphical entities from now on just called ‘DXF objects’ to differentiate them from graphical entities, just called ‘entities’. The OBJECTS section follows commonly the ENTITIES section, but this is not mandatory. DXF R13 introduces several new DXF objects, which resides exclusive in the OBJECTS section, taken from the DXF R14 reference, because I have no access to the DXF R13 reference, the DXF R13 reference is a compiled .hlp file which can’t be read on Windows 10, a drastic real world example why it is better to avoid closed (proprietary) data formats ;): • DICTIONARY: a general structural entity as a <name: handle> container • ACDBDICTIONARYWDFLT: a DICTIONARY with a default value • DICTIONARYVAR: used by AutoCAD to store named values in the database • ACAD_PROXY_OBJECT: proxy object for entities created by other applications than AutoCAD • GROUP: groups graphical entities without the need of a BLOCK definition • IDBUFFER: just a list of references to objects • IMAGEDEF: IMAGE definition structure, required by the IMAGE entity • IMAGEDEF_REACTOR: also required by the IMAGE entity • LAYER_INDEX: container for LAYER names • MLINESTYLE • OBJECT_PTR • RASTERVARIABLES • SPATIAL_INDEX: is always written out empty to a DXF file. This object can be ignored. • SPATIAL_FILTER • SORTENTSTABLE: control for regeneration/redraw order of entities • XRECORD: used to store and manage arbitrary data. This object is similar in concept to XDATA but is not limited by size or order. Not supported by R13c0 through R13c3. Still missing the LAYOUT object, which is mandatory in DXF R2000 to manage multiple paperspace layouts. I don’t know how DXF R13/R14 manages multiple layouts or if they even support this feature, but I don’t care much about DXF R13/R14, because AutoCAD has no write support for this two formats anymore. ezdxf tries to upgrade this two DXF versions to DXF R2000 with the advantage of only two different data models to support: DXF R12 and DXF R2000+ New objects introduced by DXF R2000: • LAYOUT: management object for modelspace and multiple paperspace layouts • ACDBPLACEHOLDER: surprise - just a place holder New objects in DXF R2004: • DIMASSOC • LAYER_FILTER • MATERIAL • PLOTSETTINGS • VBA_PROJECT New objects in DXF R2007: • DATATABLE • FIELD • LIGHTLIST • RENDER • RENDERENVIRONMENT • MENTALRAYRENDERSETTINGS • RENDERGLOBAL • SECTION • SUNSTUDY • TABLESTYLE • UNDERLAYDEFINITION • VISUALSTYLE • WIPEOUTVARIABLES New objects in DXF R2013: • GEODATA New objects in DXF R2018: • ACDBNAVISWORKSMODELDEF Undocumented objects: • SCALE • ACDBSECTIONVIEWSTYLE • FIELDLIST Objects Organisation Many objects in the OBJECTS section are organized in a tree-like structure of DICTIONARY objects. Starting point for this data structure is the ‘root’ DICTIONARY with several entries to other DICTIONARY objects. The root DICTIONARY has to be the first object in the OBJECTS section. The management dicts for GROUP and LAYOUT objects are really important, but IMHO most of the other management tables are optional and for the most use cases not necessary. The ezdxf template for DXF R2018 contains only these entries in the root dict and most of them pointing to an empty DICTIONARY: • ACAD_COLOR: points to an empty DICTIONARY • ACAD_GROUP: supported by ezdxf • ACAD_LAYOUT: supported by ezdxf • ACAD_MATERIAL: points to an empty DICTIONARY • ACAD_MLEADERSTYLE: points to an empty DICTIONARY • ACAD_MLINESTYLE: points to an empty DICTIONARY • ACAD_PLOTSETTINGS: points to an empty DICTIONARY • ACAD_PLOTSTYLENAME: points to ACDBDICTIONARYWDFLT with one entry: ‘Normal’ • ACAD_SCALELIST: points to an empty DICTIONARY • ACAD_TABLESTYLE: points to an empty DICTIONARY • ACAD_VISUALSTYLE: points to an empty DICTIONARY Root DICTIONARY content for DXF R2018 0 SECTION 2 <<< start of the OBJECTS section OBJECTS 0 <<< root DICTIONARY has to be the first object in the OBJECTS section DICTIONARY 5 <<< handle C 330 <<< owner tag 0 <<< always #0, has no owner 100 AcDbDictionary 281 <<< hard owner flag 1 3 <<< first entry ACAD_CIP_PREVIOUS_PRODUCT_INFO 350 <<< handle to target (pointer) 78B <<< points to a XRECORD with product info about the creator application 3 <<< entry with unknown meaning, if I shoul guess: something with about colors ... ACAD_COLOR 350 4FB <<< points to a DICTIONARY 3 <<< entry with unknown meaning ACAD_DETAILVIEWSTYLE 350 7ED <<< points to a DICTIONARY 3 <<< GROUP management, mandatory in all DXF versions ACAD_GROUP 350 4FC <<< points to a DICTIONARY 3 <<< LAYOUT management, mandatory if more than the *active* paperspace is used ACAD_LAYOUT 350 4FD <<< points to a DICTIONARY 3 <<< MATERIAL management ACAD_MATERIAL 350 4FE <<< points to a DICTIONARY 3 <<< MLEADERSTYLE management ACAD_MLEADERSTYLE 350 4FF <<< points to a DICTIONARY 3 <<< MLINESTYLE management ACAD_MLINESTYLE 350 500 <<< points to a DICTIONARY 3 <<< PLOTSETTINGS management ACAD_PLOTSETTINGS 350 501 <<< points to a DICTIONARY 3 <<< plot style name management ACAD_PLOTSTYLENAME 350 503 <<< points to a ACDBDICTIONARYWDFLT 3 <<< SCALE management ACAD_SCALELIST 350 504 <<< points to a DICTIONARY 3 <<< entry with unknown meaning ACAD_SECTIONVIEWSTYLE 350 7EB <<< points to a DICTIONARY 3 <<< TABLESTYLE management ACAD_TABLESTYLE 350 505 <<< points to a DICTIONARY 3 <<< VISUALSTYLE management ACAD_VISUALSTYLE 350 506 <<< points to a DICTIONARY 3 <<< entry with unknown meaning ACDB_RECOMPOSE_DATA 350 7F3 3 <<< entry with unknown meaning AcDbVariableDictionary 350 7AE <<< points to a DICTIONARY with handles to DICTIONARYVAR objects 0 DICTIONARY ... ... 0 ENDSEC DXF Structures DXF Sections HEADER Section In DXF R12 and prior the HEADER section was optional, but since DXF R13 the HEADER section is mandatory. The overall structure is: 0 <<< Begin HEADER section SECTION 2 HEADER 9 $ACADVER <<< Header variable items go here 1 AC1009 ... 0 ENDSEC <<< End HEADER section A header variable has a name defined by a (9, Name) tag and following value tags. SEE ALSO: Documentation of ezdxf HeaderSection class. DXF Reference: Header Variables CLASSES Section The CLASSES section contains CLASS definitions which are only important for Autodesk products, some DXF entities require a class definition or AutoCAD will not open the DXF file. The CLASSES sections was introduced with DXF AC1015 (AutoCAD Release R13). SEE ALSO: DXF Reference: About the DXF CLASSES Section Documentation of ezdxf ClassesSection class. The CLASSES section in DXF files holds the information for application-defined classes whose instances appear in the BLOCKS, ENTITIES, and OBJECTS sections of the database. It is assumed that a class definition is permanently fixed in the class hierarchy. All fields are required. Update 2019-03-03: Class names are not unique, Autodesk Architectural Desktop 2007 uses the same name, but with different CPP class names in the CLASS section, so storing classes in a dictionary by name as key caused loss of class entries in ezdxf, using a tuple of (name, cpp_class_name) as storage key solved the problem. CLASS Entities SEE ALSO: DXF Reference: Group Codes for the CLASS entity CLASS entities have no handle and therefore ezdxf does not store the CLASS entity in the drawing entities database! 0 SECTION 2 <<< begin CLASSES section CLASSES 0 <<< first CLASS entity CLASS 1 <<< class DXF entity name; THIS ENTRY IS MAYBE NOT UNIQUE ACDBDICTIONARYWDFLT 2 <<< C++ class name; always unique AcDbDictionaryWithDefault 3 <<< application name ObjectDBX Classes 90 <<< proxy capabilities flags 0 91 <<< instance counter for custom class, since DXF version AC1018 (R2004) 0 <<< no problem if the counter is wrong, AutoCAD doesn't care about 280 <<< was-a-proxy flag. Set to 1 if class was not loaded when this DXF file was created, and 0 otherwise 0 281 <<< is-an-entity flag. Set to 1 if class reside in the BLOCKS or ENTITIES section. If 0, instances may appear only in the OBJECTS section 0 0 <<< second CLASS entity CLASS ... ... 0 <<< end of CLASSES section ENDSEC TABLES Section TODO BLOCKS Section The BLOCKS section contains all BLOCK definitions, beside the normal reusable BLOCKS used by the INSERT entity, all layouts, as there are the modelspace and all paperspace layouts, have at least a corresponding BLOCK definition in the BLOCKS section. The name of the modelspace BLOCK is “*Model_Space” (DXF R12: “$MODEL_SPACE”) and the name of the active paperspace BLOCK is “*Paper_Space” (DXF R12: “$PAPER_SPACE”), the entities of these two layouts are stored in the ENTITIES section, the inactive paperspace layouts are named by the scheme “*Paper_Spacennnn”, and the content of the inactive paperspace layouts are stored in their BLOCK definition in the BLOCKS section. The content entities of blocks are stored between the BLOCK and the ENDBLK entity. BLOCKS section structure: 0 <<< start of a SECTION SECTION 2 <<< start of BLOCKS section BLOCKS 0 <<< start of 1. BLOCK definition BLOCK ... <<< Block content ... 0 <<< end of 1. Block definition ENDBLK 0 <<< start of 2. BLOCK definition BLOCK ... <<< Block content ... 0 <<< end of 2. Block definition ENDBLK 0 <<< end of BLOCKS section ENDSEC SEE ALSO: Block Management Structures Layout Management Structures ENTITIES Section TODO OBJECTS Section Objects in the OBJECTS section are organized in a hierarchical tree order, starting with the named objects dictionary as the first entity in the OBJECTS section (Drawing.rootdict). Not all entities in the OBJECTS section are included in this tree, extension_dict_internals and XRECORD data of graphical entities are also stored in the OBJECTS section. DXF Tables VIEW Table The VIEW entry stores a named view of the model or a paperspace layout. This stored views makes parts of the drawing or some view points of the model in a CAD applications more accessible. This views have no influence to the drawing content or to the generated output by exporting PDFs or plotting on paper sheets, they are just for the convenience of CAD application users. Using ezdxf you have access to the views table by the attribute Drawing.views. The views table itself is not stored in the entity database, but the table entries are stored in entity database, and can be accessed by its handle. DXF R12 0 VIEW 2 <<< name of view VIEWNAME 70 <<< flags bit-coded: 1st bit -> (0/1 = modelspace/paperspace) 0 <<< modelspace 40 <<< view width in Display Coordinate System (DCS) 20.01 10 <<< view center point in DCS 40.36 <<< x value 20 <<< group code for y value 15.86 <<< y value 41 <<< view height in DCS 17.91 11 <<< view direction from target point, 3D vector 0.0 <<< x value 21 <<< group code for y value 0.0 <<< y value 31 <<< group code for z value 1.0 <<< z value 12 <<< target point in WCS 0.0 <<< x value 22 <<< group code for y value 0.0 <<< y value 32 <<< group code for z value 0.0 <<< z value 42 <<< lens (focal) length 50.0 <<< 50mm 43 <<< front clipping plane, offset from target 0.0 44 <<< back clipping plane, offset from target 0.0 50 <<< twist angle 0.0 71 <<< view mode 0 SEE ALSO: Coordinate Systems DXF R2000+ Mostly the same structure as DXF R12, but with handle, owner tag and subclass markers. 0 <<< adding the VIEW table head, just for information TABLE 2 <<< table name VIEW 5 <<< handle of table, see owner tag of VIEW table entry 37C 330 <<< owner tag of table, always #0 0 100 <<< subclass marker AcDbSymbolTable 70 <<< VIEW table (max.) count, not reliable (ignore) 9 0 <<< first VIEW table entry VIEW 5 <<< handle 3EA 330 <<< owner, the VIEW table is the owner of the VIEW entry 37C <<< handle of the VIEW table 100 <<< subclass marker AcDbSymbolTableRecord 100 <<< subclass marker AcDbViewTableRecord 2 <<< view name, from here all the same as DXF R12 VIEWNAME 70 0 40 20.01 10 40.36 20 15.86 41 17.91 11 0.0 21 0.0 31 1.0 12 0.0 22 0.0 32 0.0 42 50.0 43 0.0 44 0.0 50 0.0 71 0 281 <<< render mode 0-6 (... too much options) 0 <<< 0= 2D optimized (classic 2D) 72 <<< UCS associated (0/1 = no/yes) 0 <<< 0 = no DXF R2000+ supports additional features in the VIEW entry, see the VIEW table reference provided by Autodesk. VPORT Configuration Table The VPORT table stores the modelspace viewport configurations. A viewport configuration is a tiled view of multiple viewports or just one viewport. [image] In contrast to other tables the VPORT table can have multiple entries with the same name, because all VPORT entries of a multi-viewport configuration are having the same name - the viewport configuration name. The name of the actual displayed viewport configuration is '*ACTIVE', as always table entry names are case insensitive ('*ACTIVE' == '*Active'). The available display area in AutoCAD has normalized coordinates, the lower-left corner is (0, 0) and the upper-right corner is (1, 1) regardless of the true aspect ratio and available display area in pixels. A single viewport configuration has one VPORT entry '*ACTIVE' with the lower-left corner (0, 0) and the upper-right corner (1, 1). The following statements refer to a 2D plan view: the view-target-point defines the origin of the DCS (Display Coordinate system), the view-direction vector defines the z-axis of the DCS, the view-center-point (in DCS) defines the point in modelspace translated to the center point of the viewport, the view height and the aspect-ratio defines how much of the modelspace is displayed. AutoCAD tries to fit the modelspace area into the available viewport space e.g. view height is 15 units and aspect-ratio is 2.0 the modelspace to display is 30 units wide and 15 units high, if the viewport has an aspect ratio of 1.0, AutoCAD displays 30x30 units of the modelspace in the viewport. If the modelspace aspect-ratio is 1.0 the modelspace to display is 15x15 units and fits properly into the viewport area. But tests show that the translation of the view-center-point to the middle of the viewport not always work as I expected. (still digging…) NOTE: All floating point values are rounded to 2 decimal places for better readability. DXF R12 Multi-viewport configuration with three viewports. 0 <<< table start TABLE 2 <<< table type VPORT 70 <<< VPORT table (max.) count, not reliable (ignore) 3 0 <<< first VPORT entry VPORT 2 <<< VPORT (configuration) name *ACTIVE 70 <<< standard flags, bit-coded 0 10 <<< lower-left corner of viewport 0.45 <<< x value, virtual coordinates in range [0 - 1] 20 <<< group code for y value 0.0 <<< y value, virtual coordinates in range [0 - 1] 11 <<< upper-right corner of viewport 1.0 <<< x value, virtual coordinates in range [0 - 1] 21 <<< group code for y value 1.0 <<< y value, virtual coordinates in range [0 - 1] 12 <<< view center point (in DCS), ??? 13.71 <<< x value 22 <<< group code for y value 0.02 <<< y value 13 <<< snap base point (in DCS) 0.0 <<< x value 23 <<< group code for y value 0.0 <<< y value 14 <<< snap spacing X and Y 1.0 <<< x value 24 <<< group code for y value 1.0 <<< y value 15 <<< grid spacing X and Y 0.0 <<< x value 25 <<< group code for y value 0.0 <<< y value 16 <<< view direction from target point (in WCS), defines the z-axis of the DCS 1.0 <<< x value 26 <<< group code for y value -1.0 <<< y value 36 <<< group code for z value 1.0 <<< z value 17 <<< view target point (in WCS), defines the origin of the DCS 0.0 <<< x value 27 <<< group code for y value 0.0 <<< y value 37 <<< group code for z value 0.0 <<< z value 40 <<< view height 35.22 41 <<< viewport aspect ratio 0.99 42 <<< lens (focal) length 50.0 <<< 50mm 43 <<< front clipping planes, offsets from target point 0.0 44 <<< back clipping planes, offsets from target point 0.0 50 <<< snap rotation angle 0.0 51 <<< view twist angle 0.0 71 <<< view mode 0 72 <<< circle zoom percent 1000 73 <<< fast zoom setting 1 74 <<< UCSICON setting 3 75 <<< snap on/off 0 76 <<< grid on/off 0 77 <<< snap style 0 78 <<< snap isopair 0 0 <<< next VPORT entry VPORT 2 <<< VPORT (configuration) name *ACTIVE <<< same as first VPORT entry 70 0 10 0.0 20 0.5 11 0.45 21 1.0 12 8.21 22 9.41 ... ... 0 <<< next VPORT entry VPORT 2 <<< VPORT (configuration) name *ACTIVE <<< same as first VPORT entry 70 0 10 0.0 20 0.0 11 0.45 21 0.5 12 2.01 22 -9.33 ... ... 0 ENDTAB DXF R2000+ Mostly the same structure as DXF R12, but with handle, owner tag and subclass markers. 0 <<< table start TABLE 2 <<< table type VPORT 5 <<< table handle 151F 330 <<< owner, table has no owner - always #0 0 100 <<< subclass marker AcDbSymbolTable 70 <<< VPORT table (max.) count, not reliable (ignore) 3 0 <<< first VPORT entry VPORT 5 <<< entry handle 158B 330 <<< owner, VPORT table is owner of VPORT entry 151F 100 <<< subclass marker AcDbSymbolTableRecord 100 <<< subclass marker AcDbViewportTableRecord 2 <<< VPORT (configuration) name *ACTIVE 70 <<< standard flags, bit-coded 0 10 <<< lower-left corner of viewport 0.45 <<< x value, virtual coordinates in range [0 - 1] 20 <<< group code for y value 0.0 <<< y value, virtual coordinates in range [0 - 1] 11 <<< upper-right corner of viewport 1.0 <<< x value, virtual coordinates in range [0 - 1] 21 <<< group code for y value 1.0 <<< y value, virtual coordinates in range [0 - 1] 12 <<< view center point (in DCS) 13.71 <<< x value 22 <<< group code for y value 0.38 <<< y value 13 <<< snap base point (in DCS) 0.0 <<< x value 23 <<< group code for y value 0.0 <<< y value 14 <<< snap spacing X and Y 1.0 <<< x value 24 <<< group code for y value 1.0 <<< y value 15 <<< grid spacing X and Y 0.0 <<< x value 25 <<< group code for y value 0.0 <<< y value 16 <<< view direction from target point (in WCS) 1.0 <<< x value 26 <<< group code for y value -1.0 <<< y value 36 <<< group code for z value 1.0 <<< z value 17 <<< view target point (in WCS) 0.0 <<< x value 27 <<< group code for y value 0.0 <<< y value 37 <<< group code for z value 0.0 <<< z value 40 <<< view height 35.22 41 <<< viewport aspect ratio 0.99 42 <<< lens (focal) length 50.0 <<< 50mm 43 <<< front clipping planes, offsets from target point 0.0 44 <<< back clipping planes, offsets from target point 0.0 50 <<< snap rotation angle 0.0 51 <<< view twist angle 0.0 71 <<< view mode 0 72 <<< circle zoom percent 1000 73 <<< fast zoom setting 1 74 <<< UCSICON setting 3 75 <<< snap on/off 0 76 <<< grid on/off 0 77 <<< snap style 0 78 <<< snap isopair 0 281 <<< render mode 1-6 (... too many options) 0 <<< 0 = 2D optimized (classic 2D) 65 <<< Value of UCSVP for this viewport. (0 = UCS will not change when this viewport is activated) 1 <<< 1 = then viewport stores its own UCS which will become the current UCS whenever the viewport is activated. 110 <<< UCS origin (3D point) 0.0 <<< x value 120 <<< group code for y value 0.0 <<< y value 130 <<< group code for z value 0.0 <<< z value 111 <<< UCS X-axis (3D vector) 1.0 <<< x value 121 <<< group code for y value 0.0 <<< y value 131 <<< group code for z value 0.0 <<< z value 112 <<< UCS Y-axis (3D vector) 0.0 <<< x value 122 <<< group code for y value 1.0 <<< y value 132 <<< group code for z value 0.0 <<< z value 79 <<< Orthographic type of UCS 0-6 (... too many options) 0 <<< 0 = UCS is not orthographic 146 <<< elevation 0.0 1001 <<< extended data - undocumented ACAD_NAV_VCDISPLAY 1070 3 0 <<< next VPORT entry VPORT 5 158C 330 151F 100 AcDbSymbolTableRecord 100 AcDbViewportTableRecord 2 <<< VPORT (configuration) name *ACTIVE <<< same as first VPORT entry 70 0 10 0.0 20 0.5 11 0.45 21 1.0 12 8.21 22 9.72 ... ... 0 <<< next VPORT entry VPORT 5 158D 330 151F 100 AcDbSymbolTableRecord 100 AcDbViewportTableRecord 2 <<< VPORT (configuration) name *ACTIVE <<< same as first VPORT entry 70 0 10 0.0 20 0.0 11 0.45 21 0.5 12 2.01 22 -8.97 ... ... 0 ENDTAB LTYPE Table The LTYPE table stores all line type definitions of a DXF drawing. Every line type used in the drawing has to have a table entry, or the DXF drawing is invalid for AutoCAD. DXF R12 supports just simple line types, DXF R2000+ supports also complex line types with text or shapes included. You have access to the line types table by the attribute Drawing.linetypes. The line type table itself is not stored in the entity database, but the table entries are stored in entity database, and can be accessed by its handle. SEE ALSO: • DXF Reference: TABLES Section • DXF Reference: LTYPE Table Table Structure DXF R12 0 <<< start of table TABLE 2 <<< set table type LTYPE 70 <<< count of line types defined in this table, AutoCAD ignores this value 9 0 <<< 1. LTYPE table entry LTYPE <<< LTYPE data tags 0 <<< 2. LTYPE table entry LTYPE <<< LTYPE data tags and so on 0 <<< end of LTYPE table ENDTAB Table Structure DXF R2000+ 0 <<< start of table TABLE 2 <<< set table type LTYPE 5 <<< LTYPE table handle 5F 330 <<< owner tag, tables has no owner 0 100 <<< subclass marker AcDbSymbolTable 70 <<< count of line types defined in this table, AutoCAD ignores this value 9 0 <<< 1. LTYPE table entry LTYPE <<< LTYPE data tags 0 <<< 2. LTYPE table entry LTYPE <<< LTYPE data tags and so on 0 <<< end of LTYPE table ENDTAB Simple Line Type ezdxf setup for line type ‘CENTER’: dwg.linetypes.new("CENTER", dxfattribs={ description = "Center ____ _ ____ _ ____ _ ____ _ ____ _ ____", pattern=[2.0, 1.25, -0.25, 0.25, -0.25], }) Simple Line Type Tag Structure DXF R2000+ 0 <<< line type table entry LTYPE 5 <<< handle of line type 1B1 330 <<< owner handle, handle of LTYPE table 5F 100 <<< subclass marker AcDbSymbolTableRecord 100 <<< subclass marker AcDbLinetypeTableRecord 2 <<< line type name CENTER 70 <<< flags 0 3 Center ____ _ ____ _ ____ _ ____ _ ____ _ ____ 72 65 73 4 40 2.0 49 1.25 74 0 49 -0.25 74 0 49 0.25 74 0 49 -0.25 74 0 Complex Line Type TEXT ezdxf setup for line type ‘GASLEITUNG’: dwg.linetypes.new('GASLEITUNG', dxfattribs={ 'description': 'Gasleitung2 ----GAS----GAS----GAS----GAS----GAS----GAS--', 'length': 1, 'pattern': 'A,.5,-.2,["GAS",STANDARD,S=.1,U=0.0,X=-0.1,Y=-.05],-.25', }) TEXT Tag Structure 0 LTYPE 5 614 330 5F 100 <<< subclass marker AcDbSymbolTableRecord 100 <<< subclass marker AcDbLinetypeTableRecord 2 GASLEITUNG 70 0 3 Gasleitung2 ----GAS----GAS----GAS----GAS----GAS----GAS-- 72 65 73 3 40 1 49 0.5 74 0 49 -0.2 74 2 75 0 340 11 46 0.1 50 0.0 44 -0.1 45 -0.05 9 GAS 49 -0.25 74 0 Complex Line Type SHAPE ezdxf setup for line type ‘GRENZE2’: dwg.linetypes.new('GRENZE2', dxfattribs={ 'description': 'Grenze eckig ----[]-----[]----[]-----[]----[]--', 'length': 1.45, 'pattern': 'A,.25,-.1,[132,ltypeshp.shx,x=-.1,s=.1],-.1,1', }) SHAPE Tag Structure 0 LTYPE 5 615 330 5F 100 <<< subclass marker AcDbSymbolTableRecord 100 <<< subclass marker AcDbLinetypeTableRecord 2 GRENZE2 70 0 3 Grenze eckig ----[]-----[]----[]-----[]----[]-- 72 65 73 4 40 1.45 49 0.25 74 0 49 -0.1 74 4 75 132 340 616 46 0.1 50 0.0 44 -0.1 45 0.0 49 -0.1 74 0 49 1.0 74 0 DIMSTYLE Table The DIMSTYLE table stores all dimension style definitions of a DXF drawing. You have access to the dimension styles table by the attribute Drawing.dimstyles. SEE ALSO: • DXF Reference: TABLES Section • DXF Reference: DIMSTYLE Table Table Structure DXF R12 0 <<< start of table TABLE 2 <<< set table type DIMSTYLE 70 <<< count of line types defined in this table, AutoCAD ignores this value 9 0 <<< 1. DIMSTYLE table entry DIMSTYLE <<< DIMSTYLE data tags 0 <<< 2. DIMSTYLE table entry DIMSTYLE <<< DIMSTYLE data tags and so on 0 <<< end of DIMSTYLE table ENDTAB DIMSTYLE Entry DXF R12 DIMSTYLE Variables DXF R12 Source: CADDManger Blog [image] [image] ┌─────────┬──────┬──────────────────────────────┐ │DIMVAR │ Code │ Description │ ├─────────┼──────┼──────────────────────────────┤ │DIMALT │ 170 │ Controls the display of │ │ │ │ alternate units in │ │ │ │ dimensions. │ ├─────────┼──────┼──────────────────────────────┤ │DIMALTD │ 171 │ Controls the number of │ │ │ │ decimal places in alternate │ │ │ │ units. If DIMALT is turned │ │ │ │ on, DIMALTD sets the number │ │ │ │ of digits displayed to the │ │ │ │ right of the decimal point │ │ │ │ in the alternate │ │ │ │ measurement. │ ├─────────┼──────┼──────────────────────────────┤ │DIMALTF │ 143 │ Controls the multiplier for │ │ │ │ alternate units. If DIMALT │ │ │ │ is turned on, DIMALTF │ │ │ │ multiplies linear dimensions │ │ │ │ by a factor to produce a │ │ │ │ value in an alternate system │ │ │ │ of measurement. The initial │ │ │ │ value represents the number │ │ │ │ of millimeters in an inch. │ └─────────┴──────┴──────────────────────────────┘ │DIMAPOST │ 4 │ Specifies a text prefix or │ │ │ │ suffix (or both) to the │ │ │ │ alternate dimension │ │ │ │ measurement for all types of │ │ │ │ dimensions except angular. │ │ │ │ For instance, if the current │ │ │ │ units are Architectural, │ │ │ │ DIMALT is on, DIMALTF is │ │ │ │ 25.4 (the number of │ │ │ │ millimeters per inch), │ │ │ │ DIMALTD is 2, and DIMPOST is │ │ │ │ set to “mm”, a distance of │ │ │ │ 10 units would be displayed │ │ │ │ as 10”[254.00mm]. │ ├─────────┼──────┼──────────────────────────────┤ │DIMASZ │ 41 │ Controls the size of │ │ │ │ dimension line and leader │ │ │ │ line arrowheads. Also │ │ │ │ controls the size of hook │ │ │ │ lines. Multiples of the │ │ │ │ arrowhead size determine │ │ │ │ whether dimension lines and │ │ │ │ text should fit between the │ │ │ │ extension lines. DIMASZ is │ │ │ │ also used to scale arrowhead │ │ │ │ blocks if set by DIMBLK. │ │ │ │ DIMASZ has no effect when │ │ │ │ DIMTSZ is other than zero. │ ├─────────┼──────┼──────────────────────────────┤ │DIMBLK │ 5 │ Sets the arrowhead block │ │ │ │ displayed at the ends of │ │ │ │ dimension lines. │ ├─────────┼──────┼──────────────────────────────┤ │DIMBLK1 │ 6 │ Sets the arrowhead for the │ │ │ │ first end of the dimension │ │ │ │ line when DIMSAH is 1. │ ├─────────┼──────┼──────────────────────────────┤ │DIMBLK2 │ 7 │ Sets the arrowhead for the │ │ │ │ second end of the dimension │ │ │ │ line when DIMSAH is 1. │ ├─────────┼──────┼──────────────────────────────┤ │DIMCEN │ 141 │ Controls drawing of circle │ │ │ │ or arc center marks and │ │ │ │ centerlines by the │ │ │ │ DIMCENTER, DIMDIAMETER, and │ │ │ │ DIMRADIUS commands. For │ │ │ │ DIMDIAMETER and DIMRADIUS, │ │ │ │ the center mark is drawn │ │ │ │ only if you place the │ │ │ │ dimension line outside the │ │ │ │ circle or arc. │ │ │ │ │ │ │ │ • 0 = No center │ │ │ │ marks or lines are │ │ │ │ drawn │ │ │ │ │ │ │ │ • <0 = Centerlines │ │ │ │ are drawn │ │ │ │ │ │ │ │ • >0 = Center marks │ │ │ │ are drawn │ ├─────────┼──────┼──────────────────────────────┤ │DIMCLRD │ 176 │ Assigns colors to dimension │ │ │ │ lines, arrowheads, and │ │ │ │ dimension leader lines. │ │ │ │ │ │ │ │ • 0 = BYBLOCK │ │ │ │ │ │ │ │ • 1-255 = ACI AutoCAD │ │ │ │ Color Index │ │ │ │ │ │ │ │ • 256 = BYLAYER │ ├─────────┼──────┼──────────────────────────────┤ │DIMCLRE │ 177 │ Assigns colors to dimension │ │ │ │ extension lines, values like │ │ │ │ DIMCLRD │ ├─────────┼──────┼──────────────────────────────┤ │DIMCLRT │ 178 │ Assigns colors to dimension │ │ │ │ text, values like DIMCLRD │ ├─────────┼──────┼──────────────────────────────┤ │DIMDLE │ 46 │ Sets the distance the │ │ │ │ dimension line extends │ │ │ │ beyond the extension line │ │ │ │ when oblique strokes are │ │ │ │ drawn instead of arrowheads. │ ├─────────┼──────┼──────────────────────────────┤ │DIMDLI │ 43 │ Controls the spacing of the │ │ │ │ dimension lines in baseline │ │ │ │ dimensions. Each dimension │ │ │ │ line is offset from the │ │ │ │ previous one by this amount, │ │ │ │ if necessary, to avoid │ │ │ │ drawing over it. Changes │ │ │ │ made with DIMDLI are not │ │ │ │ applied to existing │ │ │ │ dimensions. │ ├─────────┼──────┼──────────────────────────────┤ │DIMEXE │ 44 │ Specifies how far to extend │ │ │ │ the extension line beyond │ │ │ │ the dimension line. │ ├─────────┼──────┼──────────────────────────────┤ │DIMEXO │ 42 │ Specifies how far extension │ │ │ │ lines are offset from origin │ │ │ │ points. With fixed-length │ │ │ │ extension lines, this value │ │ │ │ determines the minimum │ │ │ │ offset. │ ├─────────┼──────┼──────────────────────────────┤ │DIMGAP │ 147 │ Sets the distance around the │ │ │ │ dimension text when the │ │ │ │ dimension line breaks to │ │ │ │ accommodate dimension text. │ │ │ │ Also sets the gap between │ │ │ │ annotation and a hook line │ │ │ │ created with the LEADER │ │ │ │ command. If you enter a │ │ │ │ negative value, DIMGAP │ │ │ │ places a box around the │ │ │ │ dimension text. │ │ │ │ │ │ │ │ DIMGAP is also used as the │ │ │ │ minimum length for pieces of │ │ │ │ the dimension line. When the │ │ │ │ default position for the │ │ │ │ dimension text is │ │ │ │ calculated, text is │ │ │ │ positioned inside the │ │ │ │ extension lines only if │ │ │ │ doing so breaks the │ │ │ │ dimension lines into two │ │ │ │ segments at least as long as │ │ │ │ DIMGAP. Text placed above │ │ │ │ or below the dimension line │ │ │ │ is moved inside only if │ │ │ │ there is room for the │ │ │ │ arrowheads, dimension text, │ │ │ │ and a margin between them at │ │ │ │ least as large as DIMGAP: 2 │ │ │ │ * (DIMASZ + DIMGAP). │ ├─────────┼──────┼──────────────────────────────┤ │DIMLFAC │ 144 │ Sets a scale factor for │ │ │ │ linear dimension │ │ │ │ measurements. All linear │ │ │ │ dimension distances, │ │ │ │ including radii, diameters, │ │ │ │ and coordinates, are │ │ │ │ multiplied by DIMLFAC before │ │ │ │ being converted to dimension │ │ │ │ text. Positive values of │ │ │ │ DIMLFAC are applied to │ │ │ │ dimensions in both │ │ │ │ modelspace and paperspace; │ │ │ │ negative values are applied │ │ │ │ to paperspace only. │ │ │ │ │ │ │ │ DIMLFAC applies primarily to │ │ │ │ nonassociative dimensions │ │ │ │ (DIMASSOC set 0 or 1). For │ │ │ │ nonassociative dimensions in │ │ │ │ paperspace, DIMLFAC must be │ │ │ │ set individually for each │ │ │ │ layout viewport to │ │ │ │ accommodate viewport │ │ │ │ scaling. │ │ │ │ │ │ │ │ DIMLFAC has no effect on │ │ │ │ angular dimensions, and is │ │ │ │ not applied to the values │ │ │ │ held in DIMRND, DIMTM, or │ │ │ │ DIMTP. │ └─────────┴──────┴──────────────────────────────┘ │DIMLIM │ 72 │ Generates dimension limits │ │ │ │ as the default text. Setting │ │ │ │ DIMLIM to On turns DIMTOL │ │ │ │ off. │ │ │ │ │ │ │ │ • 0 = Dimension │ │ │ │ limits are not │ │ │ │ generated as │ │ │ │ default text │ │ │ │ │ │ │ │ • 1 = Dimension │ │ │ │ limits are │ │ │ │ generated as │ │ │ │ default text │ ├─────────┼──────┼──────────────────────────────┤ │DIMPOST │ 3 │ Specifies a text prefix or │ │ │ │ suffix (or both) to the │ │ │ │ dimension measurement. │ │ │ │ │ │ │ │ For example, to establish a │ │ │ │ suffix for millimeters, set │ │ │ │ DIMPOST to mm; a distance of │ │ │ │ 19.2 units would be │ │ │ │ displayed as 19.2 mm. If │ │ │ │ tolerances are turned on, │ │ │ │ the suffix is applied to the │ │ │ │ tolerances as well as to the │ │ │ │ main dimension. │ │ │ │ │ │ │ │ Use “<>” to indicate │ │ │ │ placement of the text in │ │ │ │ relation to the dimension │ │ │ │ value. For example, enter │ │ │ │ “<>mm” to display a 5.0 │ │ │ │ millimeter radial dimension │ │ │ │ as “5.0mm”. If you entered │ │ │ │ mm “<>”, the dimension would │ │ │ │ be displayed as “mm 5.0”. │ ├─────────┼──────┼──────────────────────────────┤ │DIMRND │ 45 │ Rounds all dimensioning │ │ │ │ distances to the specified │ │ │ │ value. │ │ │ │ │ │ │ │ For instance, if DIMRND is │ │ │ │ set to 0.25, all distances │ │ │ │ round to the nearest 0.25 │ │ │ │ unit. If you set DIMRND to │ │ │ │ 1.0, all distances round to │ │ │ │ the nearest integer. Note │ │ │ │ that the number of digits │ │ │ │ edited after the decimal │ │ │ │ point depends on the │ │ │ │ precision set by DIMDEC. │ │ │ │ DIMRND does not apply to │ │ │ │ angular dimensions. │ ├─────────┼──────┼──────────────────────────────┤ │DIMSAH │ 173 │ Controls the display of │ │ │ │ dimension line arrowhead │ │ │ │ blocks. │ │ │ │ │ │ │ │ • 0 = Use arrowhead │ │ │ │ blocks set by │ │ │ │ DIMBLK │ │ │ │ │ │ │ │ • 1 = Use arrowhead │ │ │ │ blocks set by │ │ │ │ DIMBLK1 and DIMBLK2 │ ├─────────┼──────┼──────────────────────────────┤ │DIMSCALE │ 40 │ Sets the overall scale │ │ │ │ factor applied to │ │ │ │ dimensioning variables that │ │ │ │ specify sizes, distances, or │ │ │ │ offsets. Also affects the │ │ │ │ leader objects with the │ │ │ │ LEADER command. │ │ │ │ │ │ │ │ Use MLEADERSCALE to scale │ │ │ │ multileader objects created │ │ │ │ with the MLEADER command. │ │ │ │ │ │ │ │ • 0.0 = A reasonable │ │ │ │ default value is │ │ │ │ computed based on │ │ │ │ the scaling between │ │ │ │ the current model │ │ │ │ space viewport and │ │ │ │ paperspace. If you │ │ │ │ are in paperspace │ │ │ │ or modelspace and │ │ │ │ not using the │ │ │ │ paperspace feature, │ │ │ │ the scale factor is │ │ │ │ 1.0. │ │ │ │ │ │ │ │ • >0 = A scale factor │ │ │ │ is computed that │ │ │ │ leads text sizes, │ │ │ │ arrowhead sizes, │ │ │ │ and other scaled │ │ │ │ distances to plot │ │ │ │ at their face │ │ │ │ values. │ │ │ │ │ │ │ │ DIMSCALE does not │ │ │ │ affect measured │ │ │ │ lengths, coordinates, │ │ │ │ or angles. │ │ │ │ │ │ │ │ Use DIMSCALE to │ │ │ │ control the overall │ │ │ │ scale of dimensions. │ │ │ │ However, if the │ │ │ │ current dimension │ │ │ │ style is annotative, │ │ │ │ DIMSCALE is │ │ │ │ automatically set to │ │ │ │ zero and the │ │ │ │ dimension scale is │ │ │ │ controlled by the │ │ │ │ CANNOSCALE system │ │ │ │ variable. DIMSCALE │ │ │ │ cannot be set to a │ │ │ │ non-zero value when │ │ │ │ using annotative │ │ │ │ dimensions. │ ├─────────┼──────┼──────────────────────────────┤ │DIMSE1 │ 75 │ Suppresses display of the │ │ │ │ first extension line. │ │ │ │ │ │ │ │ • 0 = Extension line │ │ │ │ is not suppressed │ │ │ │ │ │ │ │ • 1 = Extension line │ │ │ │ is suppressed │ ├─────────┼──────┼──────────────────────────────┤ │DIMSE2 │ 76 │ Suppresses display of the │ │ │ │ second extension line. │ │ │ │ │ │ │ │ • 0 = Extension line │ │ │ │ is not suppressed │ │ │ │ │ │ │ │ • 1 = Extension line │ │ │ │ is suppressed │ ├─────────┼──────┼──────────────────────────────┤ │DIMSOXD │ 175 │ Suppresses arrowheads if not │ │ │ │ enough space is available │ │ │ │ inside the extension lines. │ │ │ │ │ │ │ │ • 0 = Arrowheads are │ │ │ │ not suppressed │ │ │ │ │ │ │ │ • 1 = Arrowheads are │ │ │ │ suppressed │ │ │ │ │ │ │ │ If not enough space │ │ │ │ is available inside │ │ │ │ the extension lines │ │ │ │ and DIMTIX is on, │ │ │ │ setting DIMSOXD to On │ │ │ │ suppresses the │ │ │ │ arrowheads. If DIMTIX │ │ │ │ is off, DIMSOXD has │ │ │ │ no effect. │ └─────────┴──────┴──────────────────────────────┘ │DIMTAD │ 77 │ Controls the vertical │ │ │ │ position of text in relation │ │ │ │ to the dimension line. │ │ │ │ │ │ │ │ • 0 = Centers the │ │ │ │ dimension text │ │ │ │ between the │ │ │ │ extension lines. │ │ │ │ │ │ │ │ • 1 = Places the │ │ │ │ dimension text │ │ │ │ above the dimension │ │ │ │ line except when │ │ │ │ the dimension line │ │ │ │ is not horizontal │ │ │ │ and text inside the │ │ │ │ extension lines is │ │ │ │ forced horizontal │ │ │ │ (DIMTIH = 1). The │ │ │ │ distance from the │ │ │ │ dimension line to │ │ │ │ the baseline of the │ │ │ │ lowest line of text │ │ │ │ is the current │ │ │ │ DIMGAP value. │ │ │ │ │ │ │ │ • 2 = Places the │ │ │ │ dimension text on │ │ │ │ the side of the │ │ │ │ dimension line │ │ │ │ farthest away from │ │ │ │ the defining │ │ │ │ points. │ │ │ │ │ │ │ │ • 3 = Places the │ │ │ │ dimension text to │ │ │ │ conform to Japanese │ │ │ │ Industrial │ │ │ │ Standards (JIS). │ │ │ │ │ │ │ │ • 4 = Places the │ │ │ │ dimension text │ │ │ │ below the dimension │ │ │ │ line. │ ├─────────┼──────┼──────────────────────────────┤ │DIMTFAC │ 146 │ Specifies a scale factor for │ │ │ │ the text height of fractions │ │ │ │ and tolerance values │ │ │ │ relative to the dimension │ │ │ │ text height, as set by │ │ │ │ DIMTXT. │ │ │ │ │ │ │ │ For example, if DIMTFAC is │ │ │ │ set to 1.0, the text height │ │ │ │ of fractions and tolerances │ │ │ │ is the same height as the │ │ │ │ dimension text. If DIMTFAC │ │ │ │ is set to 0.7500, the text │ │ │ │ height of fractions and │ │ │ │ tolerances is three-quarters │ │ │ │ the size of dimension text. │ ├─────────┼──────┼──────────────────────────────┤ │DIMTIH │ 73 │ Controls the position of │ │ │ │ dimension text inside the │ │ │ │ extension lines for all │ │ │ │ dimension types except │ │ │ │ Ordinate. │ │ │ │ │ │ │ │ • 0 = Aligns text │ │ │ │ with the dimension │ │ │ │ line │ │ │ │ │ │ │ │ • 1 = Draws text │ │ │ │ horizontally │ ├─────────┼──────┼──────────────────────────────┤ │DIMTIX │ 174 │ Draws text between extension │ │ │ │ lines. │ │ │ │ │ │ │ │ • 0 = Varies with the │ │ │ │ type of dimension. │ │ │ │ For linear and │ │ │ │ angular dimensions, │ │ │ │ text is placed │ │ │ │ inside the │ │ │ │ extension lines if │ │ │ │ there is sufficient │ │ │ │ room. For radius │ │ │ │ and diameter │ │ │ │ dimensions hat │ │ │ │ don’t fit inside │ │ │ │ the circle or arc, │ │ │ │ DIMTIX has no │ │ │ │ effect and always │ │ │ │ forces the text │ │ │ │ outside the circle │ │ │ │ or arc. │ │ │ │ │ │ │ │ • 1 = Draws dimension │ │ │ │ text between the │ │ │ │ extension lines │ │ │ │ even if it would │ │ │ │ ordinarily be │ │ │ │ placed outside │ │ │ │ those lines │ ├─────────┼──────┼──────────────────────────────┤ │DIMTM │ 48 │ Sets the minimum (or lower) │ │ │ │ tolerance limit for │ │ │ │ dimension text when DIMTOL │ │ │ │ or DIMLIM is on. DIMTM │ │ │ │ accepts signed values. If │ │ │ │ DIMTOL is on and DIMTP and │ │ │ │ DIMTM are set to the same │ │ │ │ value, a tolerance value is │ │ │ │ drawn. If DIMTM and DIMTP │ │ │ │ values differ, the upper │ │ │ │ tolerance is drawn above the │ │ │ │ lower, and a plus sign is │ │ │ │ added to the DIMTP value if │ │ │ │ it is positive. For DIMTM, │ │ │ │ the program uses the │ │ │ │ negative of the value you │ │ │ │ enter (adding a minus sign │ │ │ │ if you specify a positive │ │ │ │ number and a plus sign if │ │ │ │ you specify a negative │ │ │ │ number). │ ├─────────┼──────┼──────────────────────────────┤ │DIMTOFL │ 172 │ Controls whether a dimension │ │ │ │ line is drawn between the │ │ │ │ extension lines even when │ │ │ │ the text is placed outside. │ │ │ │ For radius and diameter │ │ │ │ dimensions (when DIMTIX is │ │ │ │ off), draws a dimension line │ │ │ │ inside the circle or arc and │ │ │ │ places the text, arrowheads, │ │ │ │ and leader outside. │ │ │ │ │ │ │ │ • 0 = Does not draw │ │ │ │ dimension lines │ │ │ │ between the │ │ │ │ measured points │ │ │ │ when arrowheads are │ │ │ │ placed outside the │ │ │ │ measured points │ │ │ │ │ │ │ │ • 1 = Draws dimension │ │ │ │ lines between the │ │ │ │ measured points │ │ │ │ even when │ │ │ │ arrowheads are │ │ │ │ placed outside the │ │ │ │ measured points │ ├─────────┼──────┼──────────────────────────────┤ │DIMTOH │ 74 │ Controls the position of │ │ │ │ dimension text outside the │ │ │ │ extension lines. │ │ │ │ │ │ │ │ • 0 = Aligns text │ │ │ │ with the dimension │ │ │ │ line │ │ │ │ │ │ │ │ • 1 = Draws text │ │ │ │ horizontally │ ├─────────┼──────┼──────────────────────────────┤ │DIMTOL │ 71 │ Appends tolerances to │ │ │ │ dimension text. Setting │ │ │ │ DIMTOL to on turns DIMLIM │ │ │ │ off. │ └─────────┴──────┴──────────────────────────────┘ │DIMTP │ 47 │ Sets the maximum (or upper) │ │ │ │ tolerance limit for │ │ │ │ dimension text when DIMTOL │ │ │ │ or DIMLIM is on. DIMTP │ │ │ │ accepts signed values. If │ │ │ │ DIMTOL is on and DIMTP and │ │ │ │ DIMTM are set to the same │ │ │ │ value, a tolerance value is │ │ │ │ drawn. If DIMTM and DIMTP │ │ │ │ values differ, the upper │ │ │ │ tolerance is drawn above the │ │ │ │ lower and a plus sign is │ │ │ │ added to the DIMTP value if │ │ │ │ it is positive. │ ├─────────┼──────┼──────────────────────────────┤ │DIMTSZ │ 142 │ Specifies the size of │ │ │ │ oblique strokes drawn │ │ │ │ instead of arrowheads for │ │ │ │ linear, radius, and diameter │ │ │ │ dimensioning. │ │ │ │ │ │ │ │ • 0 = Draws │ │ │ │ arrowheads. │ │ │ │ │ │ │ │ • >0 = Draws oblique │ │ │ │ strokes instead of │ │ │ │ arrowheads. The │ │ │ │ size of the oblique │ │ │ │ strokes is │ │ │ │ determined by this │ │ │ │ value multiplied by │ │ │ │ the DIMSCALE value │ ├─────────┼──────┼──────────────────────────────┤ │DIMTVP │ 145 │ Controls the vertical │ │ │ │ position of dimension text │ │ │ │ above or below the dimension │ │ │ │ line. The DIMTVP value is │ │ │ │ used when DIMTAD = 0. The │ │ │ │ magnitude of the vertical │ │ │ │ offset of text is the │ │ │ │ product of the text height │ │ │ │ and DIMTVP. Setting DIMTVP │ │ │ │ to 1.0 is equivalent to │ │ │ │ setting DIMTAD = 1. The │ │ │ │ dimension line splits to │ │ │ │ accommodate the text only if │ │ │ │ the absolute value of DIMTVP │ │ │ │ is less than 0.7. │ ├─────────┼──────┼──────────────────────────────┤ │DIMTXT │ 140 │ Specifies the height of │ │ │ │ dimension text, unless the │ │ │ │ current text style has a │ │ │ │ fixed height. │ ├─────────┼──────┼──────────────────────────────┤ │DIMZIN │ 78 │ Controls the suppression of │ │ │ │ zeros in the primary unit │ │ │ │ value. Values 0-3 affect │ │ │ │ feet-and-inch dimensions │ │ │ │ only: │ │ │ │ │ │ │ │ • 0 = Suppresses zero │ │ │ │ feet and precisely │ │ │ │ zero inches │ │ │ │ │ │ │ │ • 1 = Includes zero │ │ │ │ feet and precisely │ │ │ │ zero inches │ │ │ │ │ │ │ │ • 2 = Includes zero │ │ │ │ feet and suppresses │ │ │ │ zero inches │ │ │ │ │ │ │ │ • 3 = Includes zero │ │ │ │ inches and │ │ │ │ suppresses zero │ │ │ │ feet │ │ │ │ │ │ │ │ • 4 (Bit 3) = │ │ │ │ Suppresses leading │ │ │ │ zeros in decimal │ │ │ │ dimensions (for │ │ │ │ example, 0.5000 │ │ │ │ becomes .5000) │ │ │ │ │ │ │ │ • 8 (Bit 4) = │ │ │ │ Suppresses trailing │ │ │ │ zeros in decimal │ │ │ │ dimensions (for │ │ │ │ example, 12.5000 │ │ │ │ becomes 12.5) │ │ │ │ │ │ │ │ • 12 (Bit 3+4) = │ │ │ │ Suppresses both │ │ │ │ leading and │ │ │ │ trailing zeros (for │ │ │ │ example, 0.5000 │ │ │ │ becomes .5) │ └─────────┴──────┴──────────────────────────────┘ Table Structure DXF R2000+ 0 <<< start of table TABLE 2 <<< set table type DIMSTYLE 5 <<< DIMSTYLE table handle 5F 330 <<< owner tag, tables has no owner 0 100 <<< subclass marker AcDbSymbolTable 70 <<< count of dimension styles defined in this table, AutoCAD ignores this value 9 0 <<< 1. DIMSTYLE table entry DIMSTYLE <<< DIMSTYLE data tags 0 <<< 2. DIMSTYLE table entry DIMSTYLE <<< DIMSTYLE data tags and so on 0 <<< end of DIMSTYLE table ENDTAB Additional DIMSTYLE Variables DXF R13/14 Source: CADDManger Blog ┌────────────────┬──────┬──────────────────────────────────┐ │DIMVAR │ code │ Description │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMADEC │ 179 │ Controls the number of │ │ │ │ precision places displayed │ │ │ │ in angular dimensions. │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMALTTD │ 274 │ Sets the number of decimal │ │ │ │ places for the tolerance │ │ │ │ values in the alternate │ │ │ │ units of a dimension. │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMALTTZ │ 286 │ Controls suppression of │ │ │ │ zeros in tolerance values. │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMALTU │ 273 │ Sets the units format for │ │ │ │ alternate units of all │ │ │ │ dimension substyles except │ │ │ │ Angular. │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMALTZ │ 285 │ Controls the suppression of │ │ │ │ zeros for alternate unit │ │ │ │ dimension values. DIMALTZ │ │ │ │ values 0-3 affect │ │ │ │ feet-and-inch dimensions │ │ │ │ only. │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMAUNIT │ 275 │ Sets the units format for │ │ │ │ angular dimensions. │ │ │ │ │ │ │ │ • 0 = Decimal degrees │ │ │ │ │ │ │ │ • 1 = │ │ │ │ Degrees/minutes/seconds │ │ │ │ │ │ │ │ • 2 = Grad │ │ │ │ │ │ │ │ • 3 = Radians │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMBLK_HANDLE │ 342 │ defines DIMBLK as handle to the │ │ │ │ BLOCK RECORD entry │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMBLK1_HANDLE │ 343 │ defines DIMBLK1 as handle to the │ │ │ │ BLOCK RECORD entry │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMBLK2_HANDLE │ 344 │ defines DIMBLK2 as handle to the │ │ │ │ BLOCK RECORD entry │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMDEC │ 271 │ Sets the number of decimal │ │ │ │ places displayed for the primary │ │ │ │ units of a dimension. The │ │ │ │ precision is based on the units │ │ │ │ or angle format you have │ │ │ │ selected. │ └────────────────┴──────┴──────────────────────────────────┘ │DIMDSEP │ 278 │ Specifies a single-character │ │ │ │ decimal separator to use when │ │ │ │ creating dimensions whose unit │ │ │ │ format is decimal. When │ │ │ │ prompted, enter a single │ │ │ │ character at the Command prompt. │ │ │ │ If dimension units is set to │ │ │ │ Decimal, the DIMDSEP character │ │ │ │ is used instead of the default │ │ │ │ decimal point. If DIMDSEP is set │ │ │ │ to NULL (default value, reset by │ │ │ │ entering a period), the decimal │ │ │ │ point is used as the dimension │ │ │ │ separator. │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMJUST │ 280 │ Controls the horizontal │ │ │ │ positioning of dimension text. │ │ │ │ │ │ │ │ • 0 = Positions the text │ │ │ │ above the dimension │ │ │ │ line and │ │ │ │ center-justifies it │ │ │ │ between the extension │ │ │ │ lines │ │ │ │ │ │ │ │ • 1 = Positions the text │ │ │ │ next to the first │ │ │ │ extension line │ │ │ │ │ │ │ │ • 2 = Positions the text │ │ │ │ next to the second │ │ │ │ extension line │ │ │ │ │ │ │ │ • 3 = Positions the text │ │ │ │ above and aligned with │ │ │ │ the first extension │ │ │ │ line │ │ │ │ │ │ │ │ • 4 = =Positions the │ │ │ │ text above and aligned │ │ │ │ with the second │ │ │ │ extension line │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMSD1 │ 281 │ Controls suppression of the │ │ │ │ first dimension line and │ │ │ │ arrowhead. When turned on, │ │ │ │ suppresses the display of the │ │ │ │ dimension line and arrowhead │ │ │ │ between the first extension line │ │ │ │ and the text. │ │ │ │ │ │ │ │ • 0 = First dimension │ │ │ │ line is not suppressed │ │ │ │ │ │ │ │ • 1 = First dimension │ │ │ │ line is suppressed │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMSD2 │ 282 │ Controls suppression of the │ │ │ │ second dimension line and │ │ │ │ arrowhead. When turned on, │ │ │ │ suppresses the display of the │ │ │ │ dimension line and arrowhead │ │ │ │ between the second extension │ │ │ │ line and the text. │ │ │ │ │ │ │ │ • 0 = Second dimension │ │ │ │ line is not suppressed │ │ │ │ │ │ │ │ • 1 = Second dimension │ │ │ │ line is suppressed │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMTDEC │ 272 │ Sets the number of decimal │ │ │ │ places to display in tolerance │ │ │ │ values for the primary units in │ │ │ │ a dimension. This system │ │ │ │ variable has no effect unless │ │ │ │ DIMTOL is set to On. The default │ │ │ │ for DIMTOL is Off. │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMTOLJ │ 283 │ Sets the vertical justification │ │ │ │ for tolerance values relative to │ │ │ │ the nominal dimension text. │ │ │ │ This system variable has no │ │ │ │ effect unless DIMTOL is set to │ │ │ │ On. The default for DIMTOL is │ │ │ │ Off. │ │ │ │ │ │ │ │ • 0 = Bottom │ │ │ │ │ │ │ │ • 1 = Middle │ │ │ │ │ │ │ │ • 2 = Top │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMTXSTY_HANDLE │ 340 │ Specifies the text style of the │ │ │ │ dimension as handle to STYLE │ │ │ │ table entry │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMTZIN │ 284 │ Controls the suppression of │ │ │ │ zeros in tolerance values. │ │ │ │ │ │ │ │ Values 0-3 affect feet-and-inch │ │ │ │ dimensions only. │ │ │ │ │ │ │ │ • 0 = Suppresses zero │ │ │ │ feet and precisely zero │ │ │ │ inches │ │ │ │ │ │ │ │ • 1 = Includes zero feet │ │ │ │ and precisely zero │ │ │ │ inches │ │ │ │ │ │ │ │ • 2 = Includes zero feet │ │ │ │ and suppresses zero │ │ │ │ inches │ │ │ │ │ │ │ │ • 3 = Includes zero │ │ │ │ inches and suppresses │ │ │ │ zero feet │ │ │ │ │ │ │ │ • 4 = Suppresses leading │ │ │ │ zeros in decimal │ │ │ │ dimensions (for │ │ │ │ example, 0.5000 becomes │ │ │ │ .5000) │ │ │ │ │ │ │ │ • 8 = Suppresses trailing │ │ │ │ zeros in decimal │ │ │ │ dimensions (for │ │ │ │ example, 12.5000 │ │ │ │ becomes 12.5) │ │ │ │ │ │ │ │ • 12 = Suppresses both │ │ │ │ leading and trailing │ │ │ │ zeros (for example, │ │ │ │ 0.5000 becomes .5) │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMUPT │ 288 │ Controls options for │ │ │ │ user-positioned text. │ │ │ │ │ │ │ │ • 0 = Cursor controls │ │ │ │ only the dimension line │ │ │ │ location │ │ │ │ │ │ │ │ • 1 = Cursor controls │ │ │ │ both the text position │ │ │ │ and the dimension line │ │ │ │ location │ └────────────────┴──────┴──────────────────────────────────┘ Additional DIMSTYLE Variables DXF R2000 Source: CADDManger Blog ┌─────────────────┬──────┬──────────────────────────────┐ │DIMVAR │ Code │ Description │ ├─────────────────┼──────┼──────────────────────────────┤ │DIMALTRND │ 148 │ Rounds off the alternate │ │ │ │ dimension units. │ └─────────────────┴──────┴──────────────────────────────┘ │DIMATFIT │ 289 │ Determines how dimension │ │ │ │ text and arrows are arranged │ │ │ │ when space is not sufficient │ │ │ │ to place both within the │ │ │ │ extension lines. │ │ │ │ │ │ │ │ • 0 = Places both │ │ │ │ text and arrows │ │ │ │ outside extension │ │ │ │ lines │ │ │ │ │ │ │ │ • 1 = Moves arrows │ │ │ │ first, then text │ │ │ │ │ │ │ │ • 2 = Moves text │ │ │ │ first, then arrows │ │ │ │ │ │ │ │ • 3 = Moves either │ │ │ │ text or arrows, │ │ │ │ whichever fits best │ │ │ │ │ │ │ │ A leader is added to │ │ │ │ moved dimension text │ │ │ │ when DIMTMOVE is set │ │ │ │ to 1. │ ├─────────────────┼──────┼──────────────────────────────┤ │DIMAZIN │ 79 │ Suppresses zeros for angular │ │ │ │ dimensions. │ │ │ │ │ │ │ │ • 0 = Displays all │ │ │ │ leading and │ │ │ │ trailing zeros │ │ │ │ │ │ │ │ • 1 = Suppresses │ │ │ │ leading zeros in │ │ │ │ decimal dimensions │ │ │ │ (for example, │ │ │ │ 0.5000 becomes │ │ │ │ .5000) │ │ │ │ │ │ │ │ • 2 = Suppresses │ │ │ │ trailing zeros in │ │ │ │ decimal dimensions │ │ │ │ (for example, │ │ │ │ 12.5000 becomes │ │ │ │ 12.5) │ │ │ │ │ │ │ │ • 3 = Suppresses │ │ │ │ leading and │ │ │ │ trailing zeros (for │ │ │ │ example, 0.5000 │ │ │ │ becomes .5) │ ├─────────────────┼──────┼──────────────────────────────┤ │DIMFRAC │ 276 │ Sets the fraction format │ │ │ │ when DIMLUNIT is set to 4 │ │ │ │ (Architectural) or 5 │ │ │ │ (Fractional). │ │ │ │ │ │ │ │ • 0 = Horizontal │ │ │ │ stacking │ │ │ │ │ │ │ │ • 1 = Diagonal │ │ │ │ stacking │ │ │ │ │ │ │ │ • 2 = Not stacked │ │ │ │ (for example, 1/2) │ ├─────────────────┼──────┼──────────────────────────────┤ │DIMLDRBLK_HANDLE │ 341 │ Specifies the arrow type for │ │ │ │ leaders. Handle to BLOCK │ │ │ │ RECORD │ ├─────────────────┼──────┼──────────────────────────────┤ │DIMLUNIT │ 277 │ Sets units for all dimension │ │ │ │ types except Angular. │ │ │ │ │ │ │ │ • 1 = Scientific │ │ │ │ │ │ │ │ • 2 = Decimal │ │ │ │ │ │ │ │ • 3 = Engineering │ │ │ │ │ │ │ │ • 4 = Architectural │ │ │ │ (always displayed │ │ │ │ stacked) │ │ │ │ │ │ │ │ • 5 = Fractional │ │ │ │ (always displayed │ │ │ │ stacked) │ │ │ │ │ │ │ │ • 6 = Microsoft │ │ │ │ Windows Desktop │ │ │ │ (decimal format │ │ │ │ using Control Panel │ │ │ │ settings for │ │ │ │ decimal separator │ │ │ │ and number grouping │ │ │ │ symbols) │ ├─────────────────┼──────┼──────────────────────────────┤ │DIMLWD │ 371 │ Assigns lineweight to │ │ │ │ dimension lines. │ │ │ │ │ │ │ │ • -3 = Default (the │ │ │ │ LWDEFAULT value) │ │ │ │ │ │ │ │ • -2 = BYBLOCK │ │ │ │ │ │ │ │ • -1 = BYLAYER │ ├─────────────────┼──────┼──────────────────────────────┤ │DIMLWE │ 372 │ Assigns lineweight to │ │ │ │ extension lines. │ │ │ │ │ │ │ │ • -3 = Default (the │ │ │ │ LWDEFAULT value) │ │ │ │ │ │ │ │ • -2 = BYBLOCK │ │ │ │ │ │ │ │ • -1 = BYLAYER │ ├─────────────────┼──────┼──────────────────────────────┤ │DIMTMOVE │ 279 │ Sets dimension text movement │ │ │ │ rules. │ │ │ │ │ │ │ │ • 0 = Moves the │ │ │ │ dimension line with │ │ │ │ dimension text │ │ │ │ │ │ │ │ • 1 = Adds a leader │ │ │ │ when dimension text │ │ │ │ is moved │ │ │ │ │ │ │ │ • 2 = Allows text to │ │ │ │ be moved freely │ │ │ │ without a leader │ └─────────────────┴──────┴──────────────────────────────┘ Text Location This image shows the default text locations created by BricsCAD for dimension variables dimtad and dimjust: [image] Unofficial DIMSTYLE Variables for DXF R2007 and later The following DIMVARS are not documented in the DXF Reference by Autodesk. ┌────────────────┬──────┬──────────────────────────────┐ │DIMVAR │ Code │ Description │ ├────────────────┼──────┼──────────────────────────────┤ │DIMTFILL │ 69 │ Text fill 0=off; │ │ │ │ 1=background color; 2=custom │ │ │ │ color (see DIMTFILLCLR) │ ├────────────────┼──────┼──────────────────────────────┤ │DIMTFILLCLR │ 70 │ Text fill custom color as │ │ │ │ color index │ ├────────────────┼──────┼──────────────────────────────┤ │DIMFXLON │ 290 │ Extension line has fixed │ │ │ │ length if set to 1 │ ├────────────────┼──────┼──────────────────────────────┤ │DIMFXL │ 49 │ Length of extension line │ │ │ │ below dimension line if │ │ │ │ fixed (DIMFXLON is 1), │ │ │ │ DIMEXE defines the the │ │ │ │ length above the dimension │ │ │ │ line │ ├────────────────┼──────┼──────────────────────────────┤ │DIMJOGANG │ 50 │ Angle of oblique dimension │ │ │ │ line segment in jogged │ │ │ │ radius dimension │ ├────────────────┼──────┼──────────────────────────────┤ │DIMLTYPE_HANDLE │ 345 │ Specifies the LINETYPE of │ │ │ │ the dimension line. Handle │ │ │ │ to LTYPE table entry │ ├────────────────┼──────┼──────────────────────────────┤ │DIMLTEX1_HANDLE │ 346 │ Specifies the LINETYPE of │ │ │ │ the extension line 1. Handle │ │ │ │ to LTYPE table entry │ ├────────────────┼──────┼──────────────────────────────┤ │DIMLTEX2_HANDLE │ 347 │ Specifies the LINETYPE of │ │ │ │ the extension line 2. Handle │ │ │ │ to LTYPE table entry │ └────────────────┴──────┴──────────────────────────────┘ Extended Settings as Special XDATA Groups Prior to DXF R2007, some extended settings for the dimension and the extension lines are stored in the XDATA section by following entries, this is not documented by Autodesk: 1001 ACAD_DSTYLE_DIM_LINETYPE <<< linetype for dimension line 1070 380 <<< group code, which differs from R2007 DIMDLTYPE 1005 FFFF <<< handle to LTYPE entry 1001 ACAD_DSTYLE_DIM_EXT1_LINETYPE <<< linetype for extension line 1 1070 381 <<< group code, which differs from R2007 DIMLTEX1 1005 FFFF <<< handle to LTYPE entry 1001 ACAD_DSTYLE_DIM_EXT2_LINETYPE <<< linetype for extension line 1 1070 382 <<< group code, which differs from R2007 DIMLTEX2 1005 FFFF <<< handle to LTYPE entry 1001 ACAD_DSTYLE_DIMEXT_ENABLED <<< extension line fixed 1070 383 <<< group code, which differs from R2007 DIMEXFIX 1070 1 <<< fixed if 1 else 0 1001 ACAD_DSTYLE_DIMEXT_LENGTH <<< extension line fixed length 1070 378 <<< group code, which differs from R2007 DIMEXLEN 1040 1.33 <<< length of extension line below dimension line This XDATA groups requires also an appropriate APPID entry in the APPID table. This feature is not supported by ezdxf. BLOCK_RECORD Table Block records are essential elements for the entities management, each layout (modelspace and paperspace) and every block definition has a block record entry. This block record is the hard owner of the entities of layouts, each entity has an owner handle which points to a block record of the layout. DXF Entities DIMENSION Entity SEE ALSO: • DXF Reference: DIMENSION • DXFInternals: dimstyle_table_internals [image] DXF Objects TODO Management Structures Block Management Structures A BLOCK is a layout like the modelspace or a paperspace layout, with the similarity that all these layouts are containers for graphical DXF entities. This block definition can be referenced in other layouts by the INSERT entity. By using block references, the same set of graphical entities can be located multiple times at different layouts, this block references can be stretched and rotated without modifying the original entities. A block is referenced only by its name defined by the DXF tag (2, name), there is a second DXF tag (3, name2) for the block name, which is not further documented by Autodesk, just ignore it. The (10, base_point) tag (in BLOCK defines a insertion point of the block, by ‘inserting’ a block by the INSERT entity, this point of the block is placed at the location defined by the (10, insert) tag in the INSERT entity, and it is also the base point for stretching and rotation. A block definition can contain INSERT entities, and it is possible to create cyclic block definitions (a BLOCK contains a INSERT of itself), but this should be avoided, CAD applications will not load the DXF file at all or maybe just crash. This is also the case for all other kinds of cyclic definitions like: BLOCK “A” -> INSERT BLOCK “B” and BLOCK “B” -> INSERT BLOCK “A”. SEE ALSO: • ezdxf DXF Internals: blocks_section_internals • DXF Reference: BLOCKS Section • DXF Reference: BLOCK Entity • DXF Reference: ENDBLK Entity • DXF Reference: INSERT Entity Block Names Block names has to be unique and they are case insensitive (“Test” == “TEST”). If there are two or more block definitions with the same name, AutoCAD merges these blocks into a single block with unpredictable properties of all these blocks. In my test with two blocks, the final block has the name of the first block and the base-point of the second block, and contains all entities of both blocks. Block Definitions in DXF R12 In DXF R12 the definition of a block is located in the BLOCKS section, no additional structures are needed. The definition starts with a BLOCK entity and ends with a ENDBLK entity. All entities between this two entities are the content of the block, the block is the owner of this entities like any layout. As shown in the DXF file below (created by AutoCAD LT 2018), the BLOCK entity has no handle, but ezdxf writes also handles for the BLOCK entity and AutoCAD doesn’t complain. DXF R12 BLOCKS structure: 0 <<< start of a SECTION SECTION 2 <<< start of BLOCKS section BLOCKS ... <<< modelspace and paperspace block definitions not shown, ... <<< see layout management ... 0 <<< start of a BLOCK definition BLOCK 8 <<< layer 0 2 <<< block name ArchTick 70 <<< flags 1 10 <<< base point, x 0.0 20 <<< base point, y 0.0 30 <<< base point, z 0.0 3 <<< second BLOCK name, same as (2, name) ArchTick 1 <<< xref name, if block is an external reference <<< empty string! 0 <<< start of the first entity of the BLOCK LINE 5 28E 8 0 62 0 10 500.0 20 500.0 30 0.0 11 500.0 21 511.0 31 0.0 0 <<< start of the second entity of the BLOCK LINE ... 0.0 0 <<< ENDBLK entity, marks the end of the BLOCK definition ENDBLK 5 <<< ENDBLK gets a handle by AutoCAD, but BLOCK didn't 2F2 8 <<< as every entity, also ENDBLK requires a layer (same as BLOCK entity!) 0 0 <<< start of next BLOCK entity BLOCK ... 0 <<< end BLOCK entity ENDBLK 0 <<< end of BLOCKS section ENDSEC Block Definitions in DXF R2000+ The overall organization in the BLOCKS sections remains the same, but additional tags in the BLOCK entity, have to be maintained. Especially the concept of ownership is important. Since DXF R13 every graphic entity is associated to a specific layout and a BLOCK definition is also a layout. So all entities in the BLOCK definition, including the BLOCK and the ENDBLK entities, have an owner tag (330, ...), which points to a BLOCK_RECORD entry in the BLOCK_RECORD table. This BLOCK_RECORD is the main management structure for all layouts and is the real owner of the layout entities. As you can see in the chapter about Layout Management Structures, this concept is also valid for modelspace and paperspace layouts, because these layouts are also BLOCKS, with the special difference, that the entities of the modelspace and the active paperspace layout are stored in the ENTITIES section. [image] SEE ALSO: • Tag Structure DXF R13 and later • ezdxf DXF Internals: tables_section_internals • DXF Reference: TABLES Section • DXF Reference: BLOCK_RECORD Entity DXF R13 BLOCKS structure: 0 <<< start of a SECTION SECTION 2 <<< start of BLOCKS section BLOCKS ... <<< modelspace and paperspace block definitions not shown, ... <<< see layout management 0 <<< start of BLOCK definition BLOCK 5 <<< even BLOCK gets a handle now ;) 23A 330 <<< owner tag, the owner of a BLOCK is a BLOCK_RECORD in the ... BLOCK_RECORD table 238 100 <<< subclass marker AcDbEntity 8 <<< layer of the BLOCK definition 0 100 <<< subclass marker AcDbBlockBegin 2 <<< BLOCK name ArchTick 70 <<< flags 0 10 <<< base point, x 0.0 20 <<< base point, y 0.0 30 <<< base point, z 0.0 3 <<< second BLOCK name, same as (2, name) ArchTick 1 <<< xref name, if block is an external reference <<< empty string! 0 <<< start of the first entity of the BLOCK LWPOLYLINE 5 239 330 <<< owner tag of LWPOLYLINE 238 <<< handle of the BLOCK_RECORD! 100 AcDbEntity 8 0 6 ByBlock 62 0 100 AcDbPolyline 90 2 70 0 43 0.15 10 -0.5 20 -0.5 10 0.5 20 0.5 0 <<< ENDBLK entity, marks the end of the BLOCK definition ENDBLK 5 <<< handle 23B 330 <<< owner tag, same BLOCK_RECORD as for the BLOCK entity 238 100 <<< subclass marker AcDbEntity 8 <<< ENDBLK requires the same layer as the BLOCK entity! 0 100 <<< subclass marker AcDbBlockEnd 0 <<< start of the next BLOCK BLOCK ... 0 ENDBLK ... 0 <<< end of the BLOCKS section ENDSEC DXF R13 BLOCK_RECORD structure: 0 <<< start of a SECTION SECTION 2 <<< start of TABLES section TABLES 0 <<< start of a TABLE TABLE 2 <<< start of the BLOCK_RECORD table BLOCK_RECORD 5 <<< handle of the table 1 330 <<< owner tag of the table 0 <<< is always #0 100 <<< subclass marker AcDbSymbolTable 70 <<< count of table entries, not reliable 4 0 <<< start of first BLOCK_RECORD entry BLOCK_RECORD 5 <<< handle of BLOCK_RECORD, in ezdxf often referred to as "layout key" 1F 330 <<< owner of the BLOCK_RECORD is the BLOCK_RECORD table 1 100 <<< subclass marker AcDbSymbolTableRecord 100 <<< subclass marker AcDbBlockTableRecord 2 <<< name of the BLOCK or LAYOUT *Model_Space 340 <<< pointer to the associated LAYOUT object 4AF 70 <<< AC1021 (R2007) block insertion units 0 280 <<< AC1021 (R2007) block explodability 1 281 <<< AC1021 (R2007) block scalability 0 ... <<< paperspace not shown ... 0 <<< next BLOCK_RECORD BLOCK_RECORD 5 <<< handle of BLOCK_RECORD, in ezdxf often referred to as "layout key" 238 330 <<< owner of the BLOCK_RECORD is the BLOCK_RECORD table 1 100 <<< subclass marker AcDbSymbolTableRecord 100 <<< subclass marker AcDbBlockTableRecord 2 <<< name of the BLOCK ArchTick 340 <<< pointer to the associated LAYOUT object 0 <<< #0, because BLOCK doesn't have an associated LAYOUT object 70 <<< AC1021 (R2007) block insertion units 0 280 <<< AC1021 (R2007) block explodability 1 281 <<< AC1021 (R2007) block scalability 0 0 <<< end of BLOCK_RECORD table ENDTAB 0 <<< next TABLE TABLE ... 0 ENDTAB 0 <<< end of TABLES section ENDESC Layout Management Structures Layouts are separated entity spaces, there are three different Layout types: 1. modelspace contains the ‘real’ world representation of the drawing subjects in real world units. 2. paperspace layouts are used to create different drawing sheets of the modelspace subjects for printing or PDF export 3. Blocks are reusable sets of graphical entities, inserted/referenced by the INSERT entity. All layouts have at least a BLOCK definition in the BLOCKS section and since DXF R13 exist the BLOCK_RECORD table with an entry for every BLOCK in the BLOCKS section. SEE ALSO: Information about Block Management Structures The name of the modelspace BLOCK is “*Model_Space” (DXF R12: “$MODEL_SPACE”) and the name of the active paperspace BLOCK is “*Paper_Space” (DXF R12: “$PAPER_SPACE”), the entities of these two layouts are stored in the ENTITIES section, DXF R12 supports just one paperspace layout. DXF R13+ supports multiple paperspace layouts, the active layout is still called “*Paper_Space”, the additional inactive paperspace layouts are named by the scheme “*Paper_Spacennnn”, where the first inactive paper space is called “*Paper_Space0”, the second “*Paper_Space1” and so on. A none consecutive numbering is tolerated by AutoCAD. The content of the inactive paperspace layouts are stored as BLOCK content in the BLOCKS section. These names are just the DXF internal layout names, each layout has an additional layout name which is displayed to the user by the CAD application. A BLOCK definition and a BLOCK_RECORD is not enough for a proper layout setup, an LAYOUT entity in the OBJECTS section is also required. All LAYOUT entities are managed by a DICTIONARY entity, which is referenced as “ACAD_LAYOUT” entity in the root DICTIONARY of the DXF file. NOTE: All floating point values are rounded to 2 decimal places for better readability. LAYOUT Entity Since DXF R2000 modelspace and paperspace layouts require the DXF LAYOUT entity. 0 LAYOUT 5 <<< handle 59 102 <<< extension dictionary (ignore) {ACAD_XDICTIONARY 360 1C3 102 } 102 <<< reactor (required?) {ACAD_REACTORS 330 1A <<< pointer to "ACAD_LAYOUT" DICTIONARY (layout management table) 102 } 330 <<< owner handle 1A <<< pointer to "ACAD_LAYOUT" DICTIONARY (same as reactor pointer) 100 <<< PLOTSETTINGS AcDbPlotSettings 1 <<< page setup name 2 <<< name of system printer or plot configuration file none_device 4 <<< paper size, part in braces should follow the schema ... (width_x_height_unit) unit is 'Inches' or 'MM' ... Letter\_(8.50_x_11.00_Inches) the part in front of the braces is ... ignored by AutoCAD 6 <<< plot view name 40 <<< size of unprintable margin on left side of paper in millimeters, ... defines also the plot origin-x 6.35 41 <<< size of unprintable margin on bottom of paper in millimeters, ... defines also the plot origin-y 6.35 42 <<< size of unprintable margin on right side of paper in millimeters 6.35 43 <<< size of unprintable margin on top of paper in millimeters 6.35 44 <<< plot paper size: physical paper width in millimeters 215.90 45 <<< plot paper size: physical paper height in millimeters 279.40 46 <<< X value of plot origin offset in millimeters, moves the plot origin-x 0.0 47 <<< Y value of plot origin offset in millimeters, moves the plot origin-y 0.0 48 <<< plot window area: X value of lower-left window corner 0.0 49 <<< plot window area: Y value of lower-left window corner 0.0 140 <<< plot window area: X value of upper-right window corner 0.0 141 <<< plot window area: Y value of upper-right window corner 0.0 142 <<< numerator of custom print scale: real world (paper) units, 1.0 ... for scale 1:50 1.0 143 <<< denominator of custom print scale: drawing units, 50.0 ... for scale 1:50 1.0 70 <<< plot layout flags, bit-coded (... too many options) 688 <<< b1010110000 = UseStandardScale(16)/PlotPlotStyle(32) ... PrintLineweights(128)/DrawViewportsFirst(512) 72 <<< plot paper units (0/1/2 for inches/millimeters/pixels), are ... pixels really supported? 0 73 <<< plot rotation (0/1/2/3 for 0deg/90deg counter-cw/upside-down/90deg cw) 1 <<< 90deg clockwise 74 <<< plot type 0-5 (... too many options) 5 <<< 5 = layout information 7 <<< current plot style name, e.g. 'acad.ctb' or 'acadlt.ctb' 75 <<< standard scale type 0-31 (... too many options) 16 <<< 16 = 1:1, also 16 if user scale type is used 147 <<< unit conversion factor 1.0 <<< for plot paper units in mm, else 0.03937... (1/25.4) for inches ... as plot paper units 76 <<< shade plot mode (0/1/2/3 for as displayed/wireframe/hidden/rendered) 0 <<< as displayed 77 <<< shade plot resolution level 1-5 (... too many options) 2 <<< normal 78 <<< shade plot custom DPI: 100-32767, Only applied when shade plot ... resolution level is set to 5 (Custom) 300 148 <<< paper image origin: X value 0.0 149 <<< paper image origin: Y value 0.0 100 <<< LAYOUT settings AcDbLayout 1 <<< layout name Layout1 70 <<< flags bit-coded 1 <<< 1 = Indicates the PSLTSCALE value for this layout when this ... layout is current 71 <<< Tab order ("Model" tab always appears as the first tab ... regardless of its tab order) 1 10 <<< minimum limits for this layout (defined by LIMMIN while this ... layout is current) -0.25 <<< x value, distance of the left paper margin from the plot ... origin-x, in plot paper units and by scale (e.g. x50 for 1:50) 20 <<< group code for y value -0.25 <<< y value, distance of the bottom paper margin from the plot ... origin-y, in plot paper units and by scale (e.g. x50 for 1:50) 11 <<< maximum limits for this layout (defined by LIMMAX while this ... layout is current) 10.75 <<< x value, distance of the right paper margin from the plot ... origin-x, in plot paper units and by scale (e.g. x50 for 1:50) 21 <<< group code for y value 8.25 <<< y value, distance of the top paper margin from the plot ... origin-y, in plot paper units and by scale (e.g. x50 for 1:50) 12 <<< insertion base point for this layout (defined by INSBASE while ... this layout is current) 0.0 <<< x value 22 <<< group code for y value 0.0 <<< y value 32 <<< group code for z value 0.0 <<< z value 14 <<< minimum extents for this layout (defined by EXTMIN while this ... layout is current), AutoCAD default is (1e20, 1e20, 1e20) 1.05 <<< x value 24 <<< group code for y value 0.80 <<< y value 34 <<< group code for z value 0.0 <<< z value 15 <<< maximum extents for this layout (defined by EXTMAX while this ... layout is current), AutoCAD default is (-1e20, -1e20, -1e20) 9.45 <<< x value 25 <<< group code for y value 7.20 <<< y value 35 <<< group code for z value 0.0 <<< z value 146 <<< elevation ??? 0.0 13 <<< UCS origin (3D Point) 0.0 <<< x value 23 <<< group code for y value 0.0 <<< y value 33 <<< group code for z value 0.0 <<< z value 16 <<< UCS X-axis (3D vector) 1.0 <<< x value 26 <<< group code for y value 0.0 <<< y value 36 <<< group code for z value 0.0 <<< z value 17 <<< UCS Y-axis (3D vector) 0.0 <<< x value 27 <<< group code for y value 1.0 <<< y value 37 <<< group code for z value 0.0 <<< z value 76 <<< orthographic type of UCS 0-6 (... too many options) 0 <<< 0 = UCS is not orthographic ??? 330 <<< ID/handle of required block table record 58 331 <<< ID/handle to the viewport that was last active in this layout ... when the layout was current 1B9 1001 <<< extended data (ignore) ... And as it seems this is also not enough for a well defined LAYOUT, at least a “main” VIEWPORT entity with ID=1 is required for paperspace layouts, located in the entity space of the layout. The modelspace layout requires (?) a VPORT entity in the VPORT table (group code 331 in the AcDbLayout subclass). Main VIEWPORT Entity for LAYOUT The “main” viewport for layout “Layout1” shown above. This viewport is located in the associated BLOCK definition called “*Paper_Space0”. Group code 330 in subclass AcDbLayout points to the BLOCK_RECORD of “*Paper_Space0”. Remember: the entities of the active paperspace layout are located in the ENTITIES section, therefore “Layout1” is not the active paperspace layout. The “main” VIEWPORT describes, how the application shows the paperspace layout on the screen, and I guess only AutoCAD needs this values. [image] 0 VIEWPORT 5 <<< handle 1B4 102 <<< extension dictionary (ignore) {ACAD_XDICTIONARY 360 1B5 102 } 330 <<< owner handle 58 <<< points to BLOCK_RECORD (same as group code 330 in AcDbLayout of ... "Layout1") 100 AcDbEntity 67 <<< paperspace flag 1 <<< 0 = modelspace; 1 = paperspace 8 <<< layer, 0 100 AcDbViewport 10 <<< Center point (in WCS) 5.25 <<< x value 20 <<< group code for y value 4.00 <<< y value 30 <<< group code for z value 0.0 <<< z value 40 <<< width in paperspace units 23.55 <<< VIEW size in AutoCAD, depends on the workstation configuration 41 <<< height in paperspace units 9.00 <<< VIEW size in AutoCAD, depends on the workstation configuration 68 <<< viewport status field -1/0/n 2 <<< >0 On and active. The value indicates the order of stacking for ... the viewports, where 1 is the active viewport, 2 is the next, and so forth 69 <<< viewport ID 1 <<< "main" viewport has always ID=1 12 <<< view center point in Drawing Coordinate System (DCS), defines ... the center point of the VIEW in relation to the LAYOUT origin 5.25 <<< x value 22 <<< group code for y value 4.00 <<< y value 13 <<< snap base point in modelspace 0.0 <<< x value 23 <<< group code for y value 0.0 <<< y value 14 <<< snap spacing in modelspace units 0.5 <<< x value 24 <<< group code for y value 0.5 <<< y value 15 <<< grid spacing in modelspace units 0.5 <<< x value 25 <<< group code for y value 0.5 <<< y value 16 <<< view direction vector from target (in WCS) 0.0 <<< x value 26 <<< group code for y value 0.0 <<< y value 36 <<< group code for z value 1.0 <<< z value 17 <<< view target point 0.0 <<< x value 27 <<< group code for y value 0.0 <<< y value 37 <<< group code for z value 0.0 <<< z value 42 <<< perspective lens length, focal length? 50.0 <<< 50mm 43 <<< front clip plane z value 0.0 <<< z value 44 <<< back clip plane z value 0.0 <<< z value 45 <<< view height (in modelspace units) 9.00 50 <<< snap angle 0.0 51 <<< view twist angle 0.0 72 <<< circle zoom percent 1000 90 <<< Viewport status bit-coded flags (... too many options) 819232 <<< b11001000000000100000 1 <<< plot style sheet name assigned to this viewport 281 <<< render mode (... too many options) 0 <<< 0 = 2D optimized (classic 2D) 71 <<< UCS per viewport flag 1 <<< 1 = This viewport stores its own UCS which will become the ... current UCS whenever the viewport is activated 74 <<< Display UCS icon at UCS origin flag 0 <<< this field is currently being ignored and the icon always ... represents the viewport UCS 110 <<< UCS origin (3D point) 0.0 <<< x value 120 <<< group code for y value 0.0 <<< y value 130 <<< group code for z value 0.0 <<< z value 111 <<< UCS X-axis (3D vector) 1.0 <<< x value 121 <<< group code for y value 0.0 <<< y value 131 <<< group code for z value 0.0 <<< z value 112 <<< UCS Y-axis (3D vector) 0.0 <<< x value 122 <<< group code for y value 1.0 <<< y value 132 <<< group code for z value 0.0 <<< z value 79 <<< Orthographic type of UCS (... too many options) 0 <<< 0 = UCS is not orthographic 146 <<< elevation 0.0 170 <<< shade plot mode (0/1/2/3 for as displayed/wireframe/hidden/rendered) 0 <<< as displayed 61 <<< frequency of major grid lines compared to minor grid lines 5 <<< major grid subdivided by 5 348 <<< visual style ID/handle (optional) 9F 292 <<< default lighting flag, on when no user lights are specified. 1 282 <<< Default lighting type (0/1 = one distant light/two distant lights) 1 <<< one distant light 141 <<< view brightness 0.0 142 <<< view contrast 0.0 63 <<< ambient light color (ACI), write only if not black color 250 421 <<< ambient light color (RGB), write only if not black color 3355443
DEVELOPER GUIDES
Information about ezdxf internals. Design The pkg-design section shows the structure of the ezdxf package for developers with more experience, which want to have more insight into the package an maybe want to develop add-ons or want contribute to the ezdxf package. !!! UNDER CONSTRUCTION !!! Package Design for Developers A DXF document is divided into several sections, this sections are managed by the Drawing object. For each section exist a corresponding attribute in the Drawing object: ┌─────────┬──────────────────┐ │Section │ Attribute │ ├─────────┼──────────────────┤ │HEADER │ Drawing.header │ ├─────────┼──────────────────┤ │CLASSES │ Drawing.classes │ ├─────────┼──────────────────┤ │TABLES │ Drawing.tables │ ├─────────┼──────────────────┤ │BLOCKS │ Drawing.blocks │ ├─────────┼──────────────────┤ │ENTITIES │ Drawing.entities │ ├─────────┼──────────────────┤ │OBJECTS │ Drawing.objects │ └─────────┴──────────────────┘ Resource entities (LAYER, STYLE, LTYPE, …) are stored in tables in the TABLES section. A table owns the table entries, the owner handle of table entry is the handle of the table. Each table has a shortcut in the Drawing object: ┌─────────────┬───────────────────────┐ │Table │ Attribute │ ├─────────────┼───────────────────────┤ │APPID │ Drawing.appids │ ├─────────────┼───────────────────────┤ │BLOCK_RECORD │ Drawing.block_records │ ├─────────────┼───────────────────────┤ │DIMSTYLE │ Drawing.dimstyles │ ├─────────────┼───────────────────────┤ │LAYER │ Drawing.layers │ ├─────────────┼───────────────────────┤ │LTYPE │ Drawing.linetypes │ ├─────────────┼───────────────────────┤ │STYLE │ Drawing.styles │ ├─────────────┼───────────────────────┤ │UCS │ Drawing.ucs │ ├─────────────┼───────────────────────┤ │VIEW │ Drawing.views │ ├─────────────┼───────────────────────┤ │VPORT │ Drawing.viewports │ └─────────────┴───────────────────────┘ Graphical entities are stored in layouts: Modelspace, Paperspace layouts and BlockLayout. The core management object of this layouts is the BLOCK_RECORD entity (BlockRecord), the BLOCK_RECORD is the real owner of the entities, the owner handle of the entities is the handle of the BLOCK_RECORD and the BLOCK_RECORD also owns and manages the entity space of the layout which contains all entities of the layout. For more information about layouts see also: Layout Management Structures For more information about blocks see also: Block Management Structures Non-graphical entities (objects) are stored in the OBJECTS section. Every object has a parent object in the OBJECTS section, most likely a DICTIONARY object, and is stored in the entity space of the OBJECTS section. For more information about the OBJECTS section see also: objects_section_internals All table entries, DXF entities and DXF objects are stored in the entities database accessible as Drawing.entitydb. The entity database is a simple key, value storage, key is the entity handle, value is the DXF object. For more information about the DXF data model see also: Data Model Terminology States DXF entities and objects can have different states: UNBOUND Entity is not stored in the Drawing entity database and DXF attribute handle is None and attribute doc can be None BOUND Entity is stored in the Drawing entity database, attribute doc has a reference to Drawing and DXF attribute handle is not None UNLINKED Entity is not linked to a layout/owner, DXF attribute owner is None LINKED Entity is linked to a layout/owner, DXF attribute owner is not None Virtual Entity State: UNBOUND & UNLINKED Unlinked Entity State: BOUND & UNLINKED Bound Entity State: BOUND & LINKED Actions NEW Create a new DXF document LOAD Load a DXF document from an external source CREATE Create DXF structures from NEW or LOAD data DESTROY Delete DXF structures BIND Bind an entity to a Drawing, set entity state to BOUND & UNLINKED and check or create required resources UNBIND unbind … LINK Link an entity to an owner/layout. This makes an entity to a real DXF entity, which will be exported at the saving process. Any DXF entity can only be linked to one parent entity like DICTIONARY or BLOCK_RECORD. UNLINK unlink … Loading a DXF Document Loading a DXF document from an external source, creates a new Drawing object. This loading process has two stages: First Loading Stage • LOAD content from external source as SectionDict: loader.load_dxf_structure() • LOAD tag structures as DXFEntity objects: loader.load_dxf_entities() • BIND entities: loader.load_and_bind_dxf_content(); Special handling of the BIND process, because the Drawing is not full initialized, a complete validation is not possible at this stage. Second Loading Stage Parse SectionDict: • CREATE sections: HEADER, CLASSES, TABLES, BLOCKS and OBJECTS • CREATE layouts: Blocks, Layouts • LINK entities to a owner/layout The ENTITIES section is a relict from older DXF versions and has to be exported including the modelspace and active paperspace entities, but all entities reside in a BLOCK definition, even modelspace and paperspace layouts are only BLOCK definitions and ezdxf has no explicit ENTITIES section. Source Code: as developer start your journey at ezdxf.document.Drawing.read(), which has no public documentation, because package-user should use ezdxf.read() and ezdxf.readfile(). New DXF Document Creating New DXF Entities The default constructor of each entity type creates a new virtual entity: • DXF attribute owner is None • DXF attribute handle is None • Attribute doc is None The DXFEntity.new() constructor creates entities with given owner, handle and doc attributes, if doc is not None and entity is not already bound to a document, the new() constructor automatically bind the entity to the given document doc. There exist only two scenarios: 1. UNBOUND: doc is None and handle is None 2. BOUND: doc is not None and handle is not None Factory functions • new(), create a new virtual DXF object/entity • load(), load (create) virtual DXF object/entity from DXF tags • bind(), bind an entity to a document, create required resources if necessary (e.g. ImageDefReactor, SEQEND) and raise exceptions for non-existing resources. • Bind entity loaded from an external source to a document, all referenced resources must exist, but try to repair as many flaws as possible because errors were created by another application and are not the responsibility of the package-user. • Bind an entity from another DXF document, all invalid resources will be removed silently or created (e.g. SEQEND). This is a simple import from another document without resource import, for a more advanced import including resources exist the importer add-on. • Bootstrap problem for binding loaded table entries and objects in the OBJECTS section! Can’t use Auditor to repair this objects, because the DXF document is not fully initialized. • is_bound() returns True if entity is bound to document doc • unbind() function to remove an entity from a document and set state to a virtual entity, which should also UNLINK the entity from layout, because an layout can not store a virtual entity. • cls(), returns the class • register_entity(), registration decorator • replace_entity(), registration decorator Class Interfaces DXF Entities • NEW constructor to create an entity from scratch • LOAD constructor to create an entity loaded from an external source • DESTROY interface to kill an entity, set entity state to dead, which means entity.is_alive returns False. All entity iterators like EntitySpace, EntityQuery, and EntityDB must filter (ignore) dead entities. Calling DXFEntity.destroy() is a regular way to delete entities. • LINK an entity to a layout by BlockRecord.link(), which set the owner handle to BLOCK_RECORD handle (= layout key) and add the entity to the entity space of the BLOCK_RECORD and set/clear the paperspace flag. DXF Objects • NEW, LOAD, DESTROY see DXF entities • LINK: Linking an DXF object means adding the entity to a parent object in the OBJECTS section, most likely a DICTIONARY object, and adding the object to the entity space of the OBJECTS section, the root-dict is the only entity in the OBJECTS section which has an invalid owner handle “0”. Any other object with an invalid or destroyed owner is an orphaned entity. The audit process destroys and removes orphaned objects. • Extension dictionaries (ACAD_XDICTIONARY) are DICTIONARY objects located in the OBJECTS sections and can reference/own other entities of the OBJECTS section. • The root-dictionary is the only entity in the OBJECTS section which has an invalid owner handle “0”. Any other object with an invalid or destroyed owner is an orphaned entity. Layouts • LINK interface to link an entity to a layout • UNLINK interface to remove an entity from a layout Database • BIND interface to add an entity to the database of a document • delete_entity() interface, same as UNBIND and DESTROY an entity Internal Data Structures Entity Database The EntityDB is a simple key/value database to store DXFEntity objects by it’s handle, every Drawing has its own EntityDB, stored in the Drawing attribute entitydb. Every DXF entity/object, except tables and sections, are represented as DXFEntity or inherited types, this entities are stored in the EntityDB, database-key is the dxf.handle as plain hex string. All iterators like keys(), values(), items() and __iter__() do not yield destroyed entities. WARNING: The get() method and the index operator [], return destroyed entities and entities from the trashcan. class ezdxf.entitydb.EntityDB __getitem__(handle: str) -> DXFEntity Get entity by handle, does not filter destroyed entities nor entities in the trashcan. __setitem__(handle: str, entity: DXFEntity) -> None Set entity for handle. __delitem__(handle: str) -> None Delete entity by handle. Removes entity only from database, does not destroy the entity. __contains__(item: Union[str, DXFEntity]) -> bool True if database contains handle. __len__() -> int Count of database items. __iter__() -> Iterable[str] Iterable of all handles, does filter destroyed entities but not entities in the trashcan. get(handle: str) -> Optional[DXFEntity] Returns entity for handle or None if no entry exist, does not filter destroyed entities. next_handle() -> str Returns next unique handle. keys() -> Iterable[str] Iterable of all handles, does filter destroyed entities. values() -> Iterable[DXFEntity] Iterable of all entities, does filter destroyed entities. items() -> Iterable[Tuple[str, DXFEntity]] Iterable of all (handle, entities) pairs, does filter destroyed entities. add(entity: DXFEntity) -> None Add entity to database, assigns a new handle to the entity if entity.dxf.handle is None. Adding the same entity multiple times is possible and creates only a single database entry. new_trashcan() -> ezdxf.entitydb.EntityDB.Trashcan Returns a new trashcan, empty trashcan manually by: : func:Trashcan.clear(). trashcan() -> ezdxf.entitydb.EntityDB.Trashcan Returns a new trashcan in context manager mode, trashcan will be emptied when leaving context. purge() -> None Remove all destroyed entities from database, but does not empty the trashcan. Entity Space class ezdxf.entitydb.EntitySpace(entities=None) An EntitySpace is a collection of DXFEntity objects, that stores only references to DXFEntity objects. The Modelspace, any Paperspace layout and BlockLayout objects have an EntitySpace container to store their entities. __iter__() -> Iterable[DXFEntity] Iterable of all entities, filters destroyed entities. __getitem__(index) -> DXFEntity Get entity at index item EntitySpace has a standard Python list like interface, therefore index can be any valid list indexing or slicing term, like a single index layout[-1] to get the last entity, or an index slice layout[:10] to get the first 10 or less entities as List[DXFEntity]. Does not filter destroyed entities. __len__() -> int Count of entities inluding destroyed entities. has_handle(handle: str) -> bool True if handle is present, does filter destroyed entities. purge() Remove all destroyed entities from entity space. add(entity: DXFEntity) -> None Add entity. extend(entities: Iterable[DXFEntity]) -> None Add multiple entities. remove(entity: DXFEntity) -> None Remove entity. clear() -> None Remove all entities. DXF Types Required DXF tag interface: • property code: group code as int • property value: tag value of unspecific type • dxfstr(): returns the DXF string • clone(): returns a deep copy of tag DXFTag Factory Functions ezdxf.lldxf.types.dxftag(code: int, value: TagValue) -> ezdxf.lldxf.types.DXFTag DXF tag factory function. Parameters • code – group code • value – tag value Returns: DXFTag or inherited ezdxf.lldxf.types.tuples_to_tags(iterable: Iterable[Tuple[int, TagValue]]) -> Iterable[ezdxf.lldxf.types.DXFTag] Returns an iterable if :class: DXFTag or inherited, accepts an iterable of (code, value) tuples as input. DXFTag class ezdxf.lldxf.types.DXFTag(code: int, value: TagValue) Immutable DXFTag class - immutable by design, not by implementation. Parameters • code – group code as int • value – tag value, type depends on group code Variables • code – group code as int (do not change) • value – tag value (read-only property) __eq__(other) -> bool True if other and self has same content for code and value. __getitem__(index: int) Returns code for index 0 and value for index 1, emulates a tuple. __hash__() Hash support, DXFTag can be used in sets and as dict key. __iter__() -> Iterable Returns (code, value) tuples. __repr__() -> str Returns representation string 'DXFTag(code, value)'. __str__() -> str Returns content string '(code, value)'. clone() -> ezdxf.lldxf.types.DXFTag Returns a clone of itself, this method is necessary for the more complex (and not immutable) DXF tag types. dxfstr() -> str Returns the DXF string e.g. ' 0\nLINE\n' DXFBinaryTag class ezdxf.lldxf.types.DXFBinaryTag(DXFTag) Immutable BinaryTags class - immutable by design, not by implementation. dxfstr() -> str Returns the DXF string for all vertex components. tostring() -> str Returns binary value as single hex-string. DXFVertex class ezdxf.lldxf.types.DXFVertex(DXFTag) Represents a 2D or 3D vertex, stores only the group code of the x-component of the vertex, because the y-group-code is x-group-code + 10 and z-group-code id x-group-code+20, this is a rule that ALWAYS applies. This tag is immutable by design, not by implementation. Parameters • code – group code of x-component • value – sequence of x, y and optional z values dxfstr() -> str Returns the DXF string for all vertex components. dxftags() -> Iterable[Tuple] Returns all vertex components as single DXFTag objects. NONE_TAG ezdxf.lldxf.types.NONE_TAG Special tag representing a none existing tag. Tags A list of DXFTag, inherits from Python standard list. Unlike the statement in the DXF Reference “Do not write programs that rely on the order given here”, tag order is sometimes essential and some group codes may appear multiples times in one entity. At the worst case (Material: normal map shares group codes with diffuse map) using same group codes with different meanings. class ezdxf.lldxf.tags.Tags Subclass of list. Collection of DXFTag as flat list. Low level tag container, only required for advanced stuff. classmethod from_text(text: str) -> Tags Constructor from DXF string. dxftype() -> str Returns DXF type of entity, e.g. 'LINE'. get_handle() -> str Get DXF handle. Raises DXFValueError if handle not exist. Returns handle as plain hex string like 'FF00' Raises DXFValueError – no handle found replace_handle(new_handle: str) -> None Replace existing handle. Parameters new_handle – new handle as plain hex string e.g. 'FF00' has_tag(code: int) -> bool Returns True if a DXFTag with given group code is present. Parameters code – group code as int has_embedded_objects() -> bool get_first_tag(code: int, default=DXFValueError) -> DXFTag Returns first DXFTag with given group code or default, if default != DXFValueError, else raises DXFValueError. Parameters • code – group code as int • default – return value for default case or raises DXFValueError get_first_value(code: int, default=DXFValueError) -> Any Returns value of first DXFTag with given group code or default if default != DXFValueError, else raises DXFValueError. Parameters • code – group code as int • default – return value for default case or raises DXFValueError find_all(code: int) -> List[DXFTag] Returns a list of DXFTag with given group code. Parameters code – group code as int filter(codes: Iterable[int]) -> Iterable[DXFTag] Iterate and filter tags by group codes. Parameters codes – group codes to filter collect_consecutive_tags(codes: Iterable[int], start: int = 0, end: int = None) -> Tags Collect all consecutive tags with group code in codes, start and end delimits the search range. A tag code not in codes ends the process. Parameters • codes – iterable of group codes • start – start index as int • end – end index as int, None for end index = len(self) Returns collected tags as Tags tag_index(code: int, start: int = 0, end: int = None) -> int Return index of first DXFTag with given group code. Parameters • code – group code as int • start – start index as int • end – end index as int, None for end index = len(self) update(tag: DXFTag) Update first existing tag with same group code as tag, raises DXFValueError if tag not exist. set_first(tag: DXFTag) Update first existing tag with group code tag.code or append tag. remove_tags(codes: Iterable[int]) -> None Remove all tags inplace with group codes specified in codes. Parameters codes – iterable of group codes as int remove_tags_except(codes: Iterable[int]) -> None Remove all tags inplace except those with group codes specified in codes. Parameters codes – iterable of group codes pop_tags(codes: Iterable[int]) -> Iterable[DXFTag] Pop tags with group codes specified in codes. Parameters codes – iterable of group codes classmethod strip(tags: Tags, codes: Iterable[int]) -> Tags Constructor from tags, strips all tags with group codes in codes from tags. Parameters • tags – iterable of DXFTag • codes – iterable of group codes as int ezdxf.lldxf.tags.group_tags(tags: Iterable[DXFTag], splitcode: int = 0) -> Iterable[Tags] Group of tags starts with a SplitTag and ends before the next SplitTag. A SplitTag is a tag with code == splitcode, like (0, ‘SECTION’) for splitcode == 0. Parameters • tags – iterable of DXFTag • int (splitcode) – group code of split tag class ezdxf.lldxf.extendedtags.ExtendedTags(tags: Iterable[DXFTag] = None, legacy=False) Represents the extended DXF tag structure introduced with DXF R13. Args: tags: iterable of DXFTag legacy: flag for DXF R12 tags appdata Application defined data as list of Tags subclasses Subclasses as list of Tags xdata XDATA as list of Tags embedded_objects embedded objects as list of Tags noclass Short cut to access first subclass. get_handle() -> str Returns handle as hex string. dxftype() -> str Returns DXF type as string like “LINE”. replace_handle(handle: str) -> None Replace the existing entity handle by a new value. legacy_repair() Legacy (DXF R12) tags handling and repair. clone() -> ExtendedTags Shallow copy. flatten_subclasses() Flatten subclasses in legacy mode (DXF R12). There exists DXF R12 with subclass markers, technical incorrect but works if the reader ignore subclass marker tags, unfortunately ezdxf tries to use this subclass markers and therefore R12 parsing by ezdxf does not work without removing these subclass markers. This method removes all subclass markers and flattens all subclasses into ExtendedTags.noclass. get_subclass(name: str, pos: int = 0) -> Tags Get subclass name. Parameters • name – subclass name as string like “AcDbEntity” • pos – start searching at subclass pos. has_xdata(appid: str) -> bool True if has XDATA for appid. get_xdata(appid: str) -> Tags Returns XDATA for appid as Tags. set_xdata(appid: str, tags: IterableTags) -> None Set tags as XDATA for appid. new_xdata(appid: str, tags: IterableTags = None) -> Tags Append a new XDATA block. Assumes that no XDATA block with the same appid already exist: try: xdata = tags.get_xdata('EZDXF') except ValueError: xdata = tags.new_xdata('EZDXF') has_app_data(appid: str) -> bool True if has application defined data for appid. get_app_data(appid: str) -> Tags Returns application defined data for appid as Tags including marker tags. get_app_data_content(appid: str) -> Tags Returns application defined data for appid as Tags without first and last marker tag. set_app_data_content(appid: str, tags: IterableTags) -> None Set application defined data for appid for already exiting data. new_app_data(appid: str, tags: IterableTags = None, subclass_name: str = None) -> Tags Append a new application defined data to subclass subclass_name. Assumes that no app data block with the same appid already exist: try: app_data = tags.get_app_data('{ACAD_REACTORS', tags) except ValueError: app_data = tags.new_app_data('{ACAD_REACTORS', tags) classmethod from_text(text: str, legacy: bool = False) -> ExtendedTags Create ExtendedTags from DXF text. Packed DXF Tags Store DXF tags in compact data structures as list or array.array to reduce memory usage. class ezdxf.lldxf.packedtags.TagList(data: Iterable = None) Store data in a standard Python list. Args: data: iterable of DXF tag values. values Data storage as list. clone() -> TagList Returns a deep copy. classmethod from_tags(tags: Tags, code: int) -> TagList Setup list from iterable tags. Parameters • tags – tag collection as Tags • code – group code to collect clear() -> None Delete all data values. class ezdxf.lldxf.packedtags.TagArray(data: Iterable = None) TagArray is a subclass of TagList, which store data in an array.array. Array type is defined by class variable DTYPE. Args: data: iterable of DXF tag values. DTYPE array.array type as string values Data storage as array.array set_values(values: Iterable) -> None Replace data by values. class ezdxf.lldxf.packedtags.VertexArray(data: Iterable = None) Store vertices in an array.array('d'). Vertex size is defined by class variable VERTEX_SIZE. Args: data: iterable of vertex values as linear list e.g. [x1, y1, x2, y2, x3, y3, ...]. VERTEX_SIZE Size of vertex (2 or 3 axis). __len__() -> int Count of vertices. __getitem__(index: int) Get vertex at index, extended slicing supported. __setitem__(index: int, point: Sequence[float]) -> None Set vertex point at index, extended slicing not supported. __delitem__(index: int) -> None Delete vertex at index, extended slicing supported. __iter__() -> Iterable[Sequence[float]] Returns iterable of vertices. __str__() -> str String representation. insert(pos: int, point: Sequence[float]) Insert point in front of vertex at index pos. Parameters • pos – insert position • point – point as tuple append(point: Sequence[float]) -> None Append point. extend(points: Iterable[Sequence[float]]) -> None Extend array by points. set(points: Iterable[Sequence[float]]) -> None Replace all vertices by points. clear() -> None Delete all vertices. clone() -> VertexArray Returns a deep copy. classmethod from_tags(tags: Iterable[DXFTag], code: int = 10) -> VertexArray Setup point array from iterable tags. Parameters • tags – iterable of DXFVertex • code – group code to collect export_dxf(tagwriter: ezdxf.lldxf.tagwriter.TagWriter, code=10) Documentation Guide Formatting Guide This section is only for me, because of the long pauses between develop iterations, I often forget to be consistent in documentation formatting. Documentation is written with Sphinx and reSturcturedText. Started integration of documentation into source code and using autodoc features of Sphinx wherever useful. Sphinx theme provided by Read the Docs : pip install sphinx-rtd-theme guide — Example module guide.example_func(a: int, b: str, test: str = None, flag: bool = True) -> None Parameters a and b are positional arguments, argument test defaults to None and flag to True. Set a to 70 and b to “x” as an example. Inline code examples example_func(70, 'x') or simple example_func(70, "x") • arguments: a, b, test and flags • literal number values: 1, 2 … 999 • literal string values: “a String” • literal tags: (5, “F000”) • inline code: call a example_func(x) • Python keywords: None, True, False, tuple, list, dict, str, int, float • Exception classes: DXFAttributeError class guide.ExampleCls(**kwargs) The ExampleCls constructor accepts a number of optional keyword arguments. Each keyword argument corresponds to an instance attribute, so for example e = ExampleCls(flag=True) flag This is the attribute flag. New in version 0.9: New feature flag Changed in version 0.10: The new meaning of flag is … Deprecated since version 0.11: flag is obsolete set_axis(axis) axis as (x, y, z) tuple Args: axis: (x, y, z) tuple example_method(flag: bool = False) -> None Method example_method() of class ExampleCls Text Formatting DXF version DXF R12 (AC1009), DXF R2004 (AC1018) DXF Types DXF types are always written in uppercase letters but without further formatting: DXF, LINE, CIRCLE (internal API) Marks methods as internal API, gets no public documentation. (internal class) Marks classes only for internal usage, gets not public documentation. Spatial Dimensions 2D and 3D with an uppercase letter D Axis x-axis, y-axis and z-axis Planes xy-plane, xz-plane, yz-plane Layouts modelspace, paperspace [layout], block [layout] Extended Entity Data AppData, XDATA, embedded object, APPID
GLOSSARY
ACI ACI ACIS The 3D ACIS Modeler (ACIS) is a geometric modeling kernel developed by Spatial Corp. ® (formerly Spatial Technology), part of Dassault Systems. bulge The bulge value is used to create arc shaped line segments in Polyline and LWPolyline entities. CAD Computer-Assisted Drafting or Computer-Aided Design CTB Color dependent plot style table (ColorDependentPlotStyles) DWG Proprietary file format of AutoCAD ®. Documentation for this format is available from the Open Design Alliance (ODA) at their Downloads section. This documentation is created by reverse engineering therefore not perfect nor complete. DXF Drawing eXchange Format is a file format used by AutoCAD ® to interchange data with other CAD applications. DXF is a trademark of Autodesk ®. STB Named plot style table (NamedPlotStyles) true color RGB color representation, a combination red, green and blue values to define a color.
INDICES AND TABLES
• genindex • search
AUTHOR
Manfred Moitzi
COPYRIGHT
2011-2020, Manfred Moitzi