Provided by: gbutils_6.0-1build2_amd64
NAME
gbnlprobit - Non linear probit regression
SYNOPSIS
gbnlprobit [options] <function definition>
DESCRIPTION
Non linear probit estimation. Minimize the negative log-likelihood sum_{i in N_0} log(1-F(g(X_i))) + sum_{i in N_1} log(F(g(X_i))) where N_0 and N_1 are the sets of 0 and 1 observations, g is a generic function of the independent variables and F is the normal CDF. It is also possible to minimize the score function w_0 sum_{i in N_0} theta(F(g(X_i))-t) + w_1 sum_{i in N_1} theta(t-F(g(X_i))) where theta is the Heaviside function and t a threshold level. Weights w_0 and w_1 scale the contribution of the two subpopulations. The first column of data contains 0/1 entries. Successive columns are independent variables. The model is specified by a function g(x1,x2...) where x1,.. stands for the first,second .. N-th column independent variables. options: -O type of output (default 0) 0 parameters 1 parameters and errors 2 <variables> and probabilities 3 parameters and variance matrix 4 marginal effects -V variance matrix estimation (default 0) 0 <gradF gradF^t> 1 < J^{-1} > 2 < H^{-1} > 3 < H^{-1} J H^{-1} > -z take zscore (not of 0/1 dummies) -F input fields separators (default " \t") -v verbosity level (default 0) 0 just results 1 comment headers 2 summary statistics 3 covariance matrix 4 minimization steps (default 10) 5 model definition -g set number of point for global optimal threshold identification -h this help -t set threshold value (default 0) 0 ignore threshold (0,1) user provided threshold 1 compute optimal only global 2 compute optimal -M estimation method 0 maximum likelihood 1 min. score (w0=w1=1) 2 min. score (w0=1/N0, w1=1/N1) -A MLL optimization options (default 0.01,0.1,100,1e-6,1e-6,5) fields are step,tol,iter,eps,msize,algo. Empty fields for default step initial step size of the searching algorithm tol line search tolerance iter: maximum number of iterations eps gradient tolerance : stopping criteria ||gradient||<eps algo optimization methods: 0 Fletcher-Reeves, 1 Polak-Ribiere, 2 Broyden-Fletcher-Goldfarb-Shanno, 3 Steepest descent, 4 simplex -B score optimization options (default 0.1,100,1e-6) fields are step,iter,msize. Empty fields for default step initial step size of the searching algorithm iter maximum number of iterations msize max size, stopping criteria simplex dim. <max size optimization method is simplex
AUTHOR
Written by Giulio Bottazzi
REPORTING BUGS
Report bugs to <gbutils@googlegroups.com> Package home page <http://cafim.sssup.it/~giulio/software/gbutils/index.html>
COPYRIGHT
Copyright © 2001-2018 Giulio Bottazzi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License (version 2) as published by the Free Software Foundation; This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.