Provided by: gromacs-data_2021.4-2_all bug

NAME

       gmx-energy - Writes energies to xvg files and display averages

SYNOPSIS

          gmx energy [-f [<.edr>]] [-f2 [<.edr>]] [-s [<.tpr>]] [-o [<.xvg>]]
                     [-viol [<.xvg>]] [-pairs [<.xvg>]] [-corr [<.xvg>]]
                     [-vis [<.xvg>]] [-evisco [<.xvg>]] [-eviscoi [<.xvg>]]
                     [-ravg [<.xvg>]] [-odh [<.xvg>]] [-b <time>] [-e <time>]
                     [-[no]w] [-xvg <enum>] [-[no]fee] [-fetemp <real>]
                     [-zero <real>] [-[no]sum] [-[no]dp] [-nbmin <int>]
                     [-nbmax <int>] [-[no]mutot] [-[no]aver] [-nmol <int>]
                     [-[no]fluct_props] [-[no]driftcorr] [-[no]fluc]
                     [-[no]orinst] [-[no]ovec] [-acflen <int>] [-[no]normalize]
                     [-P <enum>] [-fitfn <enum>] [-beginfit <real>]
                     [-endfit <real>]

DESCRIPTION

       gmx  energy  extracts energy components from an energy file. The user is prompted to interactively select
       the desired energy terms.

       Average, RMSD, and drift are calculated with full precision from the  simulation  (see  printed  manual).
       Drift  is calculated by performing a least-squares fit of the data to a straight line. The reported total
       drift is the difference of the fit at the first and last point.  An error  estimate  of  the  average  is
       given  based  on a block averages over 5 blocks using the full-precision averages. The error estimate can
       be performed over multiple block lengths with the options -nbmin and -nbmax.  Note that in most cases the
       energy  files  contains averages over all MD steps, or over many more points than the number of frames in
       energy file. This makes the gmx energy statistics output more accurate than the .xvg output.  When  exact
       averages  are  not present in the energy file, the statistics mentioned above are simply over the single,
       per-frame energy values.

       The term fluctuation gives the RMSD around the least-squares fit.

       Some fluctuation-dependent properties can be calculated provided the correct energy terms  are  selected,
       and that the command line option -fluct_props is given. The following properties will be computed:

                                ┌────────────────────────────────┬─────────────────────┐
                                │Property                        │ Energy terms needed │
                                ├────────────────────────────────┼─────────────────────┤
                                │Heat capacity C_p (NPT sims):   │ Enthalpy, Temp      │
                                ├────────────────────────────────┼─────────────────────┤
                                │Heat capacity C_v (NVT sims):   │ Etot, Temp          │
                                ├────────────────────────────────┼─────────────────────┤
                                │Thermal expansion coeff. (NPT): │ Enthalpy, Vol, Temp │
                                ├────────────────────────────────┼─────────────────────┤
                                │Isothermal compressibility:     │ Vol, Temp           │
                                ├────────────────────────────────┼─────────────────────┤
                                │Adiabatic bulk modulus:         │ Vol, Temp           │
                                └────────────────────────────────┴─────────────────────┘

       You  always  need  to  set  the  number  of molecules -nmol.  The C_p/C_v computations do not include any
       corrections for quantum effects. Use the gmx dos program if you need that (and you do).

       Option -odh extracts and plots the free  energy  data  (Hamiltoian  differences  and/or  the  Hamiltonian
       derivative dhdl) from the ener.edr file.

       With -fee an estimate is calculated for the free-energy difference with an ideal gas state:

          Delta A = A(N,V,T) - A_idealgas(N,V,T) = kT
          ln(<exp(U_pot/kT)>)
          Delta G = G(N,p,T) - G_idealgas(N,p,T) = kT
          ln(<exp(U_pot/kT)>)

       where  k  is Boltzmann's constant, T is set by -fetemp and the average is over the ensemble (or time in a
       trajectory).  Note that this is in principle only correct  when  averaging  over  the  whole  (Boltzmann)
       ensemble and using the potential energy. This also allows for an entropy estimate using:

          Delta S(N,V,T) = S(N,V,T) - S_idealgas(N,V,T) =
          (<U_pot> - Delta A)/T
          Delta S(N,p,T) = S(N,p,T) - S_idealgas(N,p,T) =
          (<U_pot> + pV - Delta G)/T

       When a second energy file is specified (-f2), a free energy difference is calculated:

          dF = -kT
          ln(<exp(-(E_B-E_A) /
          kT)>_A),

       where  E_A  and  E_B are the energies from the first and second energy files, and the average is over the
       ensemble A. The running average of the free energy difference is printed to a file  specified  by  -ravg.
       Note that the energies must both be calculated from the same trajectory.

OPTIONS

       Options to specify input files:

       -f [<.edr>] (ener.edr)
              Energy file

       -f2 [<.edr>] (ener.edr) (Optional)
              Energy file

       -s [<.tpr>] (topol.tpr) (Optional)
              Portable xdr run input file

       Options to specify output files:

       -o [<.xvg>] (energy.xvg)
              xvgr/xmgr file

       -viol [<.xvg>] (violaver.xvg) (Optional)
              xvgr/xmgr file

       -pairs [<.xvg>] (pairs.xvg) (Optional)
              xvgr/xmgr file

       -corr [<.xvg>] (enecorr.xvg) (Optional)
              xvgr/xmgr file

       -vis [<.xvg>] (visco.xvg) (Optional)
              xvgr/xmgr file

       -evisco [<.xvg>] (evisco.xvg) (Optional)
              xvgr/xmgr file

       -eviscoi [<.xvg>] (eviscoi.xvg) (Optional)
              xvgr/xmgr file

       -ravg [<.xvg>] (runavgdf.xvg) (Optional)
              xvgr/xmgr file

       -odh [<.xvg>] (dhdl.xvg) (Optional)
              xvgr/xmgr file

       Other options:

       -b <time> (0)
              Time of first frame to read from trajectory (default unit ps)

       -e <time> (0)
              Time of last frame to read from trajectory (default unit ps)

       -[no]w (no)
              View output .xvg, .xpm, .eps and .pdb files

       -xvg <enum> (xmgrace)
              xvg plot formatting: xmgrace, xmgr, none

       -[no]fee (no)
              Do a free energy estimate

       -fetemp <real> (300)
              Reference temperature for free energy calculation

       -zero <real> (0)
              Subtract a zero-point energy

       -[no]sum (no)
              Sum the energy terms selected rather than display them all

       -[no]dp (no)
              Print energies in high precision

       -nbmin <int> (5)
              Minimum number of blocks for error estimate

       -nbmax <int> (5)
              Maximum number of blocks for error estimate

       -[no]mutot (no)
              Compute the total dipole moment from the components

       -[no]aver (no)
              Also print the exact average and rmsd stored in the energy frames (only when 1 term is requested)

       -nmol <int> (1)
              Number of molecules in your sample: the energies are divided by this number

       -[no]fluct_props (no)
              Compute properties based on energy fluctuations, like heat capacity

       -[no]driftcorr (no)
              Useful  only  for  calculations  of  fluctuation  properties. The drift in the observables will be
              subtracted before computing the fluctuation properties.

       -[no]fluc (no)
              Calculate autocorrelation of energy fluctuations rather than energy itself

       -[no]orinst (no)
              Analyse instantaneous orientation data

       -[no]ovec (no)
              Also plot the eigenvectors with -oten

       -acflen <int> (-1)
              Length of the ACF, default is half the number of frames

       -[no]normalize (yes)
              Normalize ACF

       -P <enum> (0)
              Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

       -fitfn <enum> (none)
              Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9

       -beginfit <real> (0)
              Time where to begin the exponential fit of the correlation function

       -endfit <real> (-1)
              Time where to end the exponential fit of the correlation function, -1 is until the end

SEE ALSO

       gmx(1)

       More information about GROMACS is available at <http://www.gromacs.org/>.

COPYRIGHT

       2021, GROMACS development team