Provided by: gpgsm_2.2.27-3ubuntu2.1_amd64 bug

NAME

       gpgsm - CMS encryption and signing tool

SYNOPSIS

       gpgsm [--homedir dir] [--options file] [options] command [args]

DESCRIPTION

       gpgsm is a tool similar to gpg to provide digital encryption and signing services on X.509
       certificates and the CMS protocol.  It is  mainly  used  as  a  backend  for  S/MIME  mail
       processing.   gpgsm  includes a full featured certificate management and complies with all
       rules defined for the German Sphinx project.

COMMANDS

       Commands are not distinguished from options except for the fact that only one  command  is
       allowed.

   Commands not specific to the function

       --version
              Print  the  program  version  and  licensing  information.   Note  that  you cannot
              abbreviate this command.

       --help, -h
              Print a usage message summarizing the most useful command-line options.  Note  that
              you cannot abbreviate this command.

       --warranty
              Print warranty information.  Note that you cannot abbreviate this command.

       --dump-options
              Print  a  list  of  all  available  options  and  commands.   Note  that you cannot
              abbreviate this command.

   Commands to select the type of operation

       --encrypt
              Perform an encryption.  The keys the data is encrypted to must  be  set  using  the
              option --recipient.

       --decrypt
              Perform a decryption; the type of input is automatically determined.  It may either
              be in binary form or PEM encoded; automatic determination of  base-64  encoding  is
              not done.

       --sign Create  a  digital  signature.   The  key  used is either the fist one found in the
              keybox or those set with the --local-user option.

       --verify
              Check a signature file  for  validity.   Depending  on  the  arguments  a  detached
              signature may also be checked.

       --server
              Run in server mode and wait for commands on the stdin.

       --call-dirmngr command [args]
              Behave  as  a  Dirmngr client issuing the request command with the optional list of
              args.  The output of the Dirmngr is printed stdout.  Please note  that  file  names
              given  as  arguments  should  have  an  absolute file name (i.e. commencing with /)
              because they are passed verbatim to the Dirmngr and the working  directory  of  the
              Dirmngr  might  not  be  the  same  as the one of this client.  Currently it is not
              possible to pass data via stdin to the Dirmngr.  command should not contain spaces.

              This is command is required for certain maintaining tasks of the  dirmngr  where  a
              dirmngr must be able to call back to gpgsm.  See the Dirmngr manual for details.

       --call-protect-tool arguments
              Certain  maintenance  operations  are done by an external program call gpg-protect-
              tool; this is usually not installed in a directory listed  in  the  PATH  variable.
              This  command  provides a simple wrapper to access this tool.  arguments are passed
              verbatim to this command; use ‘--help’ to get a list of supported operations.

   How to manage the certificates and keys

       --generate-key
       --gen-key
              This command allows the creation of a certificate signing request or a  self-signed
              certificate.   It  is  commonly  used  along  with  the --output option to save the
              created CSR or certificate into a file.  If used with the --batch a parameter  file
              is  used to create the CSR or certificate and it is further possible to create non-
              self-signed certificates.

       --list-keys
       -k     List all available certificates stored in the local key database.   Note  that  the
              displayed  data  might  be  reformatted  for  better  human readability and illegal
              characters are replaced by safe substitutes.

       --list-secret-keys
       -K     List all  available  certificates  for  which  a  corresponding  a  secret  key  is
              available.

       --list-external-keys pattern
              List  certificates  matching  pattern  using an external server.  This utilizes the
              dirmngr service.

       --list-chain
              Same as --list-keys but also prints all keys making up the chain.

       --dump-cert
       --dump-keys
              List all available certificates stored in the local key  database  using  a  format
              useful mainly for debugging.

       --dump-chain
              Same as --dump-keys but also prints all keys making up the chain.

       --dump-secret-keys
              List all available certificates for which a corresponding a secret key is available
              using a format useful mainly for debugging.

       --dump-external-keys pattern
              List certificates matching pattern using an external  server.   This  utilizes  the
              dirmngr service.  It uses a format useful mainly for debugging.

       --keydb-clear-some-cert-flags
              This  is  a debugging aid to reset certain flags in the key database which are used
              to cache certain certificate stati.  It is especially useful if  a  bad  CRL  or  a
              weird  running  OCSP  responder  did  accidentally revoke certificate.  There is no
              security issue with this command because gpgsm always make sure that  the  validity
              of a certificate is checked right before it is used.

       --delete-keys pattern
              Delete  the  keys  matching  pattern.   Note that there is no command to delete the
              secret part of the key directly.  In case you need to do this, you should  run  the
              command  gpgsm  --dump-secret-keys KEYID before you delete the key, copy the string
              of hex-digits in the ``keygrip'' line and delete the file consisting of these  hex-
              digits  and  the suffix .key from the ‘private-keys-v1.d’ directory below our GnuPG
              home directory (usually ‘~/.gnupg’).

       --export [pattern]
              Export all certificates stored in the Keybox or those  specified  by  the  optional
              pattern.  Those pattern consist of a list of user ids (see: [how-to-specify-a-user-
              id]).  When used along with the  --armor  option  a  few  informational  lines  are
              prepended  before  each  block.   There  is one limitation: As there is no commonly
              agreed upon way to pack more than one certificate  into  an  ASN.1  structure,  the
              binary  export  (i.e.  without  using  armor)  works  only  for  the  export of one
              certificate.  Thus it is required to specify a pattern  which  yields  exactly  one
              certificate.   Ephemeral  certificate are only exported if all pattern are given as
              fingerprints or keygrips.

       --export-secret-key-p12 key-id
              Export the private key and the certificate identified by key-id using  the  PKCS#12
              format.   When used with the --armor option a few informational lines are prepended
              to the output.  Note, that the  PKCS#12  format  is  not  very  secure  and  proper
              transport  security  should  be  used  to  convey  the exported key.  (See: [option
              --p12-charset].)

       --export-secret-key-p8 key-id
       --export-secret-key-raw key-id
              Export the private key of the certificate identified by key-id with any  encryption
              stripped.  The ...-raw command exports in PKCS#1 format; the ...-p8 command exports
              in PKCS#8 format.  When used with the --armor option a few informational lines  are
              prepended  to  the output.  These commands are useful to prepare a key for use on a
              TLS server.

       --import [files]
              Import the certificates from the PEM or  binary  encoded  files  as  well  as  from
              signed-only  messages.  This command may also be used to import a secret key from a
              PKCS#12 file.

       --learn-card
              Read information  about  the  private  keys  from  the  smartcard  and  import  the
              certificates  from  there.   This  command  utilizes  the gpg-agent and in turn the
              scdaemon.

       --change-passphrase user_id
       --passwd user_id
              Change the passphrase of the private key belonging to the certificate specified  as
              user_id.   Note,  that  changing  the  passphrase/PIN  of  a  smartcard  is not yet
              supported.

OPTIONS

       GPGSM features a bunch of options to control the exact behaviour and to change the default
       configuration.

   How to change the configuration

       These  options  are  used  to change the configuration and are usually found in the option
       file.

       --options file
              Reads configuration from file instead of from the  default  per-user  configuration
              file.   The  default  configuration  file is named ‘gpgsm.conf’ and expected in the
              ‘.gnupg’ directory directly below the home directory of the user.

       --homedir dir
              Set the name of the home directory to dir. If this option is  not  used,  the  home
              directory  defaults to ‘~/.gnupg’.  It is only recognized when given on the command
              line.  It also overrides any home directory stated through the environment variable
              ‘GNUPGHOME’   or   (on   Windows   systems)   by   means   of  the  Registry  entry
              HKCU\Software\GNU\GnuPG:HomeDir.

              On Windows systems it is possible to install GnuPG as a portable  application.   In
              this case only this command line option is considered, all other ways to set a home
              directory are ignored.

              To install GnuPG as a portable application under  Windows,  create  an  empty  file
              named  ‘gpgconf.ctl’  in the same directory as the tool ‘gpgconf.exe’.  The root of
              the installation is then that directory; or, if ‘gpgconf.exe’  has  been  installed
              directly  below  a  directory  named ‘bin’, its parent directory.  You also need to
              make sure that the following directories exist and are  writable:  ‘ROOT/home’  for
              the GnuPG home and ‘ROOT/var/cache/gnupg’ for internal cache files.

       -v

       --verbose
              Outputs  additional  information  while running.  You can increase the verbosity by
              giving several verbose commands to gpgsm, such as ‘-vv’.

       --policy-file filename
              Change the default name of the policy file to filename.

       --agent-program file
              Specify an agent program to be used for secret key operations.  The  default  value
              is  determined  by  running  the command gpgconf.  Note that the pipe symbol (|) is
              used for a regression test suite hack and may thus not be used in the file name.

       --dirmngr-program file
              Specify a dirmngr program to  be  used  for  CRL  checks.   The  default  value  is
              ‘/usr/bin/dirmngr’.

       --prefer-system-dirmngr
              This option is obsolete and ignored.

       --disable-dirmngr
              Entirely disable the use of the Dirmngr.

       --no-autostart
              Do  not  start  the gpg-agent or the dirmngr if it has not yet been started and its
              service is required.  This option is mostly useful on machines where the connection
              to  gpg-agent  has  been redirected to another machines.  If dirmngr is required on
              the remote machine, it may be started manually using gpgconf --launch dirmngr.

       --no-secmem-warning
              Do not print a warning when the so called "secure memory" cannot be used.

       --log-file file
              When running in server mode, append all logging output to file.  Use ‘socket://’ to
              log to socket.

   Certificate related options

       --enable-policy-checks
       --disable-policy-checks
              By default policy checks are enabled.  These options may be used to change it.

       --enable-crl-checks
       --disable-crl-checks
              By  default the CRL checks are enabled and the DirMngr is used to check for revoked
              certificates.   The  disable  option  is  most  useful  with  an  off-line  network
              connection to suppress this check and also to avoid that new certificates introduce
              a web bug by including a certificate specific CRL  DP.   The  disable  option  also
              disables  an  issuer certificate lookup via the authorityInfoAccess property of the
              certificate; the --enable-issuer-key-retrieve can be  used  to  make  use  of  that
              property anyway.

       --enable-trusted-cert-crl-check
       --disable-trusted-cert-crl-check
              By  default  the  CRL  for trusted root certificates are checked like for any other
              certificates.  This allows a CA to revoke its own  certificates  voluntary  without
              the  need  of  putting all ever issued certificates into a CRL.  The disable option
              may be used to switch this extra check  off.   Due  to  the  caching  done  by  the
              Dirmngr,  there  will not be any noticeable performance gain.  Note, that this also
              disables possible OCSP checks for trusted root certificates.  A more  specific  way
              of  disabling  this check is by adding the ``relax'' keyword to the root CA line of
              the ‘trustlist.txt--force-crl-refresh
              Tell the dirmngr to reload the CRL for each request.  For better  performance,  the
              dirmngr  will  actually  optimize  this  by  suppressing the loading for short time
              intervals (e.g. 30 minutes). This option is useful to make sure that a fresh CRL is
              available  for certificates hold in the keybox.  The suggested way of doing this is
              by using it along with the option --with-validation  for  a  key  listing  command.
              This option should not be used in a configuration file.

       --enable-issuer-based-crl-check
              Run a CRL check even for certificates which do not have any CRL distribution point.
              This requires that a suitable LDAP server has been configured in Dirmngr  and  that
              the CRL can be found using the issuer.  This option reverts to what GnuPG did up to
              version 2.2.20.  This option is in general not useful.

       --enable-ocsp
       --disable-ocsp
              By default OCSP checks are disabled.  The enable option may be used to enable  OCSP
              checks  via  Dirmngr.   If  CRL  checks  are  also  enabled, CRLs will be used as a
              fallback if for some reason an OCSP request will not succeed.  Note, that you  have
              to  allow  OCSP  requests  in Dirmngr's configuration too (option --allow-ocsp) and
              configure Dirmngr properly.  If you do not do so you will get the error  code  ‘Not
              supported’.

       --auto-issuer-key-retrieve
              If  a  required  certificate is missing while validating the chain of certificates,
              try to load that certificate from an external location.  This  usually  means  that
              Dirmngr  is  employed to search for the certificate.  Note that this option makes a
              "web bug" like behavior possible.  LDAP server operators can  see  which  keys  you
              request, so by sending you a message signed by a brand new key (which you naturally
              will not have on your local keybox), the operator can tell both your IP address and
              the time when you verified the signature.

       --validation-model name
              This  option  changes  the  default validation model.  The only possible values are
              "shell" (which is the default), "chain" which forces the use of the chain model and
              "steed"  for  a new simplified model.  The chain model is also used if an option in
              the ‘trustlist.txt’ or an attribute of the certificate requests  it.   However  the
              standard model (shell) is in that case always tried first.

       --ignore-cert-extension oid
              Add  oid  to the list of ignored certificate extensions.  The oid is expected to be
              in dotted decimal form, like 2.5.29.3.  This option may be  used  more  than  once.
              Critical  flagged  certificate  extensions matching one of the OIDs in the list are
              treated as if they are actually handled  and  thus  the  certificate  will  not  be
              rejected  due  to an unknown critical extension.  Use this option with care because
              extensions are usually flagged as critical for a reason.

   Input and Output

       --armor
       -a     Create PEM encoded output.  Default is binary output.

       --base64
              Create Base-64 encoded output; i.e. PEM without the header lines.

       --assume-armor
              Assume the input data is PEM encoded.  Default is to autodetect  the  encoding  but
              this is may fail.

       --assume-base64
              Assume the input data is plain base-64 encoded.

       --assume-binary
              Assume the input data is binary encoded.

       --p12-charset name
              gpgsm  uses  the  UTF-8 encoding when encoding passphrases for PKCS#12 files.  This
              option may be used to force the passphrase to be encoded in the specified  encoding
              name.   This  is  useful if the application used to import the key uses a different
              encoding and thus will not be able to import a file generated by  gpgsm.   Commonly
              used  values  for  name are Latin1 and CP850.  Note that gpgsm itself automagically
              imports any file with a passphrase encoded to the most commonly used encodings.

       --default-key user_id
              Use user_id as the standard key for signing.  This key is used if no other key  has
              been defined as a signing key.  Note, that the first --local-users option also sets
              this key if it has not yet been set; however --default-key always overrides this.

       --local-user user_id

       -u user_id
              Set the user(s) to be used for signing.  The default is the first secret key  found
              in the database.

       --recipient name
       -r     Encrypt  to  the user id name.  There are several ways a user id may be given (see:
              [how-to-specify-a-user-id]).

       --output file
       -o file
              Write output to file.  The default is to write it to stdout.

       --with-key-data
              Displays extra information with the --list-keys commands.  Especially a line tagged
              grp  is  printed  which tells you the keygrip of a key.  This string is for example
              used as the file name of the secret key.  Implies --with-colons.

       --with-validation
              When doing a key listing, do a full validation check for each  key  and  print  the
              result.   This  is  usually  a  slow operation because it requires a CRL lookup and
              other operations.

              When used along with --import, a validation of the certificate to  import  is  done
              and  only  imported  if  it  succeeds  the test.  Note that this does not affect an
              already available certificate in the DB.  This option is therefore useful to simply
              verify a certificate.

       --with-md5-fingerprint
              For standard key listings, also print the MD5 fingerprint of the certificate.

       --with-keygrip
              Include  the  keygrip  in  standard  key listings.  Note that the keygrip is always
              listed in --with-colons mode.

       --with-secret
              Include info about the presence of a secret key in public key  listings  done  with
              --with-colons.

   How to change how the CMS is created

       --include-certs n
              Using  n  of  -2 includes all certificate except for the root cert, -1 includes all
              certs, 0 does not include any certs, 1 includes only the signers cert and all other
              positive  values  include  up to n certificates starting with the signer cert.  The
              default is -2.

       --cipher-algo oid
              Use the cipher algorithm with the ASN.1 object identifier oid for encryption.   For
              convenience  the  strings  3DES,  AES and AES256 may be used instead of their OIDs.
              The default is AES (2.16.840.1.101.3.4.1.2).

       --digest-algo name
              Use name as the message digest algorithm.  Usually this algorithm is  deduced  from
              the  respective  signing  certificate.   This  option  forces  the use of the given
              algorithm and may lead to severe interoperability problems.

   Doing things one usually do not want to do

       --extra-digest-algo name
              Sometimes signatures are broken in that they announce a different digest  algorithm
              than  actually used.  gpgsm uses a one-pass data processing model and thus needs to
              rely on the announced digest algorithms to properly hash the data.  As a workaround
              this  option  may  be  used to tell gpgsm to also hash the data using the algorithm
              name; this slows processing down a little  bit  but  allows  verification  of  such
              broken  signatures.   If  gpgsm  prints  an error like ``digest algo 8 has not been
              enabled'' you may want to try this option, with ‘SHA256’ for name.

       --faked-system-time epoch
              This option is only useful for testing; it sets the system time back  or  forth  to
              epoch  which  is  the number of seconds elapsed since the year 1970.  Alternatively
              epoch may be given as a full ISO time string (e.g. "20070924T154812").

       --with-ephemeral-keys
              Include ephemeral flagged keys in the output of key listings.  Note that  they  are
              included  anyway  if the key specification for a listing is given as fingerprint or
              keygrip.

       --debug-level level
              Select the debug level for investigating problems. level may be a numeric value  or
              by a keyword:

              none   No  debugging  at  all.   A  value of less than 1 may be used instead of the
                     keyword.

              basic  Some basic debug messages.  A value between 1 and 2 may be used  instead  of
                     the keyword.

              advanced
                     More verbose debug messages.  A value between 3 and 5 may be used instead of
                     the keyword.

              expert Even more detailed messages.  A value between 6 and 8 may be used instead of
                     the keyword.

              guru   All  of  the  debug messages you can get. A value greater than 8 may be used
                     instead of the keyword.  The creation of hash tracing files is only  enabled
                     if the keyword is used.

       How  these  messages  are  mapped  to  the actual debugging flags is not specified and may
       change with newer releases of this program. They are however carefully  selected  to  best
       aid in debugging.

       --debug flags
              This  option  is only useful for debugging and the behaviour may change at any time
              without notice; using --debug-levels is the preferred method to  select  the  debug
              verbosity.  FLAGS are bit encoded and may be given in usual C-Syntax. The currently
              defined bits are:

              0 (1)  X.509 or OpenPGP protocol related data

              1 (2)  values of big number integers

              2 (4)  low level crypto operations

              5 (32) memory allocation

              6 (64) caching

              7 (128)
                     show memory statistics

              9 (512)
                     write hashed data to files named dbgmd-000*

              10 (1024)
                     trace Assuan protocol

       Note, that all flags set using this option may get overridden by --debug-level.

       --debug-all
              Same as --debug=0xffffffff

       --debug-allow-core-dump
              Usually gpgsm tries to avoid dumping core by well written  code  and  by  disabling
              core  dumps  for  security reasons.  However, bugs are pretty durable beasts and to
              squash them it is sometimes useful to have a core dump.  This option  enables  core
              dumps unless the Bad Thing happened before the option parsing.

       --debug-no-chain-validation
              This  is  actually  not  a debugging option but only useful as such.  It lets gpgsm
              bypass all certificate chain validation checks.

       --debug-ignore-expiration
              This is actually not a debugging option but only useful as  such.   It  lets  gpgsm
              ignore all notAfter dates, this is used by the regression tests.

       --passphrase-fd n
              Read  the  passphrase from file descriptor n. Only the first line will be read from
              file descriptor n. If you use 0 for n, the passphrase will be read from STDIN. This
              can only be used if only one passphrase is supplied.

              Note that this passphrase is only used if the option --batch has also been given.

       --pinentry-mode mode
              Set the pinentry mode to mode.  Allowed values for mode are:

              default
                     Use the default of the agent, which is ask.

              ask    Force the use of the Pinentry.

              cancel Emulate use of Pinentry's cancel button.

              error  Return a Pinentry error (``No Pinentry'').

              loopback
                     Redirect  Pinentry queries to the caller.  Note that in contrast to Pinentry
                     the user is not prompted again if he enters a bad password.

       --request-origin origin
              Tell gpgsm to assume that the operation ultimately originated at origin.  Depending
              on  the  origin  certain  restrictions  are applied and the Pinentry may include an
              extra note on the origin.  Supported values for origin  are:  local  which  is  the
              default,  remote  to indicate a remote origin or browser for an operation requested
              by a web browser.

       --no-common-certs-import
              Suppress the import of common certificates on keybox creation.

       All the long options may also be given in the configuration file after stripping  off  the
       two leading dashes.

HOW TO SPECIFY A USER ID

       There  are  different ways to specify a user ID to GnuPG.  Some of them are only valid for
       gpg others are only good for gpgsm.  Here is the entire list of ways to specify a key:

       By key Id.
              This format is deduced from the length of the string and its content or 0x  prefix.
              The  key  Id  of an X.509 certificate are the low 64 bits of its SHA-1 fingerprint.
              The use of key Ids is just a shortcut, for all automated processing the fingerprint
              should be used.

              When using gpg an exclamation mark (!) may be appended to force using the specified
              primary or secondary key and not to try and calculate which  primary  or  secondary
              key to use.

              The last four lines of the example give the key ID in their long form as internally
              used by the OpenPGP protocol. You can see the long key ID using the option  --with-
              colons.

         234567C4
         0F34E556E
         01347A56A
         0xAB123456

         234AABBCC34567C4
         0F323456784E56EAB
         01AB3FED1347A5612
         0x234AABBCC34567C4

       By fingerprint.
              This  format  is  deduced  from  the length of the string and its content or the 0x
              prefix.  Note, that only the 20 byte version fingerprint is  available  with  gpgsm
              (i.e. the SHA-1 hash of the certificate).

              When using gpg an exclamation mark (!) may be appended to force using the specified
              primary or secondary key and not to try and calculate which  primary  or  secondary
              key to use.

              The  best  way  to  specify  a key Id is by using the fingerprint.  This avoids any
              ambiguities in case that there are duplicated key IDs.

         1234343434343434C434343434343434
         123434343434343C3434343434343734349A3434
         0E12343434343434343434EAB3484343434343434
         0xE12343434343434343434EAB3484343434343434

       gpgsm also accepts colons between each pair of hexadecimal digits because this is the  de-
       facto standard on how to present X.509 fingerprints.  gpg also allows the use of the space
       separated SHA-1 fingerprint as printed by the key listing commands.

       By exact match on OpenPGP user ID.
              This is denoted by a  leading  equal  sign.  It  does  not  make  sense  for  X.509
              certificates.

         =Heinrich Heine <heinrichh@uni-duesseldorf.de>

       By exact match on an email address.
              This  is  indicated  by  enclosing the email address in the usual way with left and
              right angles.

         <heinrichh@uni-duesseldorf.de>

       By partial match on an email address.
              This is indicated by prefixing the search string with an @.  This uses a  substring
              search but considers only the mail address (i.e. inside the angle brackets).

         @heinrichh

       By exact match on the subject's DN.
              This  is indicated by a leading slash, directly followed by the RFC-2253 encoded DN
              of the subject.  Note that you can't use the string printed  by  gpgsm  --list-keys
              because  that  one  has  been  reordered  and  modified for better readability; use
              --with-colons to print the raw (but standard escaped) RFC-2253 string.

         /CN=Heinrich Heine,O=Poets,L=Paris,C=FR

       By exact match on the issuer's DN.
              This is indicated by a leading hash mark, directly followed by  a  slash  and  then
              directly followed by the RFC-2253 encoded DN of the issuer.  This should return the
              Root cert of the issuer.  See note above.

         #/CN=Root Cert,O=Poets,L=Paris,C=FR

       By exact match on serial number and issuer's DN.
              This is indicated by a hash mark, followed by the hexadecimal representation of the
              serial  number, then followed by a slash and the RFC-2253 encoded DN of the issuer.
              See note above.

         #4F03/CN=Root Cert,O=Poets,L=Paris,C=FR

       By keygrip.
              This is indicated by an ampersand followed by the  40  hex  digits  of  a  keygrip.
              gpgsm prints the keygrip when using the command --dump-cert.

         &D75F22C3F86E355877348498CDC92BD21010A480

       By substring match.
              This  is  the default mode but applications may want to explicitly indicate this by
              putting the asterisk in front.  Match is not case sensitive.

         Heine
         *Heine

       . and + prefixes
              These prefixes are reserved for looking up mails anchored at the end and for a word
              search mode.  They are not yet implemented and using them is undefined.

              Please  note  that  we  have  reused the hash mark identifier which was used in old
              GnuPG versions to indicate the so called local-id.  It  is  not  anymore  used  and
              there should be no conflict when used with X.509 stuff.

              Using  the  RFC-2253  format of DNs has the drawback that it is not possible to map
              them back to the original encoding, however we don't have to do  this  because  our
              key database stores this encoding as meta data.

EXAMPLES

         $ gpgsm -er goo@bar.net <plaintext >ciphertext

FILES

       There  are  a  few  configuration  files  to control certain aspects of gpgsm's operation.
       Unless noted, they are expected in the current home directory (see: [option --homedir]).

       gpgsm.conf
              This is the standard configuration file read by gpgsm on startup.  It  may  contain
              any valid long option; the leading two dashes may not be entered and the option may
              not be abbreviated.  This default name may be changed on  the  command  line  (see:
              [gpgsm-option --options]).  You should backup this file.

       policies.txt
              This  is  a  list  of  allowed  CA  policies.   This  file  should  list the object
              identifiers of the policies line by line.  Empty lines and lines  starting  with  a
              hash mark are ignored.  Policies missing in this file and not marked as critical in
              the certificate will print only a warning; certificates  with  policies  marked  as
              critical  and  not  listed  in this file will fail the signature verification.  You
              should backup this file.

              For example, to allow only the policy 2.289.9.9, the file should look like this:

                # Allowed policies
                2.289.9.9

       qualified.txt
              This is the list of root certificates used for qualified  certificates.   They  are
              defined  as certificates capable of creating legally binding signatures in the same
              way as handwritten signatures are.  Comments start with a hash mark and empty lines
              are  ignored.  Lines do have a length limit but this is not a serious limitation as
              the format of the entries is fixed and checked by gpgsm: A non-comment line  starts
              with  optional whitespace, followed by exactly 40 hex characters, white space and a
              lowercased 2 letter country code.  Additional data delimited with by a white  space
              is current ignored but might late be used for other purposes.

              Note that even if a certificate is listed in this file, this does not mean that the
              certificate is trusted; in general the certificates listed in this file need to  be
              listed also in ‘trustlist.txt’.

              This   is   a   global   file   an   installed   in   the   data   directory  (e.g.
              ‘/usr/share/gnupg/qualified.txt’).   GnuPG  installs  a  suitable  file  with  root
              certificates  as  used  in Germany.  As new Root-CA certificates may be issued over
              time, these entries may need to be updated;  new  distributions  of  this  software
              should  come  with  an  updated  list  but  it  is  still the responsibility of the
              Administrator to check that this list is correct.

              Every time gpgsm uses a certificate for signing or verification this file  will  be
              consulted  to  check  whether  the  certificate  under question has ultimately been
              issued by one of these CAs.  If this is the case the user will be informed that the
              verified  signature  represents  a legally binding (``qualified'') signature.  When
              creating a signature using such a certificate an extra prompt will be issued to let
              the user confirm that such a legally binding signature shall really be created.

              Because  this  software  has  not yet been approved for use with such certificates,
              appropriate notices will be shown to indicate this fact.

       help.txt
              This is plain text file with a few help entries used with pinentry  as  well  as  a
              large  list  of  help  items for gpg and gpgsm.  The standard file has English help
              texts; to install localized versions  use  filenames  like  ‘help.LL.txt’  with  LL
              denoting  the  locale.  GnuPG comes with a set of predefined help files in the data
              directory (e.g. ‘/usr/share/gnupg/gnupg/help.de.txt’) and allows overriding of  any
              help  item  by  help  files  stored  in  the  system  configuration directory (e.g.
              ‘/etc/gnupg/help.de.txt’).  For a reference of the help file's syntax,  please  see
              the installed ‘help.txt’ file.

       com-certs.pem
              This  file is a collection of common certificates used to populated a newly created
              ‘pubring.kbx’.  An administrator may replace this file  with  a  custom  one.   The
              format  is  a concatenation of PEM encoded X.509 certificates.  This global file is
              installed in the data directory (e.g. ‘/usr/share/gnupg/com-certs.pem’).

       Note that on larger installations, it is useful to put predefined files into the directory
       ‘/etc/skel/.gnupg/’  so  that  newly  created users start up with a working configuration.
       For existing users a  small  helper  script  is  provided  to  create  these  files  (see:
       [addgnupghome]).

       For  internal purposes gpgsm creates and maintains a few other files; they all live in the
       current home directory (see: [option --homedir]).  Only gpgsm may modify these files.

       pubring.kbx
              This a database file storing the certificates as well  as  meta  information.   For
              debugging  purposes  the tool kbxutil may be used to show the internal structure of
              this file.  You should backup this file.

       random_seed
              This content of this file is used to maintain the  internal  state  of  the  random
              number  generator  across  invocations.  The same file is used by other programs of
              this software too.

       S.gpg-agent
              If this file exists gpgsm will first try to connect to this  socket  for  accessing
              gpg-agent  before  starting  a  new  gpg-agent instance.  Under Windows this socket
              (which in reality be a plain file describing a regular TCP listening port)  is  the
              standard way of connecting the gpg-agent.

SEE ALSO

       gpg2(1), gpg-agent(1)

       The  full documentation for this tool is maintained as a Texinfo manual.  If GnuPG and the
       info program are properly installed at your site, the command

         info gnupg

       should give you access to the complete manual including a menu structure and an index.