Provided by: manpages_5.10-1ubuntu1_all bug

NAME

       core - core dump file

DESCRIPTION

       The  default  action  of  certain signals is to cause a process to terminate and produce a
       core dump file, a file containing an  image  of  the  process's  memory  at  the  time  of
       termination.   This image can be used in a debugger (e.g., gdb(1)) to inspect the state of
       the program at the time that it terminated.  A list of the signals which cause  a  process
       to dump core can be found in signal(7).

       A  process can set its soft RLIMIT_CORE resource limit to place an upper limit on the size
       of the core dump file that will be produced if it  receives  a  "core  dump"  signal;  see
       getrlimit(2) for details.

       There are various circumstances in which a core dump file is not produced:

       *  The  process  does  not  have permission to write the core file.  (By default, the core
          file is called core or core.pid, where pid is the ID of the process that  dumped  core,
          and  is  created  in  the current working directory.  See below for details on naming.)
          Writing the core file fails if the directory in which  it  is  to  be  created  is  not
          writable,  or  if  a  file  with  the  same name exists and is not writable or is not a
          regular file (e.g., it is a directory or a symbolic link).

       *  A (writable, regular) file with the same name as  would  be  used  for  the  core  dump
          already exists, but there is more than one hard link to that file.

       *  The  filesystem  where  the  core dump file would be created is full; or has run out of
          inodes; or is  mounted  read-only;  or  the  user  has  reached  their  quota  for  the
          filesystem.

       *  The directory in which the core dump file is to be created does not exist.

       *  The  RLIMIT_CORE  (core  file size) or RLIMIT_FSIZE (file size) resource limits for the
          process are set to zero; see getrlimit(2) and the documentation of the  shell's  ulimit
          command (limit in csh(1)).

       *  The  binary being executed by the process does not have read permission enabled.  (This
          is a security measure to ensure that an executable whose contents are not readable does
          not produce a—possibly readable—core dump containing an image of the executable.)

       *  The  process  is executing a set-user-ID (set-group-ID) program that is owned by a user
          (group) other than the real user (group) ID of the process, or the process is executing
          a  program  that  has  file  capabilities  (see  capabilities(7)).   (However,  see the
          description of the prctl(2) PR_SET_DUMPABLE  operation,  and  the  description  of  the
          /proc/sys/fs/suid_dumpable file in proc(5).)

       *  /proc/sys/kernel/core_pattern  is empty and /proc/sys/kernel/core_uses_pid contains the
          value    0.     (These    files    are    described    below.)     Note     that     if
          /proc/sys/kernel/core_pattern  is empty and /proc/sys/kernel/core_uses_pid contains the
          value 1, core dump files will have names of the form .pid, and such  files  are  hidden
          unless one uses the ls(1) -a option.

       *  (Since Linux 3.7) The kernel was configured without the CONFIG_COREDUMP option.

       In  addition,  a  core  dump  may  exclude part of the address space of the process if the
       madvise(2) MADV_DONTDUMP flag was employed.

       On systems that employ systemd(1) as the init framework, core dumps may instead be  placed
       in a location determined by systemd(1).  See below for further details.

   Naming of core dump files
       By  default,  a  core  dump file is named core, but the /proc/sys/kernel/core_pattern file
       (since Linux 2.6 and 2.4.21) can be set to define a template that is  used  to  name  core
       dump  files.  The template can contain % specifiers which are substituted by the following
       values when a core file is created:

           %%  A single % character.
           %c  Core file size soft resource limit of crashing process (since Linux 2.6.24).
           %d  Dump mode—same as value returned by prctl(2) PR_GET_DUMPABLE (since Linux 3.7).
           %e  The process or thread's comm value, which typically is the same as the  executable
               filename  (without  path prefix, and truncated to a maximum of 15 characters), but
               may  have  been  modified  to  be  something  different;  see  the  discussion  of
               /proc/[pid]/comm and /proc/[pid]/task/[tid]/comm in proc(5).
           %E  Pathname  of  executable,  with  slashes ('/') replaced by exclamation marks ('!')
               (since Linux 3.0).
           %g  Numeric real GID of dumped process.
           %h  Hostname (same as nodename returned by uname(2)).
           %i  TID of thread that triggered core dump, as seen in the PID namespace in which  the
               thread resides (since Linux 3.18).
           %I  TID  of  thread  that  triggered  core  dump, as seen in the initial PID namespace
               (since Linux 3.18).
           %p  PID of dumped process, as seen in the PID namespace in which the process resides.
           %P  PID of dumped process, as seen in the initial PID namespace (since Linux 3.12).
           %s  Number of signal causing dump.
           %t  Time of dump, expressed as seconds since  the  Epoch,  1970-01-01  00:00:00  +0000
               (UTC).
           %u  Numeric real UID of dumped process.

       A  single  %  at  the  end  of  the  template is dropped from the core filename, as is the
       combination of a % followed by any character other than those  listed  above.   All  other
       characters  in  the template become a literal part of the core filename.  The template may
       include '/' characters, which are interpreted as  delimiters  for  directory  names.   The
       maximum  size  of  the  resulting  core  filename is 128 bytes (64 bytes in kernels before
       2.6.19).  The default value in this  file  is  "core".   For  backward  compatibility,  if
       /proc/sys/kernel/core_pattern  does not include %p and /proc/sys/kernel/core_uses_pid (see
       below) is nonzero, then .PID will be appended to the core filename.

       Paths are interpreted according to the settings that are active for the crashing  process.
       That  means  the crashing process's mount namespace (see mount_namespaces(7)), its current
       working directory (found via getcwd(2)), and its root directory (see chroot(2)).

       Since version 2.4, Linux has also provided a more primitive method of controlling the name
       of  the  core dump file.  If the /proc/sys/kernel/core_uses_pid file contains the value 0,
       then a core dump file is simply named core.  If this file contains a nonzero  value,  then
       the core dump file includes the process ID in a name of the form core.PID.

       Since  Linux 3.6, if /proc/sys/fs/suid_dumpable is set to 2 ("suidsafe"), the pattern must
       be either an absolute pathname (starting with a leading  '/'  character)  or  a  pipe,  as
       defined below.

   Piping core dumps to a program
       Since    kernel    2.6.19,    Linux    supports    an    alternate    syntax    for    the
       /proc/sys/kernel/core_pattern file.  If the first character of this file is a pipe  symbol
       (|),  then  the  remainder of the line is interpreted as the command-line for a user-space
       program (or script) that is to be executed.

       Since kernel 5.3.0, the pipe template is split on spaces into an argument list before  the
       template  parameters  are  expanded.   In  earlier  kernels,  the  template parameters are
       expanded first and the resulting string is split on spaces into an  argument  list.   This
       means  that in earlier kernels executable names added by the %e and %E template parameters
       could get split into multiple arguments.  So the  core  dump  handler  needs  to  put  the
       executable names as the last argument and ensure it joins all parts of the executable name
       using spaces.  Executable names with multiple spaces in them are not correctly represented
       in earlier kernels, meaning that the core dump handler needs to use mechanisms to find the
       executable name.

       Instead of being written to a file, the core dump  is  given  as  standard  input  to  the
       program.  Note the following points:

       *  The program must be specified using an absolute pathname (or a pathname relative to the
          root directory, /), and must immediately follow the '|' character.

       *  The command-line arguments can include any of  the  %  specifiers  listed  above.   For
          example,  to  pass  the  PID  of  the  process  that  is being dumped, specify %p in an
          argument.

       *  The process created to run the program runs as user and group root.

       *  Running as root does not confer any exceptional security bypasses.  Namely, LSMs (e.g.,
          SELinux)  are still active and may prevent the handler from accessing details about the
          crashed process via /proc/[pid].

       *  The program pathname is interpreted with respect to the initial mount namespace  as  it
          is  always  executed  there.  It is not affected by the settings (e.g., root directory,
          mount namespace, current working directory) of the crashing process.

       *  The process runs in the initial namespaces (PID, mount, user, and so on) and not in the
          namespaces  of the crashing process.  One can utilize specifiers such as %P to find the
          right /proc/[pid] directory  and  probe/enter  the  crashing  process's  namespaces  if
          needed.

       *  The  process  starts  with  its  current  working  directory as the root directory.  If
          desired, it is possible change to the working  directory  of  the  dumping  process  by
          employing  the  value  provided  by  the  %P specifier to change to the location of the
          dumping process via /proc/[pid]/cwd.

       *  Command-line arguments can be supplied to the program (since Linux  2.6.24),  delimited
          by white space (up to a total line length of 128 bytes).

       *  The  RLIMIT_CORE  limit  is not enforced for core dumps that are piped to a program via
          this mechanism.

   /proc/sys/kernel/core_pipe_limit
       When collecting core dumps via a pipe to a user-space program, it can be  useful  for  the
       collecting  program  to  gather  data  about  the  crashing  process  from  that process's
       /proc/[pid] directory.  In order to do this safely, the kernel must wait for  the  program
       collecting  the  core dump to exit, so as not to remove the crashing process's /proc/[pid]
       files prematurely.  This in turn creates the possibility  that  a  misbehaving  collecting
       program can block the reaping of a crashed process by simply never exiting.

       Since  Linux  2.6.32,  the  /proc/sys/kernel/core_pipe_limit can be used to defend against
       this possibility.  The value in this file defines how many concurrent  crashing  processes
       may  be  piped  to user-space programs in parallel.  If this value is exceeded, then those
       crashing processes above this value are noted in the kernel log and their core  dumps  are
       skipped.

       A  value  of  0  in  this  file  is special.  It indicates that unlimited processes may be
       captured in parallel, but that no waiting will take place (i.e., the collecting program is
       not guaranteed access to /proc/<crashing-PID>).  The default value for this file is 0.

   Controlling which mappings are written to the core dump
       Since  kernel  2.6.23,  the Linux-specific /proc/[pid]/coredump_filter file can be used to
       control which memory segments are written to the core dump file in the event that  a  core
       dump is performed for the process with the corresponding process ID.

       The  value  in  the file is a bit mask of memory mapping types (see mmap(2)).  If a bit is
       set in the mask, then memory mappings of the corresponding type are dumped; otherwise they
       are not dumped.  The bits in this file have the following meanings:

           bit 0  Dump anonymous private mappings.
           bit 1  Dump anonymous shared mappings.
           bit 2  Dump file-backed private mappings.
           bit 3  Dump file-backed shared mappings.
           bit 4 (since Linux 2.6.24)
                  Dump ELF headers.
           bit 5 (since Linux 2.6.28)
                  Dump private huge pages.
           bit 6 (since Linux 2.6.28)
                  Dump shared huge pages.
           bit 7 (since Linux 4.4)
                  Dump private DAX pages.
           bit 8 (since Linux 4.4)
                  Dump shared DAX pages.

       By     default,     the    following    bits    are    set:    0,    1,    4    (if    the
       CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS kernel configuration option is enabled), and 5.  This
       default can be modified at boot time using the coredump_filter boot option.

       The  value of this file is displayed in hexadecimal.  (The default value is thus displayed
       as 33.)

       Memory-mapped I/O pages such as frame buffer are never dumped, and virtual  DSO  (vdso(7))
       pages are always dumped, regardless of the coredump_filter value.

       A  child  process  created  via  fork(2)  inherits its parent's coredump_filter value; the
       coredump_filter value is preserved across an execve(2).

       It can be useful to set coredump_filter in the parent shell before running a program,  for
       example:

           $ echo 0x7 > /proc/self/coredump_filter
           $ ./some_program

       This  file is provided only if the kernel was built with the CONFIG_ELF_CORE configuration
       option.

   Core dumps and systemd
       On systems using the systemd(1) init framework, core dumps may be  placed  in  a  location
       determined  by  systemd(1).   To do this, systemd(1) employs the core_pattern feature that
       allows piping core dumps to a program.  One can verify this by checking whether core dumps
       are being piped to the systemd-coredump(8) program:

           $ cat /proc/sys/kernel/core_pattern
           |/usr/lib/systemd/systemd-coredump %P %u %g %s %t %c %e

       In   this   case,   core   dumps   will   be   placed   in  the  location  configured  for
       systemd-coredump(8),   typically   as   lz4(1)   compressed   files   in   the   directory
       /var/lib/systemd/coredump/.   One  can  list  the  core  dumps  that have been recorded by
       systemd-coredump(8) using coredumpctl(1):

       $ coredumpctl list | tail -5
       Wed 2017-10-11 22:25:30 CEST  2748 1000 1000 3 present  /usr/bin/sleep
       Thu 2017-10-12 06:29:10 CEST  2716 1000 1000 3 present  /usr/bin/sleep
       Thu 2017-10-12 06:30:50 CEST  2767 1000 1000 3 present  /usr/bin/sleep
       Thu 2017-10-12 06:37:40 CEST  2918 1000 1000 3 present  /usr/bin/cat
       Thu 2017-10-12 08:13:07 CEST  2955 1000 1000 3 present  /usr/bin/cat

       The information shown for each core dump includes the date and time of the dump, the  PID,
       UID, and GID  of the dumping process, the signal number that caused the core dump, and the
       pathname of the executable that was being run by the dumped process.  Various  options  to
       coredumpctl(1)  allow  a specified coredump file to be pulled from the systemd(1) location
       into a specified file.  For example, to extract the core dump for PID 2955 shown above  to
       a file named core in the current directory, one could use:

           $ coredumpctl dump 2955 -o core

       For more extensive details, see the coredumpctl(1) manual page.

       To  (persistently) disable the systemd(1) mechanism that archives core dumps, restoring to
       something more like traditional Linux behavior, one can set an override for the systemd(1)
       mechanism, using something like:

           # echo "kernel.core_pattern=core.%p" > \
                          /etc/sysctl.d/50-coredump.conf
           # /lib/systemd/systemd-sysctl

       It  is  also possible to temporarily (i.e., until the next reboot) change the core_pattern
       setting using a command such as the following (which causes the names of core  dump  files
       to  include  the  executable  name as well as the number of the signal which triggered the
       core dump):

           # sysctl -w kernel.core_pattern="%e-%s.core"

NOTES

       The gdb(1) gcore command can be used to obtain a core dump of a running process.

       In Linux versions up to and  including  2.6.27,  if  a  multithreaded  process  (or,  more
       precisely, a process that shares its memory with another process by being created with the
       CLONE_VM flag of clone(2)) dumps core, then the process ID is always appended to the  core
       filename,  unless  the  process ID was already included elsewhere in the filename via a %p
       specification in /proc/sys/kernel/core_pattern.  (This is primarily useful when  employing
       the  obsolete  LinuxThreads implementation, where each thread of a process has a different
       PID.)

EXAMPLES

       The program below can  be  used  to  demonstrate  the  use  of  the  pipe  syntax  in  the
       /proc/sys/kernel/core_pattern  file.   The following shell session demonstrates the use of
       this program (compiled to create an executable named core_pattern_pipe_test):

           $ cc -o core_pattern_pipe_test core_pattern_pipe_test.c
           $ su
           Password:
           # echo "|$PWD/core_pattern_pipe_test %p UID=%u GID=%g sig=%s" > \
               /proc/sys/kernel/core_pattern
           # exit
           $ sleep 100
           ^\                     # type control-backslash
           Quit (core dumped)
           $ cat core.info
           argc=5
           argc[0]=</home/mtk/core_pattern_pipe_test>
           argc[1]=<20575>
           argc[2]=<UID=1000>
           argc[3]=<GID=100>
           argc[4]=<sig=3>
           Total bytes in core dump: 282624

   Program source

       /* core_pattern_pipe_test.c */

       #define _GNU_SOURCE
       #include <sys/stat.h>
       #include <fcntl.h>
       #include <limits.h>
       #include <stdio.h>
       #include <stdlib.h>
       #include <unistd.h>

       #define BUF_SIZE 1024

       int
       main(int argc, char *argv[])
       {
           ssize_t nread, tot;
           char buf[BUF_SIZE];
           FILE *fp;
           char cwd[PATH_MAX];

           /* Change our current working directory to that of the
              crashing process */

           snprintf(cwd, PATH_MAX, "/proc/%s/cwd", argv[1]);
           chdir(cwd);

           /* Write output to file "core.info" in that directory */

           fp = fopen("core.info", "w+");
           if (fp == NULL)
               exit(EXIT_FAILURE);

           /* Display command-line arguments given to core_pattern
              pipe program */

           fprintf(fp, "argc=%d\n", argc);
           for (int j = 0; j < argc; j++)
               fprintf(fp, "argc[%d]=<%s>\n", j, argv[j]);

           /* Count bytes in standard input (the core dump) */

           tot = 0;
           while ((nread = read(STDIN_FILENO, buf, BUF_SIZE)) > 0)
               tot += nread;
           fprintf(fp, "Total bytes in core dump: %zd\n", tot);

           fclose(fp);
           exit(EXIT_SUCCESS);
       }

SEE ALSO

       bash(1), coredumpctl(1), gdb(1), getrlimit(2), mmap(2),  prctl(2),  sigaction(2),  elf(5),
       proc(5), pthreads(7), signal(7), systemd-coredump(8)

COLOPHON

       This  page  is  part of release 5.10 of the Linux man-pages project.  A description of the
       project, information about reporting bugs, and the latest version of  this  page,  can  be
       found at https://www.kernel.org/doc/man-pages/.