Provided by: mintpy_1.3.3-2_all bug

NAME

       mintpy-timeseries2velocity - Estimate velocity / time functions from time-series.

DESCRIPTION

       usage: timeseries2velocity.py [-h] [--template TEMPLATE_FILE]

       [--ts-cov-file TS_COV_FILE] [-o OUTFILE]
              [--update]  [--ref-lalo  LAT  LON]  [--ref-yx  Y X] [--ref-date DATE] [--start-date
              STARTDATE]  [--end-date  ENDDATE]   [--exclude   EXCLUDEDATE   [EXCLUDEDATE   ...]]
              [--bootstrap]   [--bc  BOOTSTRAPCOUNT]  [--poly  POLYNOMIAL]  [--periodic  PERIODIC
              [PERIODIC ...]]  [--step STEP [STEP ...]] [--exp EXP [EXP ...]]   [--log  LOG  [LOG
              ...]] [--save-res] [--res-file RES_FILE] [--ram MAXMEMORY] timeseries_file

       Estimate velocity / time functions from time-series.

   positional arguments:
       timeseries_file
              Time series file for velocity inversion.

   options:
       -h, --help
              show this help message and exit

       --template TEMPLATE_FILE, -t TEMPLATE_FILE
              template file with options

       --ts-cov-file TS_COV_FILE
              Time-series (co)variance file for velocity STD calculation

       -o OUTFILE, --output OUTFILE
              output file name

       --update
              Enable update mode, and skip estimation if: 1) output velocity file already exists,
              readable and newer than input file 2) all configuration parameters are the same.

       --ref-lalo LAT LON
              Change reference point LAT LON for estimation.

       --ref-yx Y X
              Change reference point Y X for estimation.

       --ref-date DATE
              Change reference date for estimation.

       --ram MAXMEMORY, --memory MAXMEMORY
              Max amount of memory in GB  to  use  (default:  4.0).   Adjust  according  to  your
              computer memory.

   dates of interest:
       --start-date STARTDATE, -s STARTDATE
              start date for velocity estimation

       --end-date ENDDATE, -e ENDDATE
              end date for velocity estimation

       --exclude EXCLUDEDATE [EXCLUDEDATE ...], --ex EXCLUDEDATE [EXCLUDEDATE ...]
              date(s)  not  included  in  velocity  estimation, i.e.: --exclude 20040502 20060708
              20090103 --exclude exclude_date.txt exclude_date.txt: 20040502 20060708 20090103

   bootstrapping:
              estimating the mean / STD of the velocity estimator

       --bootstrap, --bootstrapping
              Enable bootstrapping to estimate the mean and STD of the velocity estimator.

       --bc BOOTSTRAPCOUNT, --bootstrap-count BOOTSTRAPCOUNT
              number of iterations for bootstrapping (default: 400).

   Deformation Model:
              A suite of time functions

       --poly POLYNOMIAL, --polynomial POLYNOMIAL, --poly-order POLYNOMIAL
              a  polynomial  function  with  the  input  degree  (default:  1).  E.g.:  --poly  1
              #   linear   --poly   2                                    #   quadratic  --poly  3
              # cubic

       --periodic PERIODIC [PERIODIC ...], --period  PERIODIC  [PERIODIC  ...],  --peri  PERIODIC
       [PERIODIC ...]
              periodic  function(s)  with period in decimal years (default: []). E.g.: --periodic
              1.0                              #   an   annual   cycle   --periodic    1.0    0.5
              # an annual cycle plus a semi-annual cycle

       --step STEP [STEP ...]
              step    function(s)    at   YYYYMMDD   (default:   []).   E.g.:   --step   20061014
              # coseismic step  at 2006-10-14T00:00 --step 20110311  20120928T1733              #
              coseismic steps at 2011-03-11T00:00 and 2012-09-28T17:33

       --exp EXP [EXP ...], --exponential EXP [EXP ...]
              exponential function(s) at YYYYMMDD with characteristic time(s) tau in decimal days
              (default: []). E.g.: --exp   20181026  60                         #  exp  onset  at
              2006-10-14T00:00  with  tau=60 days --exp  20181026T1355 60 120               # exp
              onset at 2006-10-14T13:55 with tau=60  days  overlayed  by  a  tau=145  days  --exp
              20161231 80.5 --exp 20190125 100   # 1st exp onset at 2011-03-11 with tau=80.5 days
              and

       # 2nd exp onset at 2012-09-28 with tau=100
              days

       --log LOG [LOG ...], --logarithmic LOG [LOG ...]
              logarithmic function(s) at YYYYMMDD with characteristic time(s) tau in decimal days
              (default:  []).  E.g.:  --log   20181016  90.4                       # log onset at
              2006-10-14T00:00 with tau=90.4 days --log  20181016T1733 90.4 240             # log
              onset  at  2006-10-14T17:33  with  tau=90.4  days overlayed by a tau=240 days --log
              20161231 60 --log 20190125 180.2   # 1st log onset at 2011-03-11 with  tau=60  days
              and

              # 2nd log onset at 2012-09-28 with tau=180.2 days

   Residual file:
              Save residual displacement time-series to HDF5 file.

       --save-res, --save_residual
              Save the residual displacement time-series to HDF5 file.

       --res-file RES_FILE, --residual-file RES_FILE
              Output    file    name    for    the    residual    time-series    file   (default:
              timeseriesResidual.h5).

   template options:
              ## Estimate linear velocity and its standard deviation from time-series ## and from
              tropospheric  delay  file if exists.  ## reference: Fattahi and Amelung (2015, JGR)
              mintpy.velocity.excludeDate    = auto   #[exclude_date.txt  /  20080520,20090817  /
              no], auto for exclude_date.txt mintpy.velocity.startDate      = auto   #[20070101 /
              no], auto for no mintpy.velocity.endDate        = auto   #[20101230 / no], auto for
              no

              ##   Bootstrapping   ##   reference:   Efron  and  Tibshirani  (1986,  Stat.  Sci.)
              mintpy.velocity.bootstrap      = auto   #[yes / no], auto  for  no,  use  bootstrap
              mintpy.velocity.bootstrapCount   =   auto    #[int>1],  auto  for  400,  number  of
              iterations for bootstrapping

   references:
              Fattahi, H., and  F.  Amelung  (2015),  InSAR  bias  and  uncertainty  due  to  the
              systematic  and  stochastic  tropospheric  delay,  Journal of Geophysical Research:
              Solid Earth, 120(12), 8758-8773, doi:10.1002/2015JB012419.

              Efron, B., and  R.  Tibshirani  (1986),  Bootstrap  methods  for  standard  errors,
              confidence  intervals,  and  other  measures  of  statistical accuracy, Statistical
              science, 54-75, doi:10.1214/ss/1177013815.

   example:
       timeseries2velocity.py
              timeseries_ERA5_demErr.h5

       timeseries2velocity.py
              timeseries_ERA5_demErr_ramp.h5  -t KyushuT73F2980_2990AlosD.template

       timeseries2velocity.py
              timeseries.h5  --start-date 20080201  --end-date 20100508

       timeseries2velocity.py
              timeseries.h5  --exclude exclude_date.txt

       timeseries2velocity.py
              LS-PARAMS.h5

       timeseries2velocity.py
              NSBAS-PARAMS.h5

       timeseries2velocity.py
              TS-PARAMS.h5

              #      bootstrapping      for      STD      calculation      timeseries2velocity.py
              timeseries_ERA5_demErr.h5 --bootstrap

              #  complex  time  functions  timeseries2velocity.py  timeseries_ERA5_ramp_demErr.h5
              --poly    3    --period    1    0.5    --step    20170910    timeseries2velocity.py
              timeseries_ERA5_demErr.h5       --poly  1  --exp 20170910 90 timeseries2velocity.py
              timeseries_ERA5_demErr.h5      --poly 1 --log 20170910 60.4  timeseries2velocity.py
              timeseries_ERA5_demErr.h5       --poly  1  --log  20170910  60.4 200 --log 20171026
              200.7