Provided by: grass-doc_8.2.0-1build1_all bug

NAME

       r.covar  - Outputs a covariance/correlation matrix for user-specified raster map layer(s).

KEYWORDS

       raster, statistics

SYNOPSIS

       r.covar
       r.covar --help
       r.covar [-r] map=name[,name,...]  [--help]  [--verbose]  [--quiet]  [--ui]

   Flags:
       -r
           Print correlation matrix

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       map=name[,name,...] [required]
           Name of raster map(s)

DESCRIPTION

       r.covar  outputs  a  covariance/correlation matrix for user-specified raster map layer(s).
       The output can be printed, or saved by redirecting output into a file.

       The output is an N x N symmetric covariance (correlation) matrix, where N is the number of
       raster map layers specified on the command line.

NOTES

       This  module  can be used as the first step of a principle components transformation.  The
       covariance matrix would be input into a system which determines  eigen  values  and  eigen
       vectors.  An NxN covariance matrix would result in N real eigen values and N eigen vectors
       (each composed of N real numbers).

       The module m.eigensystem in GRASS GIS Addons can be compiled  and  used  to  generate  the
       eigen values and vectors.

EXAMPLE

       For example,
       g.region raster=layer.1 -p
       r.covar -r map=layer.1,layer.2,layer.3
       would produce a 3x3 matrix (values are example only):
            1.000000  0.914922  0.889581
            0.914922  1.000000  0.939452
            0.889581  0.939452  1.000000
       In  the above example, the eigen values and corresponding eigen vectors for the covariance
       matrix are:
       component   eigen value               eigen vector
           1       1159.745202   <0.691002  0.720528  0.480511>
           2          5.970541   <0.711939 -0.635820 -0.070394>
           3        146.503197   <0.226584  0.347470 -0.846873>
       The component corresponding to each vector can be produced using r.mapcalc as follows:
       r.mapcalc "pc.1 = 0.691002*layer.1 + 0.720528*layer.2 + 0.480511*layer.3"
       r.mapcalc "pc.2 = 0.711939*layer.1 - 0.635820*layer.2 - 0.070394*layer.3"
       r.mapcalc "pc.3 = 0.226584*layer.1 + 0.347470*layer.2 - 0.846873*layer.3"
       Note that based on the relative sizes of the eigen values, pc.1 will contain about 88%  of
       the  variance in the data set, pc.2 will contain about 1% of the variance in the data set,
       and pc.3 will contain about 11% of the variance in the data  set.   Also,  note  that  the
       range  of  values  produced  in  pc.1, pc.2, and pc.3 will not (in general) be the same as
       those for layer.1, layer.2, and layer.3.  It may be necessary to rescale  pc.1,  pc.2  and
       pc.3 to the desired range (e.g. 0-255).  This can be done with r.rescale.

SEE ALSO

        i.pca, m.eigensystem (Addon), r.mapcalc, r.rescale

AUTHOR

       Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

SOURCE CODE

       Available at: r.covar source code (history)

       Accessed: Mon Jun 13 15:09:15 2022

       Main index | Raster index | Topics index | Keywords index | Graphical index | Full index

       © 2003-2022 GRASS Development Team, GRASS GIS 8.2.0 Reference Manual