Provided by: libhamlib-utils_4.3.1-1build2_amd64 bug

NAME

       rigctl - control radio transceivers and receivers

SYNOPSIS

       rigctl [-hiIlLnouV] [-m id] [-r device] [-p device] [-d device] [-P type] [-D type]
              [-s baud] [-c id] [-t char] [-C parm=val] [-v[-Z]] [command|-]

DESCRIPTION

       Control radio transceivers and receivers.  rigctl accepts commands from the  command  line
       as well as in interactive mode if none are provided on the command line.

       Keep  in  mind  that Hamlib is BETA level software.  While a lot of backend libraries lack
       complete rig support, the basic functions are usually well supported.

       Please report bugs and provide feedback at the e-mail address given in  the  BUGS  section
       below.  Patches and code enhancements sent to the same address are welcome.

OPTIONS

       This  program  follows  the  usual  GNU  command  line syntax.  Short options that take an
       argument may have the value follow immediately or be separated by a space.   Long  options
       starting with two dashes (‘-’) require an ‘=’ between the option and any argument.

       Here is a summary of the supported options:

       -m, --model=id
              Select radio model number.

              See model list (use “rigctl -l”).

              Note:  rigctl  (or third party software using the C API) will use radio model 2 for
              NET rigctl (communicating with rigctld).

       -r, --rig-file=device
              Use device as the file name of the port connected to the radio.

              Often a serial port, but could be a USB to serial adapter.   Typically  /dev/ttyS0,
              /dev/ttyS1,  /dev/ttyUSB0,  etc. on Linux, COM1, COM2, etc. on MS Windows.  The BSD
              flavors and Mac OS/X have their own designations.  See your system's documentation.

              Can be a network address:port, e.g. 127.0.0.1:12345

              The special string “uh-rig” may be given to enable micro-ham device support.

       -p, --ptt-file=device
              Use device as the file name of the Push-To-Talk  device  using  a  device  file  as
              described above.

       -d, --dcd-file=device
              Use  device  as the file name of the Data Carrier Detect device using a device file
              as described above.

       -P, --ptt-type=type
              Use type of Push-To-Talk device.

              Supported types are ‘RIG’ (CAT command), ‘DTR’, ‘RTS’, ‘PARALLEL’, ‘CM108’, ‘GPIO’,
              ‘GPION’, ‘NONE’, overriding PTT type defined in the rig's backend.

              Some  side effects of this command are that when type is set to DTR, read PTT state
              comes from the Hamlib frontend, not read from the radio.  When  set  to  NONE,  PTT
              state cannot be read or set even if rig backend supports reading/setting PTT status
              from the rig.

       -D, --dcd-type=type
              Use type of Data Carrier Detect device.

              Supported types are ‘RIG’ (CAT command), ‘DSR’, ‘CTS’, ‘CD’,  ‘PARALLEL’,  ‘CM108’,
              ‘GPIO’, ‘GPION’, ‘NONE’.

       -s, --serial-speed=baud
              Set serial speed to baud rate.

              Uses  maximum serial speed from radio backend capabilities (set by -m above) as the
              default.

       -c, --civaddr=id
              Use id as the CI-V address to communicate with the rig.

              Only useful for Icom and some Ten-Tec rigs.

              Note: The id is in decimal notation, unless prefixed by 0x, in  which  case  it  is
              hexadecimal.

       -t, --send-cmd-term=char
              Change the termination char for text protocol when using the send_cmd command.

              The default value is ASCII CR (‘0x0D’).  ASCII non-printing characters can be given
              as the ASCII number in hexadecimal format prepended with “0x”.   You  may  pass  an
              empty  string  for  no termination char.  The string “-1” tells rigctl to switch to
              binary protocol.  See the send_cmd command for further explanation.

              For example, to specify a command terminator for Kenwood style text  commands  pass
              “-t ';'” to rigctl.  See EXAMPLE below.

       -L, --show-conf
              List all config parameters for the radio defined with -m above.

       -C, --set-conf=parm=val[,parm=val]
              Set radio configuration parameter(s), e.g.  stop_bits=2.

              Use  the  -L  option above for a list of configuration parameters for a given model
              number.

       -u, --dump-caps
              Dump capabilities for the radio defined with -m above and exit.

       -l, --list
              List all model numbers defined in Hamlib and exit.

              The list is sorted by model number.

              Note: In Linux the list can be scrolled back using Shift-PageUp/Shift-PageDown,  or
              using  the scrollbars of a virtual terminal in X or the cmd window in Windows.  The
              output can be piped to more(1) or less(1), e.g. “rigctl -l | more”.

       -o, --vfo
              Enable vfo mode.

              An extra VFO argument will be required in front of each appropriate command (except
              set_vfo).   Otherwise,  ‘currVFO’  is used when this option is not set and an extra
              VFO argument is not used.

       -n, --no-restore-ai
              On exit rigctl restores the state of auto information (AI) on the controlled rig.

              If this is not desired, for example if you are using rigctl to turn AI mode  on  or
              off, pass this option.

       -i, --read-history
              Read   previously   saved  command  and  argument  history  from  a  file  (default
              $HOME/.rigctl_history) for the current session.

              Available when rigctl is built with Readline support (see READLINE below).

              Note: To read a history file stored in another directory, set  the  RIGCTL_HIST_DIR
              environment variable, e.g. “RIGCTL_HIST_DIR=~/tmp rigctl -i”.  When RIGCTL_HIST_DIR
              is not set, the value of HOME is used.

       -I, --save-history
              Write current session (and previous session(s), if -i option is given) command  and
              argument  history  to  a  file  (default  $HOME/.rigctl_history)  at the end of the
              current session.

              Complete commands with arguments are saved as a single line to be recalled and used
              or  edited.   Available  when  rigctl  is built with Readline support (see READLINE
              below).

              Note: To write a  history  file  in  another  directory,  set  the  RIGCTL_HIST_DIR
              environment    variable,    e.g.    “RIGCTL_HIST_DIR=~/tmp   rigctl   -IRq.    When
              RIGCTL_HIST_DIR is not set, the value of HOME is used.

       -v, --verbose
              Set verbose mode, cumulative (see DIAGNOSTICS below).

       -Y,--ignore-err
              Ignores rig open errors

       -Z, --debug-time-stamps
              Enable time stamps for the debug messages.

              Use only in combination with the -v option as it generates no output on its own.

       -h, --help
              Show a summary of these options and exit.

       -V, --version
              Show version of rigctl and exit.

       -      Stop option processing and read commands from standard input.

              See Standard Input below.

       Note: Some options may not be implemented by a given backend and  will  return  an  error.
       This is most likely to occur with the --set-conf and --show-conf options.

       Please  note  that the backend for the radio to be controlled, or the radio itself may not
       support some commands.  In that case, the operation will fail with a Hamlib error code.

COMMANDS

       Commands can be entered either as a single char, or as a long command name.  The  commands
       are not prefixed with a dash as the options are.  They may be typed in when in interactive
       mode or provided as argument(s) in command  line  interface  mode.   In  interactive  mode
       commands and their arguments may be entered on a single line:

           M LSB 2400

       Since most of the Hamlib operations have a set and a get method, an upper case letter will
       often be used for a set method whereas the corresponding lower case letter refers  to  the
       get  method.   Each  operation  also  has  a  long  name;  in  interactive mode, prepend a
       backslash, ‘\’, to enter a long command name.

       Example: Use “\dump_caps” to see what capabilities this radio and backend support.

              Note: The backend for the radio to be controlled,  or  the  radio  itself  may  not
              support  some  commands.  In that case, the operation will fail with a Hamlib error
              message.

   Standard Input
       As an alternative to the READLINE interactive command entry or a single command  for  each
       run,  rigctl  features  a  special  option  where  a single dash (‘-’) may be used to read
       commands from standard input (stdin).  Commands must be separated by whitespace similar to
       the  commands  given  on the command line.  Comments may be added using the ‘#’ character,
       all text up until the end of the current line including the ‘#’ character is ignored.

       A simple example (typed text is in bold):

           $ cat <<.EOF. >cmds.txt
           > # File of commands
           > v f m   # query rig
           > V VFOB F 14200000 M CW 500  # set rig
           > v f m   # query rig
           > .EOF.

           $ rigctl -m1 - <cmds.txt

           v VFOA

           f 145000000

           m FM
           15000

           V VFOB
           F 14200000
           M CW 500
           v VFOB

           f 14200000

           m CW
           500

           $

   rigctl Commands
       A summary of commands is included below (In the case of set commands the quoted italicized
       string  is  replaced  by  the  value  in the description.  In the case of get commands the
       quoted italicized string is the key name of the value returned.):

       Q|q, exit rigctl
              Exit rigctl in interactive mode.

              When rigctl is controlling the rig directly, will close the rig backend  and  port.
              When  rigctl  is  connected  to  rigctld  (radio model 2), the TCP/IP connection to
              rigctld is closed and rigctld remains running, available for another TCP/IP network
              connection.

       F, set_freq 'Frequency'
              Set 'Frequency', in Hz.

              Frequency may be a floating point or integer value.

       f, get_freq
              Get 'Frequency', in Hz.

              Returns  an integer value and the VFO hamlib thinks is active.  Note that some rigs
              (e.g. all Icoms) cannot track current VFO so hamlib can get out of  sync  with  the
              rig if the user presses rig buttons like the VFO.

       M, set_mode 'Mode' 'Passband'
              Set 'Mode' and 'Passband'.

              Mode  is  a  token:  ‘USB’, ‘LSB’, ‘CW’, ‘CWR’, ‘RTTY’, ‘RTTYR’, ‘AM’, ‘FM’, ‘WFM’,
              ‘AMS’, ‘PKTLSB’, ‘PKTUSB’,  ‘PKTFM’,  ‘ECSSUSB’,  ‘ECSSLSB’,  ‘FA’,  ‘SAM’,  ‘SAL’,
              ‘SAH’, ‘DSB’.

              Passband  is  in  Hz  as an integer, -1 for no change, or ‘0’ for the radio backend
              default.

              Note: Passing a ‘?’ (query) as the first argument instead  of  a  Mode  token  will
              return  a  space  separated  list  of  radio  backend supported Modes.  Use this to
              determine the supported Modes of a given radio backend.

       m, get_mode
              Get 'Mode' and 'Passband'.

              Returns Mode as a token and Passband in Hz as in set_mode above.

       V, set_vfo 'VFO'
              Set 'VFO'.

              VFO is a token: ‘VFOA’, ‘VFOB’, ‘VFOC’, ‘currVFO’,  ‘VFO’,  ‘MEM’,  ‘Main’,  ‘Sub’,
              ‘TX’, ‘RX’.

              In VFO mode (see --vfo option above) only a single VFO parameter is required:

                  $ rigctl -m 229 -r /dev/rig -o

                  Rig command: V
                  VFO: VFOB

                  Rig command:

       v, get_vfo
              Get current 'VFO'.

              Returns VFO as a token as in set_vfo above.

       J, set_rit 'RIT'
              Set 'RIT'.

              RIT  is  in  Hz and can be + or -.  A value of ‘0’ resets RIT (Receiver Incremental
              Tuning) to match the VFO frequency.

              Note: RIT needs to  be  explicitly  activated  or  deactivated  with  the  set_func
              command.   This  allows  setting the RIT offset independently of its activation and
              allows RIT to remain active while setting the offset to ‘0’.

       j, get_rit
              Get 'RIT' in Hz.

              Returned value is an integer.

       Z, set_xit 'XIT'
              Set 'XIT'.

              XIT is in Hz and can be + or -.  A value of ‘0’ resets XIT (Transmitter Incremental
              Tuning) to match the VFO frequency.

              Note:  XIT  needs  to  be  explicitly  activated  or  deactivated with the set_func
              command.  This allows setting the XIT offset independently of  its  activation  and
              allows XIT to remain active while setting the offset to ‘0’.

       z, get_xit
              Get 'XIT' in Hz.

              Returned value is an integer.

       T, set_ptt 'PTT'
              Set 'PTT'.

              PTT is a value: ‘0’ (RX), ‘1’ (TX), ‘2’ (TX mic), or ‘3’ (TX data).

       t, get_ptt
              Get 'PTT' status.

              Returns PTT as a value in set_ptt above.

       S, set_split_vfo 'Split' 'TX VFO'
              Set 'Split' mode.

              Split is either ‘0’ = Normal or ‘1’ = Split.

              Set 'TX VFO'.

              TX  VFO is a token: ‘VFOA’, ‘VFOB’, ‘VFOC’, ‘currVFO’, ‘VFO’, ‘MEM’, ‘Main’, ‘Sub’,
              ‘TX’, ‘RX’.

       s, get_split_vfo
              Get 'Split' mode.

              Split is either ‘0’ = Normal or ‘1’ = Split.

              Get 'TX VFO'.

              TX VFO is a token as in set_split_vfo above.

       I, set_split_freq 'Tx Frequency'
              Set 'TX Frequency', in Hz.

              Frequency may be a floating point or integer value.

       i, get_split_freq
              Get 'TX Frequency', in Hz.

              Returns an integer value.

       X, set_split_mode 'TX Mode' 'TX Passband'
              Set 'TX Mode' and 'TX Passband'.

              TX Mode is a token: ‘USB’, ‘LSB’, ‘CW’, ‘CWR’, ‘RTTY’, ‘RTTYR’, ‘AM’, ‘FM’,  ‘WFM’,
              ‘AMS’,  ‘PKTLSB’,  ‘PKTUSB’,  ‘PKTFM’,  ‘ECSSUSB’,  ‘ECSSLSB’,  ‘FA’, ‘SAM’, ‘SAL’,
              ‘SAH’, ‘DSB’.

              TX Passband is in Hz as an integer, or ‘0’ for the radio backend default.

              Note: Passing a ‘?’ (query) as the first argument instead of a TX Mode  token  will
              return  a  space  separated  list of radio backend supported TX Modes.  Use this to
              determine the supported TX Modes of a given radio backend.

       x, get_split_mode
              Get 'TX Mode' and 'TX Passband'.

              Returns TX Mode as a token and TX Passband in Hz as in set_split_mode above.

       Y, set_ant 'Antenna' 'Option'
              Set 'Antenna' and 'Option'.

              Number is 1-based antenna# (‘1’, ‘2’, ‘3’, ...).

              Option depends on rig..for Icom it probably sets the Tx & Rx  antennas  as  in  the
              IC-7851. See your manual for rig specific option values. Most rigs don't care about
              the option.

              For the IC-7851, FTDX3000 (and perhaps others) it means this:

                  1 = TX/RX = ANT1  FTDX3000=ANT1/ANT3
                  2 = TX/RX = ANT2  FTDX3000=ANT2/ANT3
                  3 = TX/RX = ANT3  FTDX3000=ANT3
                  4 = TX/RX = ANT1/ANT4
                  5 = TX/RX = ANT2/ANT4
                  6 = TX/RX = ANT3/ANT4

       y, get_ant 'Antenna'
              Get 'Antenna'

              A value of 0 for Antenna will return the current TX antenna

              > 0 is 1-based antenna# (‘1’, ‘2’, ‘3’, ...).

              Option returned depends on rig..for Icom is likely the RX only flag.

       b, send_morse 'Morse'
              Send 'Morse' symbols.

       0x8b, get_dcd
              Get 'DCD' (squelch) status: ‘0’ (Closed) or ‘1’ (Open).

       R, set_rptr_shift 'Rptr Shift'
              Set 'Rptr Shift'.

              Rptr Shift is one of: ‘+’, ‘-’, or something else for ‘None’.

       r, get_rptr_shift
              Get 'Rptr Shift'.

              Returns ‘+’, ‘-’, or ‘None’.

       O, set_rptr_offs 'Rptr Offset'
              Set 'Rptr Offset', in Hz.

       o, get_rptr_offs
              Get 'Rptr Offset', in Hz.

       C, set_ctcss_tone 'CTCSS Tone'
              Set 'CTCSS Tone', in tenths of Hz.

       c, get_ctcss_tone
              Get 'CTCSS Tone', in tenths of Hz.

       D, set_dcs_code 'DCS Code'
              Set 'DCS Code'.

       d, get_dcs_code
              Get 'DCS Code'.

       0x90, set_ctcss_sql 'CTCSS Sql'
              Set 'CTCSS Sql' tone, in tenths of Hz.

       0x91, get_ctcss_sql
              Get 'CTCSS Sql' tone, in tenths of Hz.

       0x92, set_dcs_sql 'DCS Sql'
              Set 'DCS Sql' code.

       0x93, get_dcs_sql
              Get 'DCS Sql'
               code.

       N, set_ts 'Tuning Step'
              Set 'Tuning Step', in Hz.

       n, get_ts
              Get 'Tuning Step', in Hz.

       U, set_func 'Func' 'Func Status'
              Set 'Func' and 'Func Status'.

              Func is a token: ‘FAGC’, ‘NB’, ‘COMP’, ‘VOX’,  ‘TONE’,  ‘TSQL’,  ‘SBKIN’,  ‘FBKIN’,
              ‘ANF’,  ‘NR’, ‘AIP’, ‘APF’, ‘MON’, ‘MN’, ‘RF’, ‘ARO’, ‘LOCK’, ‘MUTE’, ‘VSC’, ‘REV’,
              ‘SQL’, ‘ABM’, ‘BC’, ‘MBC’, ‘RIT’, ‘AFC’, ‘SATMODE’,  ‘SCOPE’,  ‘RESUME’,  ‘TBURST’,
              ‘TUNER’, ‘XIT’.

              Func  Status is a non null value for “activate” or “de-activate” otherwise, much as
              TRUE/FALSE definitions in the C language (true is non-zero and false is zero, ‘0’).

              Note: Passing a ‘?’ (query) as the first argument instead  of  a  Func  token  will
              return  a space separated list of radio backend supported set function tokens.  Use
              this to determine the supported functions of a given radio backend.

       u, get_func 'Func'
              Get 'Func Status'.

              Returns Func Status as a non null value for the Func token  given  as  in  set_func
              above.

              Note:  Passing  a  ‘?’  (query)  as the first argument instead of a Func token will
              return a space separated list of radio backend supported get function tokens.   Use
              this to determine the supported functions of a given radio backend.

       L, set_level 'Level' 'Level Value'
              Set 'Level' and 'Level Value'.

              Level  is  a  token:  ‘PREAMP’, ‘ATT’, ‘VOX’, ‘AF’, ‘RF’, ‘SQL’, ‘IF’, ‘APF’, ‘NR’,
              ‘PBT_IN’, ‘PBT_OUT’, ‘CWPITCH’, ‘RFPOWER’, ‘RFPOWER_METER’,  ‘RFPOWER_METER_WATTS’,
              ‘MICGAIN’,  ‘KEYSPD’, ‘NOTCHF’, ‘COMP’, ‘AGC’, ‘BKINDL’, ‘BAL’, ‘METER’, ‘VOXGAIN’,
              ‘ANTIVOX’, ‘SLOPE_LOW’, ‘SLOPE_HIGH’, ‘RAWSTR’, ‘SWR’, ‘ALC’, ‘STRENGTH’.

              The Level Value can be a float or an integer value.  For the AGC token the value is
              one  of  ‘0’  =  OFF,  ‘1’  =  SUPERFAST, ‘2’ = FAST, ‘3’ = SLOW, ‘4’ = USER, ‘5’ =
              MEDIUM, ‘6’ = AUTO.

              Note: Passing a ‘?’ (query) as the first argument instead of  a  Level  token  will
              return  a  space  separated  list of radio backend supported set level tokens.  Use
              this to determine the supported levels of a given radio backend.

       l, get_level 'Level'
              Get 'Level Value'.

              Returns Level Value as a float or integer for the Level token given as in set_level
              above.

              Note:  Passing  a  ‘?’  (query) as the first argument instead of a Level token will
              return a space separated list of radio backend supported  get  level  tokens.   Use
              this to determine the supported levels of a given radio backend.

       P, set_parm 'Parm' 'Parm Value'
              Set 'Parm' and 'Parm Value'.

              Parm is a token: ‘ANN’, ‘APO’, ‘BACKLIGHT’, ‘BEEP’, ‘TIME’, ‘BAT’, ‘KEYLIGHT’.

              Note:  Passing  a  ‘?’  (query)  as the first argument instead of a Parm token will
              return a space separated list of radio backend supported set parameter tokens.  Use
              this to determine the supported parameters of a given radio backend.

       p, get_parm 'Parm'
              Get 'Parm Value'.

              Returns  Parm  Value  as a float or integer for the Parm token given as in set_parm
              above.

              Note: Passing a ‘?’ (query) as the first argument instead  of  a  Parm  token  will
              return a space separated list of radio backend supported get parameter tokens.  Use
              this to determine the supported parameters of a given radio backend.

       B, set_bank 'Bank'
              Set 'Bank'.

              Sets the current memory bank number.

       E, set_mem 'Memory#'
              Set 'Memory#' channel number.

       e, get_mem
              Get 'Memory#' channel number.

       G, vfo_op 'Mem/VFO Op'
              Perform a 'Mem/VFO Op'.

              Mem/VFO Operation is a token: ‘CPY’, ‘XCHG’,  ‘FROM_VFO’,  ‘TO_VFO’,  ‘MCL’,  ‘UP’,
              ‘DOWN’, ‘BAND_UP’, ‘BAND_DOWN’, ‘LEFT’, ‘RIGHT’, ‘TUNE’, ‘TOGGLE’.

              Note:  Passing  a  ‘?’  (query) as the first argument instead of a Mem/VFO Op token
              will return a space separated list  of  radio  backend  supported  Set  Mem/VFO  Op
              tokens.  Use this to determine the supported Mem/VFO Ops of a given radio backend.

       g, scan 'Scan Fct' 'Scan Channel'
              Perform a 'Scan Fct' on a 'Scan Channel'.

              Scan  Function  is  a token: ‘STOP’, ‘MEM’, ‘SLCT’, ‘PRIO’, ‘PROG’, ‘DELTA’, ‘VFO’,
              ‘PLT’.

              Scan Channel is an integer (maybe?).

              Note: Passing a ‘?’ (query) as the first argument instead of a Scan Fct token  will
              return a space separated list of radio backend supported Scan Function tokens.  Use
              this to determine the supported Scan Functions of a given radio backend.

       H, set_channel 'Channel'
              Set memory 'Channel' data.

              Sets memory channel information

       h, get_channel 'readonly'
              Get channel memory.

              If readonly!=0 then only channel data is returned and rig remains  on  the  current
              channel.  If readonly=0 then rig will be set to the channel requested.  data.

       A, set_trn 'Transceive'
              Set 'Transceive' mode.

              Transcieve is a token: ‘OFF’, ‘RIG’, ‘POLL’.

              Transceive  is  a mechanism for radios to report events without a specific call for
              information.

              Note: Passing a ‘?’ (query) as the first argument instead  of  a  Transceive  token
              will  return  a  space  separated  list  of radio backend supported Transceive mode
              tokens.  Use this to determine the supported Transceive  modes  of  a  given  radio
              backend.

       a, get_trn
              Get 'Transceive' mode.

              Transceive mode (reporting event) as in set_trn above.

       *, reset 'Reset'
              Perform rig 'Reset'.

              Reset  is  a value: ‘0’ = None, ‘1’ = Software reset, ‘2’ = VFO reset, ‘4’ = Memory
              Clear reset, ‘8’ = Master reset.

              Since these values are defined as a bitmask in include/hamlib/rig.h, it  should  be
              possible to AND these values together to do multiple resets at once, if the backend
              supports it or supports a reset action via rig control at all.

       0x87, set_powerstat 'Power Status'
              Set 'Power Status'.

              Power Status is a value: ‘0’ = Power Off, ‘1’ =  Power  On,  ‘2’  =  Power  Standby
              (enter standby), ‘4’ = Power Operate (leave standby).

       0x88, get_powerstat
              Get 'Power Status' as in set_powerstat above.

       0x89, send_dtmf 'Digits'
              Set DTMF 'Digits'.

       0x8a, recv_dtmf
              Get DTMF 'Digits'.

       _, get_info
              Get misc information about the rig.

       0xf5, get_rig_info
              Get misc information about the rig vfo status and other info.

       0xf3, get_vfo_info 'VFO'
              Get misc information about a specific vfo.

       dump_state
              Return certain state information about the radio backend.

       1, dump_caps
              Not  a  real  rig remote command, it just dumps capabilities, i.e. what the backend
              knows about this model, and what it can do.

              TODO: Ensure this is in a consistent  format  so  it  can  be  read  into  a  hash,
              dictionary, etc.  Bug reports requested.

              Note:  This command will produce many lines of output so be very careful if using a
              fixed length array!  For example, running this command against  the  Dummy  backend
              results in over 5kB of text output.

              VFO parameter not used in 'VFO mode'.

       2, power2mW 'Power [0.0..1.0]' 'Frequency' 'Mode'
              Returns 'Power mW'.

              Converts a Power value in a range of 0.0...1.0 to the real transmit power in milli-
              Watts (integer).

              'Frequency' and 'Mode' also need to be provided as output power may vary  according
              to these values.

              VFO parameter is not used in VFO mode.

       4, mW2power 'Power mW' 'Frequency' 'Mode'
              Returns 'Power [0.0..1.0]'.

              Converts  the  real  transmit  power in milli-Watts (integer) to a Power value in a
              range of 0.0 ... 1.0.

              'Frequency' and 'Mode' also need to be provided as output power may vary  according
              to these values.

              VFO parameter is not used in VFO mode.

       w, send_cmd 'Cmd'
              Send a raw command string to the radio.

              This  is  useful  for testing and troubleshooting radio commands and responses when
              developing a backend.

              For binary protocols enter values as \0xAA\0xBB.  Expect a 'Reply' from  the  radio
              which  will  likely  be  a binary block or an ASCII string depending on the radio's
              protocol (see your radio's computer control documentation).

              The command terminator, set by the send-cmd-term option above, will terminate  each
              command string sent to the radio.  This character should not be a part of the input
              string.

       W, send_cmd_rx 'Cmd' nbytes
              Send a raw command string to the radio and expect nbytes returned.

              This is useful for testing and troubleshooting radio commands  and  responses  when
              developing  a  backend.   If  the  #  of  bytes requested is <= the number actually
              returned no timeout will occur.

              The command argument can have no spaces in it.  For binary protocols  enter  values
              as \0xAA\0xBB.  Expect a 'Reply' from the radio which will likely be a binary block
              or an ASCII string depending on the radio's protocol  (see  your  radio's  computer
              control documentation).

              The  command terminator, set by the send-cmd-term option above, will terminate each
              command string sent to the radio.  This character should not be a part of the input
              string.

       chk_vfo
              Get 'Status'

              Returns  Status  as 1 if vfo option is on and 0 if vfo option is off.  This command
              reflects the -o switch for rigctl and ritctld and can  be  dynamically  changed  by
              set_vfo_opt.

       set_vfo_opt 'Status'
              Set 'Status'

              Set  vfo  option  Status  1=on or 0=off This is the same as using the -o switch for
              rigctl and ritctld.  This can be dyamically changed while running.

       pause 'Seconds'
              Pause for the given whole (integer) number of 'Seconds'  before  sending  the  next
              command to the radio.

READLINE

       If  Readline  library  development  files  are  found  at  configure  time, rigctl will be
       conditonally built with Readline support for command and argument entry.  Readline command
       key   bindings   are   at   their   defaults   as   described   in   the  Readline  manual
       ⟨https://tiswww.cwru.edu/php/chet/readline/rluserman.html⟩.  rigctl sets the name “rigctl”
       which can be used in Conditional Init Constructs in the Readline Init File ($HOME/.inputrc
       by default) for custom keybindings unique to rigctl.

       Command history is available with Readline support as described in  the  Readline  History
       manual    ⟨https://tiswww.case.edu/php/chet/readline/history.html#SEC1⟩.     Command   and
       argument strings are stored as single lines even when arguments  are  prompted  for  input
       individually.   Commands  and  arguments  are  not  validated and are stored as typed with
       values separated by a single space.

       Normally session history is not saved, however, use of either of the -i/--read-history  or
       -I/--save-history  options when starting rigctl will cause any previously saved history to
       be read in and/or the current and any previous session history (assuming  the  -i  and  -I
       options  are  given  together)  will be written out when rigctl is closed.  Each option is
       mutually exclusive, i.e. either may be given separately or in combination.  This is useful
       to  save a set of commands and then read them later but not write the modified history for
       a consistent set of test commands in interactive mode, for example.

       History is stored in $HOME/.rigctl_history by default although the  destination  directory
       may  be changed by setting the RIGCTL_HIST_DIR environment variable.  When RIGCTL_HIST_DIR
       is unset, the  value  of  the  HOME  environment  variable  is  used  instead.   Only  the
       destination directory may be changed at this time.

       If  Readline  support is not found at configure time the original internal command handler
       is used.  Readline is not used for rigctl commands entered on the command line  regardless
       if Readline support is built in or not.

       Note:  Readline  support  is  not  included  in  the MS Windows 32 or 64 bit binary builds
       supplied by the Hamlib Project.  Running rigctl on the MS Windows platform  in  the  ‘cmd’
       shell  does  give  session  command line history, however, it is not saved to disk between
       sessions.

DIAGNOSTICS

       The -v, --verbose option allows different levels of diagnostics to be output to stderr and
       correspond  to  -v  for  BUG, -vv for ERR, -vvv for WARN, -vvvv for VERBOSE, or -vvvvv for
       TRACE.

       A given verbose level is useful for providing needed debugging information  to  the  email
       address  below.   For  example,  TRACE output shows all of the values sent to and received
       from the radio which is very useful for radio  backend  library  development  and  may  be
       requested by the developers.

EXIT STATUS

       rigctl exits with:

       0      if all operations completed normally;

       1      if there was an invalid command line option or argument;

       2      if an error was returned by Hamlib.

EXAMPLES

       Start  rigctl  for  a  Yaesu  FT-920 using a USB to serial adapter on Linux in interactive
       mode:

           $ rigctl -m 1014 -r /dev/ttyUSB1

       Start rigctl for a Yaesu FT-920 using COM1 on MS Windows while generating TRACE output  to
       stderr:

           > rigctl -m 1014 -r COM1 -vvvvv

       Start  rigctl for a Yaesu FT-920 using a USB to serial adapter while setting baud rate and
       stop bits:

           $ rigctl -m 1014 -r /dev/ttyUSB1 -s 4800 -C stop_bits=2

       Start rigctl for an Elecraft K3 using a USB to serial adapter while specifying  a  command
       terminator for the w command:

           $ rigctl -m 2029 -r /dev/ttyUSB0 -t';'

       Connect  to  a  running  rigctld  with  radio model 2 (“NET rigctl”) on the local host and
       specifying the TCP port, setting frequency and mode:

           $ rigctl -m 2 -r localhost:4532 F 7253500 M LSB 0

BUGS

       set_chan has no entry method as of yet, hence left unimplemented.

       This almost empty section...

       Report bugs to:

              Hamlib Developer mailing list
              ⟨hamlib-developer@lists.sourceforge.net

COPYING

       This file is part of Hamlib, a  project  to  develop  a  library  that  simplifies  radio,
       rotator,  and amplifier control functions for developers of software primarily of interest
       to radio amateurs and those interested in radio communications.

       Copyright © 2000-2011 Stephane Fillod
       Copyright © 2000-2018 the Hamlib Group (various contributors)
       Copyright © 2010-2020 Nate Bargmann

       This is free software; see the file COPYING for copying conditions.  There is NO warranty;
       not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

SEE ALSO

       less(1), more(1), rigctld(1), hamlib(7)

COLOPHON

       Links  to  the  Hamlib Wiki, Git repository, release archives, and daily snapshot archives
       are available via hamlib.org ⟨http://www.hamlib.org⟩.