Provided by: sqlite-utils_3.26.1-1_all bug

NAME

       sqlite-utils - sqlite-utils documentation

       |PyPI|

       |Changelog|

       |CI|

       |License|

       CLI tool and Python utility functions for manipulating SQLite databases

       This  library  and  command-line  utility  helps  create SQLite databases from an existing
       collection of data.

       Most of the functionality is available as either a Python API or through the  sqlite-utils
       command-line tool.

       sqlite-utils  is  not  intended  to  be  a  full ORM: the focus is utility helpers to make
       creating the initial database and populating it with data as productive as possible.

       It is designed as a useful complement to Datasette.

CONTENTS

   Installation
       sqlite-utils is tested on Linux, macOS and Windows.

   Using Homebrew
       The sqlite-utils command-line tool can be installed on macOS using Homebrew:

          brew install sqlite-utils

       If you have it installed and want to upgrade to the most recent release, you can run:

          brew upgrade sqlite-utils

       Then run sqlite-utils --version to confirm the installed version.

   Using pip
       The sqlite-utils package on PyPI includes both the sqlite_utils  Python  library  and  the
       sqlite-utils command-line tool. You can install them using pip like so:

          pip install sqlite-utils

   Using pipx
       pipx  is  a  tool  for  installing  Python command-line applications in their own isolated
       environments. You can use pipx to install the sqlite-utils command-line tool like this:

          pipx install sqlite-utils

   sqlite-utils command-line tool
       The sqlite-utils command-line tool can be used to manipulate SQLite databases in a  number
       of different ways.

       Once  installed,  the  tool  should be available as sqlite-utils. It can also be run using
       python -m sqlite_utils.

       • Running SQL queriesReturning JSONNewline-delimited JSONJSON arraysBinary data in JSONNested JSON valuesReturning CSV or TSVTable-formatted outputReturning raw data, such as binary contentUsing named parametersUPDATE, INSERT and DELETESQLite extensionsAttaching additional databasesQuerying data directly using an in-memory databaseRunning queries directly against CSV or JSONExplicitly specifying the formatJoining in-memory data against existing databases using --attach--schema, --analyze, --dump and --saveReturning all rows in a tableListing tablesListing viewsListing indexesListing triggersShowing the schemaAnalyzing tablesSaving the analyzed table detailsCreating an empty databaseInserting JSON dataInserting binary dataInserting newline-delimited JSONFlattening nested JSON objectsInserting CSV or TSV dataAlternative delimiters and quote charactersCSV files without a header rowInserting unstructured data with --lines and --textApplying conversions while inserting data--convert with --lines--convert with --textInsert-replacing dataUpserting dataExecuting SQL in bulkInserting data from filesConverting data in columnsImporting additional modulesUsing a convert() function to execute initializationsqlite-utils convert recipesSaving the result to a different columnConverting a column into multiple columnsCreating tablesDropping tablesTransforming tablesAdding a primary key to a rowid tableExtracting columns into a separate tableCreating viewsDropping viewsAdding columnsAdding columns automatically on insert/updateAdding foreign key constraintsAdding multiple foreign keys at onceAdding indexes for all foreign keysSetting defaults and not null constraintsCreating indexesConfiguring full-text searchExecuting searchesEnabling cached countsOptimizing index usage with ANALYZEVacuumOptimizeWAL modeDumping the database to SQLLoading SQLite extensionsSpatiaLite helpersAdding spatial indexes

   Running SQL queries
       The sqlite-utils query command lets you run queries directly  against  a  SQLite  database
       file. This is the default subcommand, so the following two examples work the same way:

          $ sqlite-utils query dogs.db "select * from dogs"
          $ sqlite-utils dogs.db "select * from dogs"

   Returning JSON
       The default format returned for queries is JSON:

          $ sqlite-utils dogs.db "select * from dogs"
          [{"id": 1, "age": 4, "name": "Cleo"},
           {"id": 2, "age": 2, "name": "Pancakes"}]

   Newline-delimited JSON
       Use --nl to get back newline-delimited JSON objects:

          $ sqlite-utils dogs.db "select * from dogs" --nl
          {"id": 1, "age": 4, "name": "Cleo"}
          {"id": 2, "age": 2, "name": "Pancakes"}

   JSON arrays
       You can use --arrays to request arrays instead of objects:

          $ sqlite-utils dogs.db "select * from dogs" --arrays
          [[1, 4, "Cleo"],
           [2, 2, "Pancakes"]]

       You can also combine --arrays and --nl:

          $ sqlite-utils dogs.db "select * from dogs" --arrays --nl
          [1, 4, "Cleo"]
          [2, 2, "Pancakes"]

       If  you  want  to  pretty-print  the  output  further,  you  can  pipe  it  through python
       -mjson.tool:

          $ sqlite-utils dogs.db "select * from dogs" | python -mjson.tool
          [
              {
                  "id": 1,
                  "age": 4,
                  "name": "Cleo"
              },
              {
                  "id": 2,
                  "age": 2,
                  "name": "Pancakes"
              }
          ]

   Binary data in JSON
       Binary strings are not valid JSON, so BLOB columns containing binary data will be returned
       as a JSON object containing base64 encoded data, that looks like this:

          $ sqlite-utils dogs.db "select name, content from images" | python -mjson.tool
          [
              {
                  "name": "transparent.gif",
                  "content": {
                      "$base64": true,
                      "encoded": "R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7"
                  }
              }
          ]

   Nested JSON values
       If one of your columns contains JSON, by default it will be returned as an escaped string:

          $ sqlite-utils dogs.db "select * from dogs" | python -mjson.tool
          [
              {
                  "id": 1,
                  "name": "Cleo",
                  "friends": "[{\"name\": \"Pancakes\"}, {\"name\": \"Bailey\"}]"
              }
          ]

       You  can  use the --json-cols option to automatically detect these JSON columns and output
       them as nested JSON data:

          $ sqlite-utils dogs.db "select * from dogs" --json-cols | python -mjson.tool
          [
              {
                  "id": 1,
                  "name": "Cleo",
                  "friends": [
                      {
                          "name": "Pancakes"
                      },
                      {
                          "name": "Bailey"
                      }
                  ]
              }
          ]

   Returning CSV or TSV
       You can use the --csv option to return results as CSV:

          $ sqlite-utils dogs.db "select * from dogs" --csv
          id,age,name
          1,4,Cleo
          2,2,Pancakes

       This will default to including the column names as a header row. To exclude  the  headers,
       use --no-headers:

          $ sqlite-utils dogs.db "select * from dogs" --csv --no-headers
          1,4,Cleo
          2,2,Pancakes

       Use --tsv instead of --csv to get back tab-separated values:

          $ sqlite-utils dogs.db "select * from dogs" --tsv
          id  age     name
          1   4       Cleo
          2   2       Pancakes

   Table-formatted output
       You can use the --table option (or -t shortcut) to output query results as a table:

          $ sqlite-utils dogs.db "select * from dogs" --table
            id    age  name
          ----  -----  --------
             1      4  Cleo
             2      2  Pancakes

       You  can  use  the  --fmt  option  to specify different table formats, for example rst for
       reStructuredText:

          $ sqlite-utils dogs.db "select * from dogs" --fmt rst
          ====  =====  ========
            id    age  name
          ====  =====  ========
             1      4  Cleo
             2      2  Pancakes
          ====  =====  ========

       Available --fmt options are:

       • fancy_gridfancy_outlinegithubgridhtmljiralatexlatex_booktabslatex_longtablelatex_rawmediawikimoinmoinorgtblpipeplainprestoprettypsqlrstsimpletextiletsvunsafehtmlyoutrack

       This list can also be found by running sqlite-utils query --help.

   Returning raw data, such as binary content
       If your table contains binary data in a BLOB you  can  use  the  --raw  option  to  output
       specific columns directly to standard out.

       For  example, to retrieve a binary image from a BLOB column and store it in a file you can
       use the following:

          $ sqlite-utils photos.db "select contents from photos where id=1" --raw > myphoto.jpg

   Using named parameters
       You can pass named parameters to the query using -p:

          $ sqlite-utils query dogs.db "select :num * :num2" -p num 5 -p num2 6
          [{":num * :num2": 30}]

       These will be correctly quoted and escaped in the SQL  query,  providing  a  safe  way  to
       combine other values with SQL.

   UPDATE, INSERT and DELETE
       If  you  execute  an  UPDATE, INSERT or DELETE query the command will return the number of
       affected rows:

          $ sqlite-utils dogs.db "update dogs set age = 5 where name = 'Cleo'"
          [{"rows_affected": 1}]

   SQLite extensions
       You can load SQLite extension modules  using  the  --load-extension  option,  see  Loading
       SQLite extensions.

          $ sqlite-utils dogs.db "select spatialite_version()" --load-extension=spatialite
          [{"spatialite_version()": "4.3.0a"}]

   Attaching additional databases
       SQLite  supports  cross-database SQL queries, which can join data from tables in more than
       one database file.

       You can attach one or more additional databases using the --attach  option,  providing  an
       alias to use for that database and the path to the SQLite file on disk.

       This  example  attaches  the books.db database under the alias books and then runs a query
       that combines data from that database with the default dogs.db database:

          sqlite-utils dogs.db --attach books books.db \
             'select * from sqlite_master union all select * from books.sqlite_master'

   Querying data directly using an in-memory database
       The sqlite-utils memory command works similar to sqlite-utils query,  but  allows  you  to
       execute queries against an in-memory database.

       You  can  also  pass  this command CSV or JSON files which will be loaded into a temporary
       in-memory table, allowing you to execute SQL against that data without a separate step  to
       first convert it to SQLite.

       Without  any  extra  arguments,  this  command executes SQL against the in-memory database
       directly:

          $ sqlite-utils memory 'select sqlite_version()'
          [{"sqlite_version()": "3.35.5"}]

       It takes all of the same output formatting options as sqlite-utils query: --csv and  --csv
       and --table and --nl:

          $ sqlite-utils memory 'select sqlite_version()' --csv
          sqlite_version()
          3.35.5
          $ sqlite-utils memory 'select sqlite_version()' --fmt grid
          +--------------------+
          | sqlite_version()   |
          +====================+
          | 3.35.5             |
          +--------------------+

   Running queries directly against CSV or JSON
       If  you  have data in CSV or JSON format you can load it into an in-memory SQLite database
       and run queries against it directly in a single command  using  sqlite-utils  memory  like
       this:

          $ sqlite-utils memory data.csv "select * from data"

       You  can  pass  multiple  files  to the command if you want to run joins between data from
       different files:

          $ sqlite-utils memory one.csv two.json "select * from one join two on one.id = two.other_id"

       If your data is JSON it should be the same format supported  by  the  sqlite-utils  insert
       command  -  so  either  a  single  JSON object (treated as a single row) or a list of JSON
       objects.

       CSV data can be comma- or tab- delimited.

       The in-memory tables will be named after the files without their extensions. The tool also
       sets up aliases for those tables (using SQL views) as t1, t2 and so on, or you can use the
       alias t to refer to the first table:

          $ sqlite-utils memory example.csv "select * from t"

       If two files have the same name they will be assigned a numeric suffix:

          $ sqlite-utils memory foo/data.csv bar/data.csv "select * from data_2"

       To read from standard input, use either - or stdin as the filename - then use stdin  or  t
       or t1 as the table name:

          $ cat example.csv | sqlite-utils memory - "select * from stdin"

       Incoming  CSV  data  will be assumed to use utf-8. If your data uses a different character
       encoding you can specify that with --encoding:

          $ cat example.csv | sqlite-utils memory - "select * from stdin" --encoding=latin-1

       If you are joining across multiple CSV files they must all use the same encoding.

       Column types will be automatically detected in CSV or TSV data, using the  same  mechanism
       as   --detect-types   described   in   Inserting  CSV  or  TSV  data.  You  can  pass  the
       --no-detect-types option to disable this automatic type detection and treat  all  CSV  and
       TSV columns as TEXT.

   Explicitly specifying the format
       By default, sqlite-utils memory will attempt to detect the incoming data format (JSON, TSV
       or CSV) automatically.

       You can instead specify an explicit format by adding a  :csv,  :tsv,  :json  or  :nl  (for
       newline-delimited JSON) suffix to the filename. For example:

          $ sqlite-utils memory one.dat:csv two.dat:nl "select * from one union select * from two"

       Here  the  contents  of one.dat will be treated as CSV and the contents of two.dat will be
       treated as newline-delimited JSON.

       To explicitly specify the format for data piped into  the  tool  on  standard  input,  use
       stdin:format - for example:

          $ cat one.dat | sqlite-utils memory stdin:csv "select * from stdin"

   Joining in-memory data against existing databases using --attach
       The  attach  option  can  be  used  to  attach database files to the in-memory connection,
       enabling joins between in-memory data loaded from a file and  tables  in  existing  SQLite
       database files. An example:

          $ echo "id\n1\n3\n5" | sqlite-utils memory - --attach trees trees.db \
            "select * from trees.trees where rowid in (select id from stdin)"

       Here  the  --attach  trees  trees.db  option makes the trees.db database available with an
       alias of trees.

       select * from trees.trees where ... can then query the trees table in that database.

       The CSV data that was piped into the script is available in the stdin table, so  ... where
       rowid in (select id from stdin) can be used to return rows from the trees table that match
       IDs that were piped in as CSV content.

   --schema, --analyze, --dump and --save
       To see the in-memory database schema that would be used for a file or for multiple  files,
       use --schema:

          % sqlite-utils memory dogs.csv --schema
          CREATE TABLE [dogs] (
              [id] INTEGER,
              [age] INTEGER,
              [name] TEXT
          );
          CREATE VIEW t1 AS select * from [dogs];
          CREATE VIEW t AS select * from [dogs];

       You can run the equivalent of the analyze-tables command using --analyze:

          % sqlite-utils memory dogs.csv --analyze
          dogs.id: (1/3)

            Total rows: 2
            Null rows: 0
            Blank rows: 0

            Distinct values: 2

          dogs.name: (2/3)

            Total rows: 2
            Null rows: 0
            Blank rows: 0

            Distinct values: 2

          dogs.age: (3/3)

            Total rows: 2
            Null rows: 0
            Blank rows: 0

            Distinct values: 2

       You  can  output  SQL  that  will  both create the tables and insert the full data used to
       populate the in-memory database using --dump:

          % sqlite-utils memory dogs.csv --dump
          BEGIN TRANSACTION;
          CREATE TABLE [dogs] (
              [id] INTEGER,
              [age] INTEGER,
              [name] TEXT
          );
          INSERT INTO "dogs" VALUES('1','4','Cleo');
          INSERT INTO "dogs" VALUES('2','2','Pancakes');
          CREATE VIEW t1 AS select * from [dogs];
          CREATE VIEW t AS select * from [dogs];
          COMMIT;

       Passing --save other.db will instead use that SQL to populate a new database file:

          % sqlite-utils memory dogs.csv --save dogs.db

       These features are mainly intended as debugging tools  -  for  much  more  finely  grained
       control  over how data is inserted into a SQLite database file see Inserting JSON data and
       Inserting CSV or TSV data.

   Returning all rows in a table
       You can return every row in a specified table using the rows command:

          $ sqlite-utils rows dogs.db dogs
          [{"id": 1, "age": 4, "name": "Cleo"},
           {"id": 2, "age": 2, "name": "Pancakes"}]

       This command accepts the same output options as query -  so  you  can  pass  --nl,  --csv,
       --tsv, --no-headers, --table and --fmt.

       You can use the -c option to specify a subset of columns to return:

          $ sqlite-utils rows dogs.db dogs -c age -c name
          [{"age": 4, "name": "Cleo"},
           {"age": 2, "name": "Pancakes"}]

       You can filter rows using a where clause with the --where option:

          $ sqlite-utils rows dogs.db dogs -c name --where 'name = "Cleo"'
          [{"name": "Cleo"}]

       Or pass named parameters using --where in combination with -p:

          $ sqlite-utils rows dogs.db dogs -c name --where 'name = :name' -p name Cleo
          [{"name": "Cleo"}]

       Use --limit N to only return the first N rows. Use --offset N to return rows starting from
       the specified offset.

   Listing tables
       You can list the names of tables in a database using the tables command:

          $ sqlite-utils tables mydb.db
          [{"table": "dogs"},
           {"table": "cats"},
           {"table": "chickens"}]

       You can output this list in CSV using the --csv or --tsv options:

          $ sqlite-utils tables mydb.db --csv --no-headers
          dogs
          cats
          chickens

       If you just want to see the FTS4 tables, you can use --fts4 (or --fts5 for FTS5 tables):

          $ sqlite-utils tables docs.db --fts4
          [{"table": "docs_fts"}]

       Use --counts to include a count of the number of rows in each table:

          $ sqlite-utils tables mydb.db --counts
          [{"table": "dogs", "count": 12},
           {"table": "cats", "count": 332},
           {"table": "chickens", "count": 9}]

       Use --columns to include a list of columns in each table:

          $ sqlite-utils tables dogs.db --counts --columns
          [{"table": "Gosh", "count": 0, "columns": ["c1", "c2", "c3"]},
           {"table": "Gosh2", "count": 0, "columns": ["c1", "c2", "c3"]},
           {"table": "dogs", "count": 2, "columns": ["id", "age", "name"]}]

       Use --schema to include the schema of each table:

          $ sqlite-utils tables dogs.db --schema --table
          table    schema
          -------  -----------------------------------------------
          Gosh     CREATE TABLE Gosh (c1 text, c2 text, c3 text)
          Gosh2    CREATE TABLE Gosh2 (c1 text, c2 text, c3 text)
          dogs     CREATE TABLE [dogs] (
                     [id] INTEGER,
                     [age] INTEGER,
                     [name] TEXT)

       The --nl, --csv, --tsv, --table and --fmt options are also available.

   Listing views
       The views command shows any views defined in the database:

          $ sqlite-utils views sf-trees.db --table --counts --columns --schema
          view         count  columns               schema
          ---------  -------  --------------------  --------------------------------------------------------------
          demo_view   189144  ['qSpecies']          CREATE VIEW demo_view AS select qSpecies from Street_Tree_List
          hello            1  ['sqlite_version()']  CREATE VIEW hello as select sqlite_version()

       It takes the same options as the tables command:

       • --columns--schema--counts--nl--csv--tsv--table

   Listing indexes
       The indexes command lists any indexes configured for the database:

          $ sqlite-utils indexes covid.db --table
          table                             index_name                                                seqno    cid  name                 desc  coll      key
          --------------------------------  ------------------------------------------------------  -------  -----  -----------------  ------  ------  -----
          johns_hopkins_csse_daily_reports  idx_johns_hopkins_csse_daily_reports_combined_key             0     12  combined_key            0  BINARY      1
          johns_hopkins_csse_daily_reports  idx_johns_hopkins_csse_daily_reports_country_or_region        0      1  country_or_region       0  BINARY      1
          johns_hopkins_csse_daily_reports  idx_johns_hopkins_csse_daily_reports_province_or_state        0      2  province_or_state       0  BINARY      1
          johns_hopkins_csse_daily_reports  idx_johns_hopkins_csse_daily_reports_day                      0      0  day                     0  BINARY      1
          ny_times_us_counties              idx_ny_times_us_counties_date                                 0      0  date                    1  BINARY      1
          ny_times_us_counties              idx_ny_times_us_counties_fips                                 0      3  fips                    0  BINARY      1
          ny_times_us_counties              idx_ny_times_us_counties_county                               0      1  county                  0  BINARY      1
          ny_times_us_counties              idx_ny_times_us_counties_state                                0      2  state                   0  BINARY      1

       It shows indexes across all tables. To see indexes for specific tables, list  those  after
       the database:

          $ sqlite-utils indexes covid.db johns_hopkins_csse_daily_reports --table

       The command defaults to only showing the columns that are explicitly part of the index. To
       also include auxiliary columns use the --aux option - these columns will be listed with  a
       key of 0.

       The command takes the same format options as the tables and views commands.

   Listing triggers
       The triggers command shows any triggers configured for the database:

          $ sqlite-utils triggers global-power-plants.db --table
          name             table      sql
          ---------------  ---------  -----------------------------------------------------------------
          plants_insert    plants     CREATE TRIGGER [plants_insert] AFTER INSERT ON [plants]
                                      BEGIN
                                          INSERT OR REPLACE INTO [_counts]
                                          VALUES (
                                            'plants',
                                            COALESCE(
                                              (SELECT count FROM [_counts] WHERE [table] = 'plants'),
                                            0
                                            ) + 1
                                          );
                                      END

       It  defaults  to showing triggers for all tables. To see triggers for one or more specific
       tables pass their names as arguments:

          $ sqlite-utils triggers global-power-plants.db plants

       The command takes the same format options as the tables and views commands.

   Showing the schema
       The sqlite-utils schema command shows the full SQL schema for the database:

          $ sqlite-utils schema dogs.db
          CREATE TABLE "dogs" (
              [id] INTEGER PRIMARY KEY,
              [name] TEXT
          );

       This will show the schema for every table and index in the database. To  view  the  schema
       just for a specified subset of tables pass those as additional arguments:

          $ sqlite-utils schema dogs.db dogs chickens
          ...

   Analyzing tables
       When working with a new database it can be useful to get an idea of the shape of the data.
       The sqlite-utils analyze-tables command inspects specified  tables  (or  all  tables)  and
       calculates some useful details about each of the columns in those tables.

       To inspect the tags table in the github.db database, run the following:

          $ sqlite-utils analyze-tables github.db tags
          tags.repo: (1/3)

            Total rows: 261
            Null rows: 0
            Blank rows: 0

            Distinct values: 14

            Most common:
              88: 107914493
              75: 140912432
              27: 206156866

            Least common:
              1: 209590345
              2: 206649770
              2: 303218369

          tags.name: (2/3)

            Total rows: 261
            Null rows: 0
            Blank rows: 0

            Distinct values: 175

            Most common:
              10: 0.2
              9: 0.1
              7: 0.3

            Least common:
              1: 0.1.1
              1: 0.11.1
              1: 0.1a2

          tags.sha: (3/3)

            Total rows: 261
            Null rows: 0
            Blank rows: 0

            Distinct values: 261

       For each column this tool displays the number of null rows, the number of blank rows (rows
       that contain an empty string), the number of distinct values and, for columns that are not
       entirely distinct, the most common and least common values.

       If you do not specify any tables every table in the database will be analyzed:

          $ sqlite-utils analyze-tables github.db

       If you wish to analyze one or more specific columns, use the -c option:

          $ sqlite-utils analyze-tables github.db tags -c sha

   Saving the analyzed table details
       analyze-tables  can  take  quite a while to run for large database files. You can save the
       results of the analysis to a database  table  called  _analyze_tables_  using  the  --save
       option:

          $ sqlite-utils analyze-tables github.db --save

       The _analyze_tables_ table has the following schema:

          CREATE TABLE [_analyze_tables_] (
              [table] TEXT,
              [column] TEXT,
              [total_rows] INTEGER,
              [num_null] INTEGER,
              [num_blank] INTEGER,
              [num_distinct] INTEGER,
              [most_common] TEXT,
              [least_common] TEXT,
              PRIMARY KEY ([table], [column])
          );

       The  most_common  and  least_common  columns  will  contain nested JSON arrays of the most
       common and least common values that look like this:

          [
              ["Del Libertador, Av", 5068],
              ["Alberdi Juan Bautista Av.", 4612],
              ["Directorio Av.", 4552],
              ["Rivadavia, Av", 4532],
              ["Yerbal", 4512],
              ["Cosquín", 4472],
              ["Estado Plurinacional de Bolivia", 4440],
              ["Gordillo Timoteo", 4424],
              ["Montiel", 4360],
              ["Condarco", 4288]
          ]

   Creating an empty database
       You can create a new empty database file using the create-database command:

          $ sqlite-utils create-database empty.db

       To enable WAL mode on the newly created database add the --enable-wal option:

          $ sqlite-utils create-database empty.db --enable-wal

       To enable SpatiaLite metadata on a newly created database, add the --init-spatialite flag:

          $ sqlite-utils create-database empty.db --init-spatialite

       That will look for SpatiaLite in a set of predictable locations. To load it from somewhere
       else, use the --load-extension option:

          $ sqlite-utils create-database empty.db --init-spatialite --load-extension /path/to/spatialite.so

   Inserting JSON data
       If  you  have  data as JSON, you can use sqlite-utils insert tablename to insert it into a
       database. The table will be created with the correct (automatically detected)  columns  if
       it does not already exist.

       You  can  pass  in a single JSON object or a list of JSON objects, either as a filename or
       piped directly to standard-in (by using - as the filename).

       Here's the simplest possible example:

          $ echo '{"name": "Cleo", "age": 4}' | sqlite-utils insert dogs.db dogs -

       To specify a column as the primary key, use --pk=column_name.

       To create a compound primary key across more than one column, use --pk multiple times.

       If you feed it a JSON list it will insert multiple  records.  For  example,  if  dogs.json
       looks like this:

          [
              {
                  "id": 1,
                  "name": "Cleo",
                  "age": 4
              },
              {
                  "id": 2,
                  "name": "Pancakes",
                  "age": 2
              },
              {
                  "id": 3,
                  "name": "Toby",
                  "age": 6
              }
          ]

       You  can  import all three records into an automatically created dogs table and set the id
       column as the primary key like so:

          $ sqlite-utils insert dogs.db dogs dogs.json --pk=id

       You can skip inserting any records that have a  primary  key  that  already  exists  using
       --ignore:

          $ sqlite-utils insert dogs.db dogs dogs.json --ignore

       You  can  delete all the existing rows in the table before inserting the new records using
       --truncate:

          $ sqlite-utils insert dogs.db dogs dogs.json --truncate

       You can add the --analyze option to run ANALYZE against the table after the rows have been
       inserted.

   Inserting binary data
       You  can  insert binary data into a BLOB column by first encoding it using base64 and then
       structuring it like this:

          [
              {
                  "name": "transparent.gif",
                  "content": {
                      "$base64": true,
                      "encoded": "R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7"
                  }
              }
          ]

   Inserting newline-delimited JSON
       You can also import newline-delimited JSON using the --nl option:

          $ echo '{"id": 1, "name": "Cleo"}
          {"id": 2, "name": "Suna"}' | sqlite-utils insert creatures.db creatures - --nl

       Newline-delimited JSON consists of full JSON objects separated by newlines.

       If you are processing data using jq  you  can  use  the  jq  -c  option  to  output  valid
       newline-delimited JSON.

       Since  Datasette  can  export  newline-delimited  JSON,  you can combine the Datasette and
       sqlite-utils like so:

          $ curl -L "https://latest.datasette.io/fixtures/facetable.json?_shape=array&_nl=on" \
              | sqlite-utils insert nl-demo.db facetable - --pk=id --nl

       You can also pipe sqlite-utils together to create a new SQLite  database  file  containing
       the results of a SQL query against another database:

          $ sqlite-utils sf-trees.db \
              "select TreeID, qAddress, Latitude, Longitude from Street_Tree_List" --nl \
            | sqlite-utils insert saved.db trees - --nl
          # This creates saved.db with a single table called trees:
          $ sqlite-utils saved.db "select * from trees limit 5" --csv
          TreeID,qAddress,Latitude,Longitude
          141565,501X Baker St,37.7759676911831,-122.441396661871
          232565,940 Elizabeth St,37.7517102172731,-122.441498017841
          119263,495X Lakeshore Dr,,
          207368,920 Kirkham St,37.760210314285,-122.47073935813
          188702,1501 Evans Ave,37.7422086702947,-122.387293152263

   Flattening nested JSON objects
       sqlite-utils  insert  and sqlite-utils memory both expect incoming JSON data to consist of
       an array of JSON objects, where the top-level keys of each object will become  columns  in
       the created database table.

       If your data is nested you can use the --flatten option to create columns that are derived
       from the nested data.

       Consider this example document, in a file called log.json:

          {
              "httpRequest": {
                  "latency": "0.112114537s",
                  "requestMethod": "GET",
                  "requestSize": "534",
                  "status": 200
              },
              "insertId": "6111722f000b5b4c4d4071e2",
              "labels": {
                  "service": "datasette-io"
              }
          }

       Inserting this into a table using sqlite-utils insert logs.db logs log.json will create  a
       table with the following schema:

          CREATE TABLE [logs] (
             [httpRequest] TEXT,
             [insertId] TEXT,
             [labels] TEXT
          );

       With  the  --flatten option columns will be created using topkey_nextkey column names - so
       running sqlite-utils insert logs.db logs log.json  --flatten  will  create  the  following
       schema instead:

          CREATE TABLE [logs] (
             [httpRequest_latency] TEXT,
             [httpRequest_requestMethod] TEXT,
             [httpRequest_requestSize] TEXT,
             [httpRequest_status] INTEGER,
             [insertId] TEXT,
             [labels_service] TEXT
          );

   Inserting CSV or TSV data
       If your data is in CSV format, you can insert it using the --csv option:

          $ sqlite-utils insert dogs.db dogs docs.csv --csv

       For tab-delimited data, use --tsv:

          $ sqlite-utils insert dogs.db dogs dogs.tsv --tsv

       Data  is  expected  to  be  encoded as Unicode UTF-8. If your data is an another character
       encoding you can specify it using the --encoding option:

          $ sqlite-utils insert dogs.db dogs dogs.tsv --tsv --encoding=latin-1

       A progress bar is displayed when inserting data from a file. You can hide the progress bar
       using the --silent option.

       By  default  every  column  inserted  from  a  CSV  or  TSV  file will be of type TEXT. To
       automatically detect column types - resulting in a mix of TEXT, INTEGER and FLOAT columns,
       use the --detect-types option (or its shortcut -d).

       For example, given a creatures.csv file containing this:

          name,age,weight
          Cleo,6,45.5
          Dori,1,3.5

       The following command:

          $ sqlite-utils insert creatures.db creatures creatures.csv --csv --detect-types

       Will produce this schema:

          $ sqlite-utils schema creatures.db
          CREATE TABLE "creatures" (
             [name] TEXT,
             [age] INTEGER,
             [weight] FLOAT
          );

       You  can set the SQLITE_UTILS_DETECT_TYPES environment variable if you want --detect-types
       to be the default behavior:

          $ export SQLITE_UTILS_DETECT_TYPES=1

   Alternative delimiters and quote characters
       If your file uses a delimiter other than , or a quote  character  other  than  "  you  can
       attempt to detect delimiters or you can specify them explicitly.

       The --sniff option can be used to attempt to detect the delimiters:

          sqlite-utils insert dogs.db dogs dogs.csv --sniff

       Alternatively, you can specify them using the --delimiter and --quotechar options.

       Here's a CSV file that uses ; for delimiters and the | symbol for quote characters:

          name;description
          Cleo;|Very fine; a friendly dog|
          Pancakes;A local corgi

       You can import that using:

          $ sqlite-utils insert dogs.db dogs dogs.csv --delimiter=";" --quotechar="|"

       Passing  --delimiter,  --quotechar  or  --sniff  implies  --csv, so you can omit the --csv
       option.

   CSV files without a header row
       The first row of any CSV or TSV file is expected to contain the names of  the  columns  in
       that file.

       If  your  file  does  not include this row, you can use the --no-headers option to specify
       that the tool should not use that fist row as headers.

       If you do this, the table  will  be  created  with  column  names  called  untitled_1  and
       untitled_2  and  so  on.  You  can  then  rename them using the sqlite-utils transform ...
       --rename command, see Transforming tables.

   Inserting unstructured data with --lines and --text
       If you have an unstructured file you can insert its contents into a table  with  a  single
       line  column  containing  each line from the file using --lines. This can be useful if you
       intend to further analyze those lines using SQL string functions or sqlite-utils convert:

          $ sqlite-utils insert logs.db loglines logfile.log --lines

       This will produce the following schema:

          CREATE TABLE [loglines] (
             [line] TEXT
          );

       You can also insert the entire contents of the file into a single column called text using
       --text:

          $ sqlite-utils insert content.db content file.txt --text

       The schema here will be:

          CREATE TABLE [content] (
             [text] TEXT
          );

   Applying conversions while inserting data
       The  --convert  option  can be used to apply a Python conversion function to imported data
       before it is inserted into the database.  It  works  in  a  similar  way  to  sqlite-utils
       convert.

       Your  Python  function  will be passed a dictionary called row for each item that is being
       imported. You can modify that dictionary and return it - or return a fresh dictionary - to
       change the data that will be inserted.

       Given a JSON file called dogs.json containing this:

          [
              {"id": 1, "name": "Cleo"},
              {"id": 2, "name": "Pancakes"}
          ]

       The  following  command  will insert that data and add an is_good column set to 1 for each
       dog:

          $ sqlite-utils insert dogs.db dogs dogs.json --convert 'row["is_good"] = 1'

       The --convert option also works with the --csv, --tsv and --nl insert options.

       As with sqlite-utils convert you can use --import to import additional Python modules, see
       Importing additional modules for details.

       You  can  also  pass code that runs some initialization steps and defines a convert(value)
       function, see Using a convert() function to execute initialization.

   --convert with --lines
       Things work slightly differently when combined with the --lines or --text options.

       With --lines, instead of being passed a row dictionary your function will be passed a line
       string  representing each line of the input. Given a file called access.log containing the
       following:

          INFO:     127.0.0.1:60581 - GET / HTTP/1.1 200 OK
          INFO:     127.0.0.1:60581 - GET /foo/-/static/app.css?cead5a HTTP/1.1 200 OK

       You could convert it into structured data like so:

          $ sqlite-utils insert logs.db loglines access.log --convert '
          type, source, _, verb, path, _, status, _ = line.split()
          return {
              "type": type,
              "source": source,
              "verb": verb,
              "path": path,
              "status": status,
          }' --lines

       The resulting table would look like this:

                ┌──────┬─────────────────┬──────┬──────────────────────────────┬────────┐
                │type  │ source          │ verb │ path                         │ status │
                ├──────┼─────────────────┼──────┼──────────────────────────────┼────────┤
                │INFO: │ 127.0.0.1:60581 │ GET  │ /                            │ 200    │
                ├──────┼─────────────────┼──────┼──────────────────────────────┼────────┤
                │INFO: │ 127.0.0.1:60581 │ GET  │ /foo/-/static/app.css?cead5a │ 200    │
                └──────┴─────────────────┴──────┴──────────────────────────────┴────────┘

   --convert with --text
       With  --text  the  entire input to the command will be made available to the function as a
       variable called text.

       The function can return a single dictionary which will be inserted as a single row, or  it
       can return a list or iterator of dictionaries, each of which will be inserted.

       Here's how to use --convert and --text to insert one record per word in the input:

          $ echo 'A bunch of words' | sqlite-utils insert words.db words - \
              --text --convert '({"word": w} for w in text.split())'

       The result looks like this:

          $ sqlite-utils dump words.db
          BEGIN TRANSACTION;
          CREATE TABLE [words] (
             [word] TEXT
          );
          INSERT INTO "words" VALUES('A');
          INSERT INTO "words" VALUES('bunch');
          INSERT INTO "words" VALUES('of');
          INSERT INTO "words" VALUES('words');
          COMMIT;

   Insert-replacing data
       The --replace option to insert causes any existing records with the same primary key to be
       replaced entirely by the new records.

       To replace a dog with in ID of 2 with a new record, run the following:

          $ echo '{"id": 2, "name": "Pancakes", "age": 3}' | \
              sqlite-utils insert dogs.db dogs - --pk=id --replace

   Upserting data
       Upserting is update-or-insert. If a row exists with the specified primary key the provided
       columns will be updated. If no row exists that row will be created.

       Unlike  insert  --replace,  an upsert will ignore any column values that exist but are not
       present in the upsert document.

       For example:

          $ echo '{"id": 2, "age": 4}' | \
              sqlite-utils upsert dogs.db dogs - --pk=id

       This will update the dog with an ID of 2 to have an age of 4, creating a new record  (with
       a null name) if one does not exist. If a row DOES exist the name will be left as-is.

       The  command  will  fail  if  you  reference  columns  that  do not exist on the table. To
       automatically create missing columns, use the --alter option.

       NOTE:
          upsert in sqlite-utils 1.x worked like insert ... --replace does in 2.x. See issue  #66
          for details of this change.

   Executing SQL in bulk
       If  you  have  a  JSON, newline-delimited JSON, CSV or TSV file you can execute a bulk SQL
       query using each of the records in that file using the sqlite-utils bulk command.

       The command takes the database file, the SQL  to  be  executed  and  the  file  containing
       records to be used when evaluating the SQL query.

       The SQL query should include :named parameters that match the keys in the records.

       For example, given a chickens.csv CSV file containing the following:

          id,name
          1,Blue
          2,Snowy
          3,Azi
          4,Lila
          5,Suna
          6,Cardi

       You could insert those rows into a pre-created chickens table like so:

          $ sqlite-utils bulk chickens.db \
            'insert into chickens (id, name) values (:id, :name)' \
            chickens.csv --csv

       This command takes the same options as the sqlite-utils insert command - so it defaults to
       expecting JSON but can accept other formats using --csv or --tsv or --nl or other  options
       described above.

       By  default  all  of  the  SQL queries will be executed in a single transaction. To commit
       every 20 records, use --batch-size 20.

   Inserting data from files
       The insert-files command can be used to insert the content  of  files,  along  with  their
       metadata, into a SQLite table.

       Here's  an  example  that  inserts  all  of  the GIF files in the current directory into a
       gifs.db database, placing the file contents in an images table:

          $ sqlite-utils insert-files gifs.db images *.gif

       You can also pass one or more directories, in which case every file in  those  directories
       will be added recursively:

          $ sqlite-utils insert-files gifs.db images path/to/my-gifs

       By default this command will create a table with the following schema:

          CREATE TABLE [images] (
              [path] TEXT PRIMARY KEY,
              [content] BLOB,
              [size] INTEGER
          );

       Content  will be treated as binary by default and stored in a BLOB column. You can use the
       --text option to store that content in a TEXT column instead.

       You can customize the schema using one or  more  -c  options.  For  a  table  schema  that
       includes  just  the  path,  MD5 hash and last modification time of the file, you would use
       this:

          $ sqlite-utils insert-files gifs.db images *.gif -c path -c md5 -c mtime --pk=path

       This will result in the following schema:

          CREATE TABLE [images] (
              [path] TEXT PRIMARY KEY,
              [md5] TEXT,
              [mtime] FLOAT
          );

       Note that there's no content column here at all - if you specify custom columns  using  -c
       you need to include -c content to create that column.

       You  can  change  the name of one of these columns using a -c colname:coldef parameter. To
       rename the mtime column to last_modified you would use this:

          $ sqlite-utils insert-files gifs.db images *.gif \
              -c path -c md5 -c last_modified:mtime --pk=path

       You can pass --replace or --upsert to indicate what should happen if you try to  insert  a
       file  with  an existing primary key. Pass --alter to cause any missing columns to be added
       to the table.

       The full list of column definitions you can use is as follows:

       name   The name of the file, e.g. cleo.jpg

       path   The path to the file relative to the root folder, e.g. pictures/cleo.jpg

       fullpath
              The fully resolved path to the image, e.g. /home/simonw/pictures/cleo.jpg

       sha256 The SHA256 hash of the file contents

       md5    The MD5 hash of the file contents

       mode   The permission bits of the file, as an integer - you may want to  convert  this  to
              octal

       content
              The binary file contents, which will be stored as a BLOB

       content_text
              The text file contents, which will be stored as TEXT

       mtime  The modification time of the file, as floating point seconds since the Unix epoch

       ctime  The creation time of the file, as floating point seconds since the Unix epoch

       mtime_int
              The modification time as an integer rather than a float

       ctime_int
              The creation time as an integer rather than a float

       mtime_iso
              The modification time as an ISO timestamp, e.g. 2020-07-27T04:24:06.654246

       ctime_iso
              The creation time is an ISO timestamp

       size   The integer size of the file in bytes

       stem   The filename without the extension - for file.txt.gz this would be file.txt

       suffix The file extension - for file.txt.gz this would be .gz

       You can insert data piped from standard input like this:

          cat dog.jpg | sqlite-utils insert-files dogs.db pics - --name=dog.jpg

       The  - argument indicates data should be read from standard input. The string passed using
       the --name option will be used for the file name and path values.

       When inserting data  from  standard  input  only  the  following  column  definitions  are
       supported: name, path, content, content_text, sha256, md5 and size.

   Converting data in columns
       The  convert command can be used to transform the data in a specified column - for example
       to parse a date string into an ISO timestamp, or to split a string of  tags  into  a  JSON
       array.

       The  command accepts a database, table, one or more columns and a string of Python code to
       be executed against the values from those columns. The following example would replace the
       values in the headline column in the articles table with an upper-case version:

          $ sqlite-utils convert content.db articles headline 'value.upper()'

       The  Python code is passed as a string. Within that Python code the value variable will be
       the value of the current column.

       The code you provide will be compiled into  a  function  that  takes  value  as  a  single
       argument.  If  you  break your function body into multiple lines the last line should be a
       return statement:

          $ sqlite-utils convert content.db articles headline '
          value = str(value)
          return value.upper()'

       Your code will be automatically wrapped in a function, but you can also define a  function
       called convert(value) which will be called, if available:

          $ sqlite-utils convert content.db articles headline '
          def convert(value):
              return value.upper()'

       Use a CODE value of - to read from standard input:

          $ cat mycode.py | sqlite-utils convert content.db articles headline -

       Where mycode.py contains a fragment of Python code that looks like this:

          def convert(value):
              return value.upper()

       The  conversion will be applied to every row in the specified table. You can limit that to
       just rows that match a WHERE clause using --where:

          $ sqlite-utils convert content.db articles headline 'value.upper()' \
              --where "headline like '%cat%'"

       You can include named parameters in your where clause and populate them using one or  more
       --param options:

          $ sqlite-utils convert content.db articles headline 'value.upper()' \
              --where "headline like :like" \
              --param like '%cat%'

       The  --dry-run  option will output a preview of the conversion against the first ten rows,
       without modifying the database.

   Importing additional modules
       You can specify Python modules that should be imported and made  available  to  your  code
       using  one  or  more  --import  options. This example uses the textwrap module to wrap the
       content column at 100 characters:

          $ sqlite-utils convert content.db articles content \
              '"\n".join(textwrap.wrap(value, 100))' \
              --import=textwrap

       This supports nested imports as well, for example to use ElementTree:

          $ sqlite-utils convert content.db articles content \
              'xml.etree.ElementTree.fromstring(value).attrib["title"]' \
              --import=xml.etree.ElementTree

   Using a convert() function to execute initialization
       In some cases you may need to execute one-off initialization code at the start of the run.
       You can do that by providing code that runs before defining your convert(value) function.

       The  following  example adds a new score column, then updates it to list a random number -
       after first seeding the random number generator to ensure that multiple runs  produce  the
       same results:

          $ sqlite-utils add-column content.db articles score float --not-null-default 1.0
          $ sqlite-utils convert content.db articles score '
          import random
          random.seed(10)

          def convert(value):
              global random
              return random.random()
          '

       Note  the  global  random line here. Due to the way the tool compiles Python code, this is
       necessary to ensure the random module is available within the convert() function.  If  you
       were to omit this you would see a NameError: name 'random' is not defined error.

   sqlite-utils convert recipes
       Various built-in recipe functions are available for common operations. These are:

       r.jsonsplit(value, delimiter=',', type=<class 'str'>)
              Convert a string like a,b,c into a JSON array ["a", "b", "c"]

              The delimiter parameter can be used to specify a different delimiter.

              The  type parameter can be set to float or int to produce a JSON array of different
              types, for example if the column's string value was 1.2,3,4.5 the following:

                 r.jsonsplit(value, type=float)

              Would produce an array like this: [1.2, 3.0, 4.5]

       r.parsedate(value, dayfirst=False, yearfirst=False, errors=None)
              Parse a date and convert it to ISO date format: yyyy-mm-dd

              In the case of dates such as 03/04/05 U.S. MM/DD/YY format is assumed - you can use
              dayfirst=True   or   yearfirst=True   to  change  how  these  ambiguous  dates  are
              interpreted.

              Use the errors= parameter to specify what  should  happen  if  a  value  cannot  be
              parsed.

              By  default, if any value cannot be parsed an error will be occurred and all values
              will be left as they were.

              Set errors=r.IGNORE to ignore any  values  that  cannot  be  parsed,  leaving  them
              unchanged.

              Set errors=r.SET_NULL to set any values that cannot be parsed to null.

       r.parsedatetime(value, dayfirst=False, yearfirst=False, errors=None)
              Parse a datetime and convert it to ISO datetime format: yyyy-mm-ddTHH:MM:SS

       These recipes can be used in the code passed to sqlite-utils convert like this:

          $ sqlite-utils convert my.db mytable mycolumn \
            'r.jsonsplit(value)'

       To use any of the documented parameters, do this:

          $ sqlite-utils convert my.db mytable mycolumn \
            'r.jsonsplit(value, delimiter=":")'

   Saving the result to a different column
       The --output and --output-type options can be used to save the result of the conversion to
       a separate column, which will be created if that column does not already exist:

          $ sqlite-utils convert content.db articles headline 'value.upper()' \
            --output headline_upper

       The type of the created column defaults to text,  but  a  different  column  type  can  be
       specified using --output-type. This example will create a new floating point column called
       id_as_a_float with a copy of each item's ID increased by 0.5:

          $ sqlite-utils convert content.db articles id 'float(value) + 0.5' \
            --output id_as_a_float \
            --output-type float

       You can drop the original column at the end of the operation by adding --drop.

   Converting a column into multiple columns
       Sometimes you may wish to convert a single  column  into  multiple  derived  columns.  For
       example,  you  may  have  a location column containing latitude,longitude values which you
       wish to split out into separate latitude and longitude columns.

       You can achieve this using the --multi option to sqlite-utils convert. This option expects
       your  Python code to return a Python dictionary: new columns well be created and populated
       for each of the keys in that dictionary.

       For the latitude,longitude example you would use the following:

          $ sqlite-utils convert demo.db places location \
          'bits = value.split(",")
          return {
            "latitude": float(bits[0]),
            "longitude": float(bits[1]),
          }' --multi

       The type of the returned values will be taken into account when creating the new  columns.
       In this example, the resulting database schema will look like this:

          CREATE TABLE [places] (
              [location] TEXT,
              [latitude] FLOAT,
              [longitude] FLOAT
          );

       The  code function can also return None, in which case its output will be ignored. You can
       drop the original column at the end of the operation by adding --drop.

   Creating tables
       Most of the time creating tables by inserting example data is the  quickest  approach.  If
       you  need  to  create  an empty table in advance of inserting data you can do so using the
       create-table command:

          $ sqlite-utils create-table mydb.db mytable id integer name text --pk=id

       This will create a table called mytable with two columns - an integer id column and a text
       name column. It will set the id column to be the primary key.

       You  can  pass as many column-name column-type pairs as you like. Valid types are integer,
       text, float and blob.

       You can specify columns that should be NOT NULL using --not-null colname. You can  specify
       default values for columns using --default colname defaultvalue.

          $ sqlite-utils create-table mydb.db mytable \
              id integer \
              name text \
              age integer \
              is_good integer \
              --not-null name \
              --not-null age \
              --default is_good 1 \
              --pk=id

          $ sqlite-utils tables mydb.db --schema -t
          table    schema
          -------  --------------------------------
          mytable  CREATE TABLE [mytable] (
                      [id] INTEGER PRIMARY KEY,
                      [name] TEXT NOT NULL,
                      [age] INTEGER NOT NULL,
                      [is_good] INTEGER DEFAULT '1'
                  )

       You  can  specify foreign key relationships between the tables you are creating using --fk
       colname othertable othercolumn:

          $ sqlite-utils create-table books.db authors \
              id integer \
              name text \
              --pk=id

          $ sqlite-utils create-table books.db books \
              id integer \
              title text \
              author_id integer \
              --pk=id \
              --fk author_id authors id

          $ sqlite-utils tables books.db --schema -t
          table    schema
          -------  -------------------------------------------------
          authors  CREATE TABLE [authors] (
                      [id] INTEGER PRIMARY KEY,
                      [name] TEXT
                   )
          books    CREATE TABLE [books] (
                      [id] INTEGER PRIMARY KEY,
                      [title] TEXT,
                      [author_id] INTEGER REFERENCES [authors]([id])
                   )

       If a table with the same name already exists, you will get an error.  You  can  choose  to
       silently  ignore  this  error  with --ignore, or you can replace the existing table with a
       new, empty table using --replace.

   Dropping tables
       You can drop a table using the drop-table command:

          $ sqlite-utils drop-table mydb.db mytable

       Use --ignore to ignore the error if the table does not exist.

   Transforming tables
       The transform command allows you to apply complex transformations to a table  that  cannot
       be  implemented  using  a regular SQLite ALTER TABLE command. See Transforming a table for
       details of how this works.

          $ sqlite-utils transform mydb.db mytable \
              --drop column1 \
              --rename column2 column_renamed

       Every option for this table (with the exception of --pk-none) can  be  specified  multiple
       times. The options are as follows:

       --type column-name new-type
              Change  the  type  of  the  specified column. Valid types are integer, text, float,
              blob.

       --drop column-name
              Drop the specified column.

       --rename column-name new-name
              Rename this column to a new name.

       --column-order column
              Use this multiple times to specify a new order for your  columns.  -o  shortcut  is
              also available.

       --not-null column-name
              Set this column as NOT NULL.

       --not-null-false column-name
              For a column that is currently set as NOT NULL, remove the NOT NULL.

       --pk column-name
              Change  the primary key column for this table. Pass --pk multiple times if you want
              to create a compound primary key.

       --pk-none
              Remove the primary key from this table, turning it into a rowid table.

       --default column-name value
              Set the default value of this column.

       --default-none column
              Remove the default value for this column.

       --drop-foreign-key column
              Drop the specified foreign key.

       If you want to see the SQL that will be executed  to  make  the  change  without  actually
       executing it, add the --sql flag. For example:

          $ sqlite-utils transform fixtures.db roadside_attractions \
              --rename pk id \
              --default name Untitled \
              --column-order id \
              --column-order longitude \
              --column-order latitude \
              --drop address \
              --sql
          CREATE TABLE [roadside_attractions_new_4033a60276b9] (
             [id] INTEGER PRIMARY KEY,
             [longitude] FLOAT,
             [latitude] FLOAT,
             [name] TEXT DEFAULT 'Untitled'
          );
          INSERT INTO [roadside_attractions_new_4033a60276b9] ([longitude], [latitude], [id], [name])
             SELECT [longitude], [latitude], [pk], [name] FROM [roadside_attractions];
          DROP TABLE [roadside_attractions];
          ALTER TABLE [roadside_attractions_new_4033a60276b9] RENAME TO [roadside_attractions];

   Adding a primary key to a rowid table
       SQLite  tables  that  are  created  without  an  explicit primary key are created as rowid
       tables. They still have a numeric primary key which is available in the rowid column,  but
       that column is not included in the output of select *. Here's an example:

          % echo '[{"name": "Azi"}, {"name": "Suna"}]' | \
              sqlite-utils insert chickens.db chickens -
          % sqlite-utils schema chickens.db
          CREATE TABLE [chickens] (
             [name] TEXT
          );
          % sqlite-utils chickens.db 'select * from chickens'
          [{"name": "Azi"},
           {"name": "Suna"}]
          % sqlite-utils chickens.db 'select rowid, * from chickens'
          [{"rowid": 1, "name": "Azi"},
           {"rowid": 2, "name": "Suna"}]

       You  can  use  sqlite-utils transform ... --pk id to add a primary key column called id to
       the table. The primary key will be created as an INTEGER  PRIMARY  KEY  and  the  existing
       rowid  values will be copied across to it. It will automatically increment as new rows are
       added to the table:

          % sqlite-utils transform chickens.db chickens --pk id
          % sqlite-utils schema chickens.db
          CREATE TABLE "chickens" (
             [id] INTEGER PRIMARY KEY,
             [name] TEXT
          );
          % sqlite-utils chickens.db 'select * from chickens'
          [{"id": 1, "name": "Azi"},
           {"id": 2, "name": "Suna"}]
          % echo '{"name": "Cardi"}' | sqlite-utils insert chickens.db chickens -
          % sqlite-utils chickens.db 'select * from chickens'
          [{"id": 1, "name": "Azi"},
           {"id": 2, "name": "Suna"},
           {"id": 3, "name": "Cardi"}]

   Extracting columns into a separate table
       The sqlite-utils extract command can be used to extract specified columns into a  separate
       table.

       Take  a  look at the Python API documentation for Extracting columns into a separate table
       for a detailed description of how this works, including examples of table  schemas  before
       and after running an extraction operation.

       The  command  takes a database, table and one or more columns that should be extracted. To
       extract the species column from the trees table you would run:

          $ sqlite-utils extract my.db trees species

       This would produce the following schema:

          CREATE TABLE "trees" (
              [id] INTEGER PRIMARY KEY,
              [TreeAddress] TEXT,
              [species_id] INTEGER,
              FOREIGN KEY(species_id) REFERENCES species(id)
          );
          CREATE TABLE [species] (
              [id] INTEGER PRIMARY KEY,
              [species] TEXT
          );
          CREATE UNIQUE INDEX [idx_species_species]
              ON [species] ([species]);

       The command takes the following options:

       --table TEXT
              The name of the lookup to extract columns to. This defaults to using  the  name  of
              the columns that are being extracted.

       --fk-column TEXT
              The name of the foreign key column to add to the table. Defaults to columnname_id.

       --rename <TEXT TEXT>
              Use this option to rename the columns created in the new lookup table.

       --silent
              Don't display the progress bar.

       Here's  a  more complex example that makes use of these options. It converts this CSV file
       full of global power plants into  SQLite,  then  extracts  the  country  and  country_long
       columns into a separate countries table:

          wget 'https://github.com/wri/global-power-plant-database/blob/232a6666/output_database/global_power_plant_database.csv?raw=true'
          sqlite-utils insert global.db power_plants \
              'global_power_plant_database.csv?raw=true' --csv
          # Extract those columns:
          sqlite-utils extract global.db power_plants country country_long \
              --table countries \
              --fk-column country_id \
              --rename country_long name

       After  running  the above, the command sqlite-utils schema global.db reveals the following
       schema:

          CREATE TABLE [countries] (
             [id] INTEGER PRIMARY KEY,
             [country] TEXT,
             [name] TEXT
          );
          CREATE TABLE "power_plants" (
             [country_id] INTEGER,
             [name] TEXT,
             [gppd_idnr] TEXT,
             [capacity_mw] TEXT,
             [latitude] TEXT,
             [longitude] TEXT,
             [primary_fuel] TEXT,
             [other_fuel1] TEXT,
             [other_fuel2] TEXT,
             [other_fuel3] TEXT,
             [commissioning_year] TEXT,
             [owner] TEXT,
             [source] TEXT,
             [url] TEXT,
             [geolocation_source] TEXT,
             [wepp_id] TEXT,
             [year_of_capacity_data] TEXT,
             [generation_gwh_2013] TEXT,
             [generation_gwh_2014] TEXT,
             [generation_gwh_2015] TEXT,
             [generation_gwh_2016] TEXT,
             [generation_gwh_2017] TEXT,
             [generation_data_source] TEXT,
             [estimated_generation_gwh] TEXT,
             FOREIGN KEY([country_id]) REFERENCES [countries]([id])
          );
          CREATE UNIQUE INDEX [idx_countries_country_name]
              ON [countries] ([country], [name]);

   Creating views
       You can create a view using the create-view command:

          $ sqlite-utils create-view mydb.db version "select sqlite_version()"

          $ sqlite-utils mydb.db "select * from version"
          [{"sqlite_version()": "3.31.1"}]

       Use --replace to replace an existing view of the same name, and --ignore to do nothing  if
       a view already exists.

   Dropping views
       You can drop a view using the drop-view command:

          $ sqlite-utils drop-view myview

       Use --ignore to ignore the error if the view does not exist.

   Adding columns
       You can add a column using the add-column command:

          $ sqlite-utils add-column mydb.db mytable nameofcolumn text

       The  last  argument here is the type of the column to be created. You can use one of text,
       integer, float or blob. If you leave it off, text will be used.

       You can add a column that is a foreign key reference  to  another  table  using  the  --fk
       option:

          $ sqlite-utils add-column mydb.db dogs species_id --fk species

       This  will  automatically  detect the name of the primary key on the species table and use
       that (and its type) for the new column.

       You can explicitly specify the column you wish to reference using --fk-col:

          $ sqlite-utils add-column mydb.db dogs species_id --fk species --fk-col ref

       You can set a NOT NULL DEFAULT 'x' constraint on the new column using --not-null-default:

          $ sqlite-utils add-column mydb.db dogs friends_count integer --not-null-default 0

   Adding columns automatically on insert/update
       You can use the --alter option to automatically add  new  columns  if  the  data  you  are
       inserting or upserting is of a different shape:

          $ sqlite-utils insert dogs.db dogs new-dogs.json --pk=id --alter

   Adding foreign key constraints
       The  add-foreign-key  command can be used to add new foreign key references to an existing
       table - something which SQLite's ALTER TABLE command does not support.

       To add a foreign key constraint pointing  the  books.author_id  column  to  authors.id  in
       another table, do this:

          $ sqlite-utils add-foreign-key books.db books author_id authors id

       If you omit the other table and other column references sqlite-utils will attempt to guess
       them - so the above example could instead look like this:

          $ sqlite-utils add-foreign-key books.db books author_id

       Add --ignore to ignore an existing foreign key (as opposed to returning an error):

          $ sqlite-utils add-foreign-key books.db books author_id --ignore

       See Adding foreign key constraints in the Python API documentation  for  further  details,
       including how the automatic table guessing mechanism works.

   Adding multiple foreign keys at once
       Adding  a  foreign  key  requires  a  VACUUM.  On large databases this can be an expensive
       operation, so if you are adding multiple foreign  keys  you  can  combine  them  into  one
       operation (and hence one VACUUM) using add-foreign-keys:

          $ sqlite-utils add-foreign-keys books.db \
              books author_id authors id \
              authors country_id countries id

       When  you  are  using  this  command each foreign key needs to be defined in full, as four
       arguments - the table, column, other table and other column.

   Adding indexes for all foreign keys
       If you want to ensure that every foreign key column in your database has  a  corresponding
       index, you can do so like this:

          $ sqlite-utils index-foreign-keys books.db

   Setting defaults and not null constraints
       You  can  use  the --not-null and --default options (to both insert and upsert) to specify
       columns that should be NOT NULL or to set database  defaults  for  one  or  more  specific
       columns:

          $ sqlite-utils insert dogs.db dogs_with_scores dogs-with-scores.json \
              --not-null=age \
              --not-null=name \
              --default age 2 \
              --default score 5

   Creating indexes
       You can add an index to an existing table using the create-index command:

          $ sqlite-utils create-index mydb.db mytable col1 [col2...]

       This can be used to create indexes against a single column or multiple columns.

       The name of the index will be automatically derived from the table and columns. To specify
       a different name, use --name=name_of_index.

       Use the --unique option to create a unique index.

       Use --if-not-exists to avoid attempting to create the index if one with that name  already
       exists.

       To  add  an  index on a column in descending order, prefix the column with a hyphen. Since
       this can be confused for a command-line option you need to construct that like this:

          $ sqlite-utils create-index mydb.db mytable -- col1 -col2 col3

       This will create an index on that table on (col1, col2 desc, col3).

       If your column names are already prefixed with a hyphen you'll need to manually execute  a
       CREATE INDEX SQL statement to add indexes to them rather than using this tool.

       Add the --analyze option to run ANALYZE against the index after it has been created.

   Configuring full-text search
       You can enable SQLite full-text search on a table and a set of columns like this:

          $ sqlite-utils enable-fts mydb.db documents title summary

       This will use SQLite's FTS5 module by default. Use --fts4 if you want to use FTS4:

          $ sqlite-utils enable-fts mydb.db documents title summary --fts4

       The  enable-fts  command  will  populate the new index with all existing documents. If you
       later add more documents you will need to use populate-fts to cause them to be indexed  as
       well:

          $ sqlite-utils populate-fts mydb.db documents title summary

       A  better  solution  here is to use database triggers. You can set up database triggers to
       automatically update the full-text index using the --create-triggers option when you first
       run enable-fts:

          $ sqlite-utils enable-fts mydb.db documents title summary --create-triggers

       To set a custom FTS tokenizer, e.g. to enable Porter stemming, use --tokenize=:

          $ sqlite-utils populate-fts mydb.db documents title summary --tokenize=porter

       To remove the FTS tables and triggers you created, use disable-fts:

          $ sqlite-utils disable-fts mydb.db documents

       To  rebuild  one  or  more  FTS  tables  (see  Rebuilding  a  full-text search table), use
       rebuild-fts:

          $ sqlite-utils rebuild-fts mydb.db documents

       You can rebuild every FTS table by running rebuild-fts without passing any table names:

          $ sqlite-utils rebuild-fts mydb.db

   Executing searches
       Once you  have  configured  full-text  search  for  a  table,  you  can  search  it  using
       sqlite-utils search:

          $ sqlite-utils search mydb.db documents searchterm

       This command accepts the same output options as sqlite-utils query: --table, --csv, --tsv,
       --nl etc.

       By default it shows the most relevant matches first. You  can  specify  a  different  sort
       order using the -o option, which can take a column or a column followed by desc:

          # Sort by rowid
          $ sqlite-utils search mydb.db documents searchterm -o rowid
          # Sort by created in descending order
          $ sqlite-utils search mydb.db documents searchterm -o 'created desc'

       SQLite  advanced  search  syntax  is  enabled  by  default. To run a search with automatic
       quoting applied to the terms to avoid  them  being  potentially  interpreted  as  advanced
       search syntax use the --quote option.

       You can specify a subset of columns to be returned using the -c option one or more times:

          $ sqlite-utils search mydb.db documents searchterm -c title -c created

       By  default all search results will be returned. You can use --limit 20 to return just the
       first 20 results.

       Use the --sql option to output the SQL that would be executed,  rather  than  running  the
       query:

          $ sqlite-utils search mydb.db documents searchterm --sql
          with original as (
              select
                  rowid,
                  *
              from [documents]
          )
          select
              [original].*
          from
              [original]
              join [documents_fts] on [original].rowid = [documents_fts].rowid
          where
              [documents_fts] match :query
          order by
              [documents_fts].rank

   Enabling cached counts
       select  count(*) queries can take a long time against large tables. sqlite-utils can speed
       these up by adding triggers to maintain a _counts table, see  Cached  table  counts  using
       triggers for details.

       The sqlite-utils enable-counts command can be used to configure these triggers, either for
       every table in the database or for specific tables.

          # Configure triggers for every table in the database
          $ sqlite-utils enable-counts mydb.db

          # Configure triggers just for specific tables
          $ sqlite-utils enable-counts mydb.db table1 table2

       If the _counts table ever becomes out-of-sync with the actual table counts you can  repair
       it using the reset-counts command:

          $ sqlite-utils reset-counts mydb.db

   Optimizing index usage with ANALYZE
       The SQLite ANALYZE command builds a table of statistics which the query planner can use to
       make better decisions about which indexes to use for a given query.

       You should run ANALYZE if your database is large and you do not  think  your  indexes  are
       being efficiently used.

       To run ANALYZE against every index in a database, use this:

          $ sqlite-utils analyze mydb.db

       You can run it against specific tables, or against specific named indexes, by passing them
       as optional arguments:

          $ sqlite-utils analyze mydb.db mytable idx_mytable_name

       You can also run ANALYZE as part of another command using the --analyze  option.  This  is
       supported by the create-index, insert and upsert commands.

   Vacuum
       You can run VACUUM to optimize your database like so:

          $ sqlite-utils vacuum mydb.db

   Optimize
       The  optimize  command  can dramatically reduce the size of your database if you are using
       SQLite full-text search. It runs OPTIMIZE against all of your FTS4 and FTS5  tables,  then
       runs VACUUM.

       If you just want to run OPTIMIZE without the VACUUM, use the --no-vacuum flag.

          # Optimize all FTS tables and then VACUUM
          $ sqlite-utils optimize mydb.db

          # Optimize but skip the VACUUM
          $ sqlite-utils optimize --no-vacuum mydb.db

       To  optimize  specific  tables  rather  than  every  FTS table, pass those tables as extra
       arguments:

          $ sqlite-utils optimize mydb.db table_1 table_2

   WAL mode
       You can enable Write-Ahead Logging for a database file using the enable-wal command:

          $ sqlite-utils enable-wal mydb.db

       You can disable WAL mode using disable-wal:

          $ sqlite-utils disable-wal mydb.db

       Both of these commands accept one or more database files as arguments.

   Dumping the database to SQL
       The dump command outputs a SQL dump of the schema  and  full  contents  of  the  specified
       database file:

          $ sqlite-utils dump mydb.db
          BEGIN TRANSACTION;
          CREATE TABLE ...
          ...
          COMMIT;

   Loading SQLite extensions
       Many  of  these  commands  have the ability to load additional SQLite extensions using the
       --load-extension=/path/to/extension option  -  use  --help  to  check  for  support,  e.g.
       sqlite-utils rows --help.

       This option can be applied multiple times to load multiple extensions.

       Since  SpatiaLite  is  commonly used with SQLite, the value spatialite is special: it will
       search for SpatiaLite in the most common installation locations, saving you  from  needing
       to remember exactly where that module is located:

          $ sqlite-utils memory "select spatialite_version()" --load-extension=spatialite
          [{"spatialite_version()": "4.3.0a"}]

   SpatiaLite helpers
       SpatiaLite  adds  geographic  capability  to  SQLite  (similar  to  how  PostGIS builds on
       PostgreSQL). The SpatiaLite cookbook is a good resource for learning what's possible  with
       it.

       You  can  convert an existing table to a geographic table by adding a geometry column, use
       the sqlite-utils add-geometry-column command:

          $ sqlite-utils add-geometry-column spatial.db locations geometry --type POLYGON --srid 4326

       The table (locations in the example above) must already exist  before  adding  a  geometry
       column. Use sqlite-utils create-table first, then add-geometry-column.

       Use  the  --type option to specify a geometry type. By default, add-geometry-column uses a
       generic GEOMETRY, which will work with any type, though it may not be  supported  by  some
       desktop GIS applications.

       Eight (case-insensitive) types are allowed:

          • POINT

          • LINESTRING

          • POLYGON

          • MULTIPOINT

          • MULTILINESTRING

          • MULTIPOLYGON

          • GEOMETRYCOLLECTION

          • GEOMETRY

   Adding spatial indexes
       Once you have a geometry column, you can speed up bounding box queries by adding a spatial
       index:

          $ sqlite-utils create-spatial-index spatial.db locations geometry

       See this SpatiaLite Cookbook recipe for examples of how to use a spatial index.

   sqlite_utils Python libraryGetting startedConnecting to or creating a databaseAttaching additional databasesTracing queriesExecuting queriesdb.query(sql, params)db.execute(sql, params)Passing parametersAccessing tablesListing tablesListing viewsListing rowsCounting rowsListing rows with their primary keysRetrieving a specific recordShowing the schemaCreating tablesCustom column order and column typesExplicitly creating a tableCompound primary keysSpecifying foreign keysTable configuration optionsSetting defaults and not null constraintsBulk insertsInsert-replacing dataUpdating a specific recordDeleting a specific recordDeleting multiple recordsUpserting dataConverting data in columnsWorking with lookup tablesCreating lookup tables explicitlyPopulating lookup tables automatically during insert/upsertWorking with many-to-many relationshipsUsing m2m and lookup tables togetherAnalyzing a columnAdding columnsAdding columns automatically on insert/updateAdding foreign key constraintsAdding multiple foreign key constraints at onceAdding indexes for all foreign keysDropping a table or viewTransforming a tableAltering column typesRenaming columnsDropping columnsChanging primary keysChanging not null statusAltering column defaultsChanging column orderDropping foreign key constraintsCustom transformations with .transform_sql()Extracting columns into a separate tableSetting an ID based on the hash of the row contentsCreating viewsStoring JSONConverting column values using SQL functionsChecking the SQLite versionIntrospecting tables and views.exists().count.columns.columns_dict.pks.use_rowid.foreign_keys.schema.strict.indexes.xindexes.triggers.triggers_dict.detect_fts().virtual_table_using.has_counts_triggersFull-text searchEnabling full-text search for a tableQuoting characters for use in searchSearching with table.search()Building SQL queries with table.search_sql()Rebuilding a full-text search tableOptimizing a full-text search tableCached table counts using triggersCreating indexesOptimizing index usage with ANALYZEVacuumWAL modeSuggesting column typesRegistering custom SQL functionsQuoting strings for use in SQLSpatiaLite helpersInitialize SpatiaLiteFinding SpatiaLiteAdding geometry columnsCreating a spatial index

   Getting started
       Here's how to create a new SQLite database file containing a new chickens table, populated
       with four records:

          from sqlite_utils import Database

          db = Database("chickens.db")
          db["chickens"].insert_all([{
              "name": "Azi",
              "color": "blue",
          }, {
              "name": "Lila",
              "color": "blue",
          }, {
              "name": "Suna",
              "color": "gold",
          }, {
              "name": "Cardi",
              "color": "black",
          }])

       You can loop through those rows like this:

          for row in db["chickens"].rows:
              print(row)

       Which outputs the following:

          {'name': 'Azi', 'color': 'blue'}
          {'name': 'Lila', 'color': 'blue'}
          {'name': 'Suna', 'color': 'gold'}
          {'name': 'Cardi', 'color': 'black'}

       To run a SQL query, use db.query():

          for row in db.query("""
              select color, count(*)
              from chickens group by color
              order by count(*) desc
          """):
              print(row)

       Which outputs:

          {'color': 'blue', 'count(*)': 2}
          {'color': 'gold', 'count(*)': 1}
          {'color': 'black', 'count(*)': 1}

   Connecting to or creating a database
       Database  objects  are  constructed  by  passing  in either a path to a file on disk or an
       existing SQLite3 database connection:

          from sqlite_utils import Database

          db = Database("my_database.db")

       This will create my_database.db if it does not already exist.

       If you want to recreate a database from scratch (first removing  the  existing  file  from
       disk if it already exists) you can use the recreate=True argument:

          db = Database("my_database.db", recreate=True)

       Instead of a file path you can pass in an existing SQLite connection:

          import sqlite3

          db = Database(sqlite3.connect("my_database.db"))

       If you want to create an in-memory database, you can do so like this:

          db = Database(memory=True)

       You  can also create a named in-memory database. Unlike regular memory databases these can
       be accessed by multiple threads, provided at least one reference  to  the  database  still
       exists. del db will clear the database from memory.

          db = Database(memory_name="my_shared_database")

       Connections  use  PRAGMA  recursive_triggers=on  by  default.  If  you  don't  want to use
       recursive triggers you can turn them off using:

          db = Database(memory=True, recursive_triggers=False)

   Attaching additional databases
       SQLite supports cross-database SQL queries, which can join data from tables in  more  than
       one database file.

       You  can  attach  an additional database using the .attach() method, providing an alias to
       use for that database and the path to the SQLite file on disk.

          db = Database("first.db")
          db.attach("second", "second.db")
          # Now you can run queries like this one:
          print(db.query("""
          select * from table_in_first
              union all
          select * from second.table_in_second
          """))

       You can reference tables in the attached database using the  alias  value  you  passed  to
       db.attach(alias,  filepath)  as a prefix, for example the second.table_in_second reference
       in the SQL query above.

   Tracing queries
       You can use the tracer mechanism to see SQL queries that are being executed by  SQLite.  A
       tracer  is  a function that you provide which will be called with sql and params arguments
       every time SQL is executed, for example:

          def tracer(sql, params):
              print("SQL: {} - params: {}".format(sql, params))

       You can pass this function to the Database() constructor like so:

          db = Database(memory=True, tracer=tracer)

       You can also turn on a tracer function temporarily for a block  of  code  using  the  with
       db.tracer(...) context manager:

          db = Database(memory=True)
          # ... later
          with db.tracer(print):
              db["dogs"].insert({"name": "Cleo"})

       This example will print queries only for the duration of the with block.

   Executing queries
       The Database class offers several methods for directly executing SQL queries.

   db.query(sql, params)
       The  db.query(sql)  function  executes  a  SQL  query  and returns an iterator over Python
       dictionaries representing the resulting rows:

          db = Database(memory=True)
          db["dogs"].insert_all([{"name": "Cleo"}, {"name": "Pancakes"}])
          for row in db.query("select * from dogs"):
              print(row)
          # Outputs:
          # {'name': 'Cleo'}
          # {'name': 'Pancakes'}

   db.execute(sql, params)
       The db.execute() and db.executescript() methods provide  wrappers  around  .execute()  and
       .executescript()  on  the  underlying  SQLite connection. These wrappers log to the tracer
       function if one has been registered.

       db.execute(sql) returns a sqlite3.Cursor that was used to execute the SQL.

          db = Database(memory=True)
          db["dogs"].insert({"name": "Cleo"})
          cursor = db.execute("update dogs set name = 'Cleopaws'")
          print(cursor.rowcount)
          # Outputs the number of rows affected by the update
          # In this case 2

       Other cursor methods such as .fetchone() and  .fetchall()  are  also  available,  see  the
       standard library documentation.

   Passing parameters
       Both  db.query()  and db.execute() accept an optional second argument for parameters to be
       passed to the SQL query.

       This can take the form of either a tuple/list or a dictionary, depending on  the  type  of
       parameters  used  in  the  query.  Values  passed in this way will be correctly quoted and
       escaped, helping avoid SQL injection vulnerabilities.

       ? parameters in the SQL query can be filled in using a list:

          db.execute("update dogs set name = ?", ["Cleopaws"])
          # This will rename ALL dogs to be called "Cleopaws"

       Named parameters using :name can be filled using a dictionary:

          dog = next(db.query(
              "select rowid, name from dogs where name = :name",
              {"name": "Cleopaws"}
          ))
          # dog is now {'rowid': 1, 'name': 'Cleopaws'}

       In this example next() is used to retrieve the first result in the  iterator  returned  by
       the db.query() method.

   Accessing tables
       Tables are accessed using the indexing operator, like so:

          table = db["my_table"]

       If  the  table does not yet exist, it will be created the first time you attempt to insert
       or upsert data into it.

       You can also access tables using the .table() method like so:

          table = db.table("my_table")

       Using this factory function allows you to set Table configuration options.

   Listing tables
       You can list the names of tables in a database using the .table_names() method:

          >>> db.table_names()
          ['dogs']

       To  see   just   the   FTS4   tables,   use   .table_names(fts4=True).   For   FTS5,   use
       .table_names(fts5=True).

       You can also iterate through the table objects themselves using the .tables property:

          >>> db.tables
          [<Table dogs>]

   Listing views
       .view_names() shows you a list of views in the database:

          >>> db.view_names()
          ['good_dogs']

       You can iterate through view objects using the .views property:

          >>> db.views
          [<View good_dogs>]

       View  objects  are  similar to Table objects, except that any attempts to insert or update
       data will throw an error. The full list of methods and  properties  available  on  a  view
       object is as follows:

       • columnscolumns_dictcountschemarowsrows_where(where, where_args, order_by, select)drop()

   Listing rows
       To iterate through dictionaries for each of the rows in a table, use .rows:

          >>> db = sqlite_utils.Database("dogs.db")
          >>> for row in db["dogs"].rows:
          ...     print(row)
          {'id': 1, 'age': 4, 'name': 'Cleo'}
          {'id': 2, 'age': 2, 'name': 'Pancakes'}

       You can filter rows by a WHERE clause using .rows_where(where, where_args):

          >>> db = sqlite_utils.Database("dogs.db")
          >>> for row in db["dogs"].rows_where("age > ?", [3]):
          ...     print(row)
          {'id': 1, 'age': 4, 'name': 'Cleo'}

       The  first  argument  is  a fragment of SQL. The second, optional argument is values to be
       passed to that fragment - you can use ? placeholders and pass an array,  or  you  can  use
       :named parameters and pass a dictionary, like this:

          >>> for row in db["dogs"].rows_where("age > :age", {"age": 3}):
          ...     print(row)
          {'id': 1, 'age': 4, 'name': 'Cleo'}

       To return custom columns (instead of the default that uses select *) pass select="column1,
       column2":

          >>> db = sqlite_utils.Database("dogs.db")
          >>> for row in db["dogs"].rows_where(select='name, age'):
          ...     print(row)
          {'name': 'Cleo', 'age': 4}

       To specify an order, use the order_by= argument:

          >>> for row in db["dogs"].rows_where("age > 1", order_by="age"):
          ...     print(row)
          {'id': 2, 'age': 2, 'name': 'Pancakes'}
          {'id': 1, 'age': 4, 'name': 'Cleo'}

       You can use order_by="age desc" for descending order.

       You can order all records in the table by excluding the where argument:

          >>> for row in db["dogs"].rows_where(order_by="age desc"):
          ...     print(row)
          {'id': 1, 'age': 4, 'name': 'Cleo'}
          {'id': 2, 'age': 2, 'name': 'Pancakes'}

       This method also accepts offset= and limit= arguments, for  specifying  an  OFFSET  and  a
       LIMIT for the SQL query:

          >>> for row in db["dogs"].rows_where(order_by="age desc", limit=1):
          ...     print(row)
          {'id': 1, 'age': 4, 'name': 'Cleo'}

   Counting rows
       To   count   the   number  of  rows  that  would  be  returned  by  a  where  filter,  use
       .count_where(where, where_args):

       >>> db["dogs"].count_where("age > ?", [1])
       2

   Listing rows with their primary keys
       Sometimes it can be useful to retrieve the primary key along with each row,  in  order  to
       pass that key (or primary key tuple) to the .get() or .update() methods.

       The  .pks_and_rows_where()  method  takes  the  same  signature as .rows_where() (with the
       exception of the select= parameter) but returns a generator that yields pairs of  (primary
       key, row dictionary).

       The  primary key value will usually be a single value but can also be a tuple if the table
       has a compound primary key.

       If the table is a rowid table (with no explicit primary key column) then that ID  will  be
       returned.

          >>> db = sqlite_utils.Database(memory=True)
          >>> db["dogs"].insert({"name": "Cleo"})
          >>> for pk, row in db["dogs"].pks_and_rows_where():
          ...     print(pk, row)
          1 {'rowid': 1, 'name': 'Cleo'}

          >>> db["dogs_with_pk"].insert({"id": 5, "name": "Cleo"}, pk="id")
          >>> for pk, row in db["dogs_with_pk"].pks_and_rows_where():
          ...     print(pk, row)
          5 {'id': 5, 'name': 'Cleo'}

          >>> db["dogs_with_compound_pk"].insert(
          ...     {"species": "dog", "id": 3, "name": "Cleo"},
          ...     pk=("species", "id")
          ... )
          >>> for pk, row in db["dogs_with_compound_pk"].pks_and_rows_where():
          ...     print(pk, row)
          ('dog', 3) {'species': 'dog', 'id': 3, 'name': 'Cleo'}

   Retrieving a specific record
       You can retrieve a record by its primary key using table.get():

          >>> db = sqlite_utils.Database("dogs.db")
          >>> print(db["dogs"].get(1))
          {'id': 1, 'age': 4, 'name': 'Cleo'}

       If the table has a compound primary key you can pass in the primary key values as a tuple:

          >>> db["compound_dogs"].get(("mixed", 3))

       If the record does not exist a NotFoundError will be raised:

          from sqlite_utils.db import NotFoundError

          try:
              row = db["dogs"].get(5)
          except NotFoundError:
              print("Dog not found")

   Showing the schema
       The db.schema property returns the full SQL schema for the database as a string:

          >>> db = sqlite_utils.Database("dogs.db")
          >>> print(db.schema)
          CREATE TABLE "dogs" (
              [id] INTEGER PRIMARY KEY,
              [name] TEXT
          );

   Creating tables
       The easiest way to create a new table is to insert a record into it:

          from sqlite_utils import Database
          import sqlite3

          db = Database("dogs.db")
          dogs = db["dogs"]
          dogs.insert({
              "name": "Cleo",
              "twitter": "cleopaws",
              "age": 3,
              "is_good_dog": True,
          })

       This will automatically create a new table called "dogs" with the following schema:

          CREATE TABLE dogs (
              name TEXT,
              twitter TEXT,
              age INTEGER,
              is_good_dog INTEGER
          )

       You  can  also  specify  a primary key by passing the pk= parameter to the .insert() call.
       This will only be obeyed if the record being inserted causes the table to be created:

          dogs.insert({
              "id": 1,
              "name": "Cleo",
              "twitter": "cleopaws",
              "age": 3,
              "is_good_dog": True,
          }, pk="id")

       After inserting a row like this, the dogs.last_rowid property will return the SQLite rowid
       assigned to the most recently inserted record.

       The  dogs.last_pk  property  will  return  the  last  inserted  primary  key value, if you
       specified one. This can be very useful when writing code  that  creates  foreign  keys  or
       many-to-many relationships.

   Custom column order and column types
       The  order  of  the columns in the table will be derived from the order of the keys in the
       dictionary, provided you are using Python 3.6 or later.

       If you want to explicitly  set  the  order  of  the  columns  you  can  do  so  using  the
       column_order= parameter:

          db["dogs"].insert({
              "id": 1,
              "name": "Cleo",
              "twitter": "cleopaws",
              "age": 3,
              "is_good_dog": True,
          }, pk="id", column_order=("id", "twitter", "name"))

       You  don't need to pass all of the columns to the column_order parameter. If you only pass
       a subset of the columns the remaining columns will be ordered based on the  key  order  of
       the dictionary.

       Column  types  are detected based on the example data provided. Sometimes you may find you
       need to over-ride these detected types - to create an integer column  for  data  that  was
       provided  as  a  string for example, or to ensure that a table where the first example was
       None is created as an INTEGER rather than a  TEXT  column.  You  can  do  this  using  the
       columns= parameter:

          db["dogs"].insert({
              "id": 1,
              "name": "Cleo",
              "age": "5",
          }, pk="id", columns={"age": int, "weight": float})

       This will create a table with the following schema:

          CREATE TABLE [dogs] (
              [id] INTEGER PRIMARY KEY,
              [name] TEXT,
              [age] INTEGER,
              [weight] FLOAT
          )

   Explicitly creating a table
       You can directly create a new table without inserting any data into it using the .create()
       method:

          db["cats"].create({
              "id": int,
              "name": str,
              "weight": float,
          }, pk="id")

       The first argument here is a dictionary specifying the columns you would like  to  create.
       Each column is paired with a Python type indicating the type of column. See Adding columns
       for full details on how these types work.

       This method takes optional arguments pk=, column_order=, foreign_keys=, not_null=set() and
       defaults=dict() - explained below.

       A  sqlite_utils.utils.sqlite3.OperationalError  will  be  raised  if  a table of that name
       already exists.

       To do nothing if the table already exists, add if_not_exists=True:

          db["cats"].create({
              "id": int,
              "name": str,
          }, pk="id", if_not_exists=True)

   Compound primary keys
       If you want to create a table with a compound primary key that spans multiple columns, you
       can  do  so  by  passing  a  tuple of column names to any of the methods that accept a pk=
       parameter. For example:

          db["cats"].create({
              "id": int,
              "breed": str,
              "name": str,
              "weight": float,
          }, pk=("breed", "id"))

       This also works for the .insert(), .insert_all(), .upsert() and .upsert_all() methods.

   Specifying foreign keys
       Any operation that can create a table (.create(), .insert(), .insert_all(), .upsert()  and
       .upsert_all())  accepts  an  optional  foreign_keys=  argument which can be used to set up
       foreign key constraints for the table that is being created.

       If you are using your database with Datasette, Datasette will detect these constraints and
       use them to generate hyperlinks to associated records.

       The  foreign_keys  argument  takes  a  list  that  indicates  which foreign keys should be
       created. The list can take several forms. The simplest is a list of columns:

          foreign_keys=["author_id"]

       The library will guess which tables you wish to reference based on the column names  using
       the rules described in Adding foreign key constraints.

       You can also be more explicit, by passing in a list of tuples:

          foreign_keys=[
              ("author_id", "authors", "id")
          ]

       This means that the author_id column should be a foreign key that references the id column
       in the authors table.

       You can leave off the third item in the tuple to have the referenced column  automatically
       set to the primary key of that table. A full example:

          db["authors"].insert_all([
              {"id": 1, "name": "Sally"},
              {"id": 2, "name": "Asheesh"}
          ], pk="id")
          db["books"].insert_all([
              {"title": "Hedgehogs of the world", "author_id": 1},
              {"title": "How to train your wolf", "author_id": 2},
          ], foreign_keys=[
              ("author_id", "authors")
          ])

   Table configuration options
       The  .insert(),  .upsert(),  .insert_all() and .upsert_all() methods each take a number of
       keyword arguments, some of which influence what happens should they cause a  table  to  be
       created and some of which affect the behavior of those methods.

       You  can  set  default  values  for  these  methods  by  accessing  the  table through the
       db.table(...) method (instead of using db["table_name"]), like so:

          table = db.table(
              "authors",
              pk="id",
              not_null={"name", "score"},
              column_order=("id", "name", "score", "url")
          )
          # Now you can call .insert() like so:
          table.insert({"id": 1, "name": "Tracy", "score": 5})

       The configuration options that  can  be  specified  in  this  way  are  pk,  foreign_keys,
       column_order,  not_null,  defaults,  batch_size,  hash_id, hash_id_columns, alter, ignore,
       replace, extracts, conversions, columns. These are all documented below.

   Setting defaults and not null constraints
       Each of the methods that  can  cause  a  table  to  be  created  take  optional  arguments
       not_null=set() and defaults=dict(). The methods that take these optional arguments are:

       • db.create_table(...)table.create(...)table.insert(...)table.insert_all(...)table.upsert(...)table.upsert_all(...)

       You can use not_null= to pass a set of column names that should have a NOT NULL constraint
       set on them when they are created.

       You can use defaults= to pass a dictionary mapping  columns  to  the  default  value  that
       should be specified in the CREATE TABLE statement.

       Here's an example that uses these features:

          db["authors"].insert_all(
              [{"id": 1, "name": "Sally", "score": 2}],
              pk="id",
              not_null={"name", "score"},
              defaults={"score": 1},
          )
          db["authors"].insert({"name": "Dharma"})

          list(db["authors"].rows)
          # Outputs:
          # [{'id': 1, 'name': 'Sally', 'score': 2},
          #  {'id': 3, 'name': 'Dharma', 'score': 1}]
          print(db["authors"].schema)
          # Outputs:
          # CREATE TABLE [authors] (
          #     [id] INTEGER PRIMARY KEY,
          #     [name] TEXT NOT NULL,
          #     [score] INTEGER NOT NULL DEFAULT 1
          # )

   Bulk inserts
       If  you  have  more  than  one  record  to  insert, the insert_all() method is a much more
       efficient way of inserting them. Just like  insert()  it  will  automatically  detect  the
       columns  that  should be created, but it will inspect the first batch of 100 items to help
       decide what those column types should be.

       Use it like this:

          db["dogs"].insert_all([{
              "id": 1,
              "name": "Cleo",
              "twitter": "cleopaws",
              "age": 3,
              "is_good_dog": True,
          }, {
              "id": 2,
              "name": "Marnie",
              "twitter": "MarnieTheDog",
              "age": 16,
              "is_good_dog": True,
          }], pk="id", column_order=("id", "twitter", "name"))

       The column types used in the CREATE TABLE statement are  automatically  derived  from  the
       types  of  data  in that first batch of rows. Any additional columns in subsequent batches
       will cause a  sqlite3.OperationalError  exception  to  be  raised  unless  the  alter=True
       argument is supplied, in which case the new columns will be created.

       The function can accept an iterator or generator of rows and will commit them according to
       the batch size. The default batch size is 100, but you can specify a different size  using
       the batch_size parameter:

          db["big_table"].insert_all(({
              "id": 1,
              "name": "Name {}".format(i),
          } for i in range(10000)), batch_size=1000)

       You  can  skip  inserting  any  records  that have a primary key that already exists using
       ignore=True. This works  with  both  .insert({...},  ignore=True)  and  .insert_all([...],
       ignore=True).

       You  can  delete all the existing rows in the table before inserting the new records using
       truncate=True. This is useful if you want to replace the data in the table.

       Pass analyze=True to run ANALYZE against the table after inserting the new records.

   Insert-replacing data
       If you try to insert data using a primary  key  that  already  exists,  the  .insert()  or
       .insert_all() method will raise a sqlite3.IntegrityError exception.

       This example that catches that exception:

          from sqlite_utils.utils import sqlite3

          try:
              db["dogs"].insert({"id": 1, "name": "Cleo"}, pk="id")
          except sqlite3.IntegrityError:
              print("Record already exists with that primary key")

       Importing  from sqlite_utils.utils.sqlite3 ensures your code continues to work even if you
       are using the pysqlite3 library instead of the Python standard library sqlite3 module.

       Use the ignore=True parameter to ignore this error:

          # This fails silently if a record with id=1 already exists
          db["dogs"].insert({"id": 1, "name": "Cleo"}, pk="id", ignore=True)

       To replace any existing records that have a matching primary  key,  use  the  replace=True
       parameter to .insert() or .insert_all():

          db["dogs"].insert_all([{
              "id": 1,
              "name": "Cleo",
              "twitter": "cleopaws",
              "age": 3,
              "is_good_dog": True,
          }, {
              "id": 2,
              "name": "Marnie",
              "twitter": "MarnieTheDog",
              "age": 16,
              "is_good_dog": True,
          }], pk="id", replace=True)

       NOTE:
          Prior  to  sqlite-utils 2.0 the .upsert() and .upsert_all() methods worked the same way
          as .insert(replace=True) does today. See Upserting data for the new behaviour of  those
          methods introduced in 2.0.

   Updating a specific record
       You can update a record by its primary key using table.update():

          >>> db = sqlite_utils.Database("dogs.db")
          >>> print(db["dogs"].get(1))
          {'id': 1, 'age': 4, 'name': 'Cleo'}
          >>> db["dogs"].update(1, {"age": 5})
          >>> print(db["dogs"].get(1))
          {'id': 1, 'age': 5, 'name': 'Cleo'}

       The  first argument to update() is the primary key. This can be a single value, or a tuple
       if that table has a compound primary key:

          >>> db["compound_dogs"].update((5, 3), {"name": "Updated"})

       The second argument is a dictionary of columns that should be updated,  along  with  their
       new values.

       You can cause any missing columns to be added automatically using alter=True:

          >>> db["dogs"].update(1, {"breed": "Mutt"}, alter=True)

   Deleting a specific record
       You can delete a record using table.delete():

          >>> db = sqlite_utils.Database("dogs.db")
          >>> db["dogs"].delete(1)

       The  delete() method takes the primary key of the record. This can be a tuple of values if
       the row has a compound primary key:

          >>> db["compound_dogs"].delete((5, 3))

   Deleting multiple records
       You can delete all records in  a  table  that  match  a  specific  WHERE  statement  using
       table.delete_where():

          >>> db = sqlite_utils.Database("dogs.db")
          >>> # Delete every dog with age less than 3
          >>> db["dogs"].delete_where("age < ?", [3])

       Calling table.delete_where() with no other arguments will delete every row in the table.

       Pass analyze=True to run ANALYZE against the table after deleting the rows.

   Upserting data
       Upserting  allows  you  to  insert records if they do not exist and update them if they DO
       exist, based on matching against their primary key.

       For example, given the dogs database you could upsert the record for Cleo like so:

          db["dogs"].upsert({
              "id": 1,
              "name": "Cleo",
              "twitter": "cleopaws",
              "age": 4,
              "is_good_dog": True,
          }, pk="id", column_order=("id", "twitter", "name"))

       If a record exists with id=1, it will be updated to match those fields.  If  it  does  not
       exist it will be created.

       Any existing columns that are not referenced in the dictionary passed to .upsert() will be
       unchanged. If you want to  replace  a  record  entirely,  use  .insert(doc,  replace=True)
       instead.

       Note that the pk and column_order parameters here are optional if you are certain that the
       table has already been created. You should pass them if the table may  not  exist  at  the
       time the first upsert is performed.

       An  upsert_all()  method  is  also available, which behaves like insert_all() but performs
       upserts instead.

       NOTE:
          .upsert() and .upsert_all() in sqlite-utils 1.x worked like .insert(...,  replace=True)
          and .insert_all(..., replace=True) do in 2.x. See issue #66 for details of this change.

   Converting data in columns
       The  table.convert(...) method can be used to apply a conversion function to the values in
       a column, either to update that column or to  populate  new  columns.  It  is  the  Python
       library equivalent of the sqlite-utils convert command.

       This  feature  works  by  registering  a  custom  SQLite  function  that  applies a Python
       transformation, then running  a  SQL  query  equivalent  to  UPDATE  table  SET  column  =
       convert_value(column);

       To transform a specific column to uppercase, you would use the following:

          db["dogs"].convert("name", lambda value: value.upper())

       You  can  pass a list of columns, in which case the transformation will be applied to each
       one:

          db["dogs"].convert(["name", "twitter"], lambda value: value.upper())

       To save the output to of the  transformation  to  a  different  column,  use  the  output=
       parameter:

          db["dogs"].convert("name", lambda value: value.upper(), output="name_upper")

       This  will  add the new column, if it does not already exist. You can pass output_type=int
       or some other type to control the type of the new column - otherwise it  will  default  to
       text.

       If  you  want  to  drop  the original column after saving the results in a separate output
       column, pass drop=True.

       You can create multiple new columns from a single input column by passing multi=True and a
       conversion  function  that returns a Python dictionary. This example creates new upper and
       lower columns populated from the single title column:

          table.convert(
              "title", lambda v: {"upper": v.upper(), "lower": v.lower()}, multi=True
          )

       The .convert() method accepts optional where= and where_args= parameters which can be used
       to  apply  the  conversion  to a subset of rows specified by a where clause. Here's how to
       apply the conversion only to rows with an id that is higher than 20:

          table.convert("title", lambda v: v.upper(), where="id > :id", where_args={"id": 20})

       These behave the same as the corresponding parameters to the .rows_where() method, so  you
       can  use  ?  placeholders  and  a  list  of  values  instead of :named placeholders with a
       dictionary.

   Working with lookup tables
       A useful pattern when populating large tables in to break common values  out  into  lookup
       tables.  Consider  a  table of Trees, where each tree has a species. Ideally these species
       would be split out into a separate Species  table,  with  each  one  assigned  an  integer
       primary key that can be referenced from the Trees table species_id column.

   Creating lookup tables explicitly
       Calling db["Species"].lookup({"name": "Palm"}) creates a table called Species (if one does
       not already exist) with two columns: id and name. It sets up a unique  constraint  on  the
       name  column  to  guarantee  it will not contain duplicate rows. It then inserts a new row
       with the name set to Palm and returns the new integer primary key value.

       If the Species table already exists, it will insert the new row  and  return  the  primary
       key.  If a row with that name already exists, it will return the corresponding primary key
       value directly.

       If you call .lookup() against an existing table without  the  unique  constraint  it  will
       attempt  to  add  the  constraint,  raising  an IntegrityError if the constraint cannot be
       created.

       If you pass in a dictionary with multiple values, both values will be used  to  insert  or
       retrieve  the corresponding ID and any unique constraint that is created will cover all of
       those columns, for example:

          db["Trees"].insert({
              "latitude": 49.1265976,
              "longitude": 2.5496218,
              "species": db["Species"].lookup({
                  "common_name": "Common Juniper",
                  "latin_name": "Juniperus communis"
              })
          })

       The .lookup() method has an optional second argument which can be used to  populate  other
       columns  in  the  table  but only if the row does not exist yet. These columns will not be
       included in the unique index.

       To create a species record with a note on when it was first seen, you can use this:

          db["Species"].lookup({"name": "Palm"}, {"first_seen": "2021-03-04"})

       The first time this is called the record will be created for name="Palm".  Any  subsequent
       calls  with  that  name  will  ignore  the  second argument, even if it includes different
       values.

       .lookup() also accepts keyword arguments, which are passed through to the insert()  method
       and can be used to influence the shape of the created table. Supported parameters are:

       • pk - which defaults to idforeign_keyscolumn_ordernot_nulldefaultsextractsconversionscolumns

   Populating lookup tables automatically during insert/upsert
       A  more  efficient  way  to  work with lookup tables is to define them using the extracts=
       parameter, which is accepted by .insert(), .upsert(), .insert_all(), .upsert_all() and  by
       the .table(...) factory function.

       extracts=  specifies  columns which should be "extracted" out into a separate lookup table
       during the data insertion.

       It can be either a list of column names, in which case  the  extracted  table  names  will
       match  the  column  names  exactly,  or it can be a dictionary mapping column names to the
       desired name of the extracted table.

       To extract the species column out to a separate Species table, you can do this:

          # Using the table factory
          trees = db.table("Trees", extracts={"species": "Species"})
          trees.insert({
              "latitude": 49.1265976,
              "longitude": 2.5496218,
              "species": "Common Juniper"
          })

          # If you want the table to be called 'species', you can do this:
          trees = db.table("Trees", extracts=["species"])

          # Using .insert() directly
          db["Trees"].insert({
              "latitude": 49.1265976,
              "longitude": 2.5496218,
              "species": "Common Juniper"
          }, extracts={"species": "Species"})

   Working with many-to-many relationships
       sqlite-utils includes a shortcut for creating records using many-to-many relationships  in
       the form of the table.m2m(...) method.

       Here's how to create two new records and connect them via a many-to-many table in a single
       line of code:

          db["dogs"].insert({"id": 1, "name": "Cleo"}, pk="id").m2m(
              "humans", {"id": 1, "name": "Natalie"}, pk="id"
          )

       Running this example actually creates  three  tables:  dogs,  humans  and  a  many-to-many
       dogs_humans table. It will insert a record into each of those tables.

       The  .m2m()  method  executes  against  the  last record that was affected by .insert() or
       .update() - the record identified by the table.last_pk property. To execute .m2m() against
       a specific record you can first select it by passing its primary key to .update():

          db["dogs"].update(1).m2m(
              "humans", {"id": 2, "name": "Simon"}, pk="id"
          )

       The  first  argument  to .m2m() can be either the name of a table as a string or it can be
       the table object itself.

       The second argument can be a single dictionary record or a  list  of  dictionaries.  These
       dictionaries will be passed to .upsert() against the specified table.

       Here's alternative code that creates the dog record and adds two people to it:

          db = Database(memory=True)
          dogs = db.table("dogs", pk="id")
          humans = db.table("humans", pk="id")
          dogs.insert({"id": 1, "name": "Cleo"}).m2m(
              humans, [
                  {"id": 1, "name": "Natalie"},
                  {"id": 2, "name": "Simon"}
              ]
          )

       The method will attempt to find an existing many-to-many table by looking for a table that
       has foreign key relationships against both of the tables in the relationship.

       If it cannot find such a table, it will create a new one using the names of the two tables
       -  dogs_humans  in  this  example.  You  can  customize  the  name of this table using the
       m2m_table= argument to .m2m().

       It it finds multiple candidate tables with foreign keys to both of the specified tables it
       will  raise  a  sqlite_utils.db.NoObviousTable  exception.  You  can  avoid  this error by
       specifying the correct table using m2m_table=.

       The .m2m() method also takes an optional pk= argument to  specify  the  primary  key  that
       should  be  used  if  the table is created, and an optional alter=True argument to specify
       that any missing columns of an existing table should be added if they are needed.

   Using m2m and lookup tables together
       You can work with (or create) lookup tables as part of a call to .m2m() using the  lookup=
       parameter.  This accepts the same argument as table.lookup() does - a dictionary of values
       that should be used to lookup or create a row in the lookup table.

       This example creates  a  dogs  table,  populates  it,  creates  a  characteristics  table,
       populates  that  and sets up a many-to-many relationship between the two. It chains .m2m()
       twice to create two associated characteristics:

          db = Database(memory=True)
          dogs = db.table("dogs", pk="id")
          dogs.insert({"id": 1, "name": "Cleo"}).m2m(
              "characteristics", lookup={
                  "name": "Playful"
              }
          ).m2m(
              "characteristics", lookup={
                  "name": "Opinionated"
              }
          )

       You can inspect the database to see the results like this:

          >>> db.table_names()
          ['dogs', 'characteristics', 'characteristics_dogs']
          >>> list(db["dogs"].rows)
          [{'id': 1, 'name': 'Cleo'}]
          >>> list(db["characteristics"].rows)
          [{'id': 1, 'name': 'Playful'}, {'id': 2, 'name': 'Opinionated'}]
          >>> list(db["characteristics_dogs"].rows)
          [{'characteristics_id': 1, 'dogs_id': 1}, {'characteristics_id': 2, 'dogs_id': 1}]
          >>> print(db["characteristics_dogs"].schema)
          CREATE TABLE [characteristics_dogs] (
              [characteristics_id] INTEGER REFERENCES [characteristics]([id]),
              [dogs_id] INTEGER REFERENCES [dogs]([id]),
              PRIMARY KEY ([characteristics_id], [dogs_id])
          )

   Analyzing a column
       The table.analyze_column(column, common_limit=10, value_truncate=None) method is  used  by
       the  analyze-tables CLI command. It returns a ColumnDetails named tuple with the following
       fields:

       table  The name of the table

       column The name of the column

       total_rows
              The total number of rows in the table

       num_null
              The number of rows for which this column is null

       num_blank
              The number of rows for which this column is blank (the empty string)

       num_distinct
              The number of distinct values in this column

       most_common
              The N most common values as a list of (value, count) tuples`, or None if the  table
              consists entirely of distinct values

       least_common
              The N least common values as a list of (value, count) tuples`, or None if the table
              is entirely distinct or if the number of distinct values is less than N (since they
              will already have been returned in most_common)

       N defaults to 10, or you can pass a custom N using the common_limit parameter.

       You  can  use  the  value_truncate  parameter  to  truncate  values in the most_common and
       least_common lists to a specified number of characters.

   Adding columns
       You can add a new column to a table using the .add_column(col_name, col_type) method:

          db["dogs"].add_column("instagram", str)
          db["dogs"].add_column("weight", float)
          db["dogs"].add_column("dob", datetime.date)
          db["dogs"].add_column("image", "BLOB")
          db["dogs"].add_column("website") # str by default

       You can specify the col_type argument either using a  SQLite  type  as  a  string,  or  by
       directly passing a Python type e.g. str or float.

       The col_type is optional - if you omit it the type of TEXT will be used.

       SQLite types you can specify are "TEXT", "INTEGER", "FLOAT" or "BLOB".

       If you pass a Python type, it will be mapped to SQLite types as shown here:

          float: "FLOAT"
          int: "INTEGER"
          bool: "INTEGER"
          str: "TEXT"
          bytes: "BLOB"
          datetime.datetime: "TEXT"
          datetime.date: "TEXT"
          datetime.time: "TEXT"

          # If numpy is installed
          np.int8: "INTEGER"
          np.int16: "INTEGER"
          np.int32: "INTEGER"
          np.int64: "INTEGER"
          np.uint8: "INTEGER"
          np.uint16: "INTEGER"
          np.uint32: "INTEGER"
          np.uint64: "INTEGER"
          np.float16: "FLOAT"
          np.float32: "FLOAT"
          np.float64: "FLOAT"

       You  can  also  add a column that is a foreign key reference to another table using the fk
       parameter:

          db["dogs"].add_column("species_id", fk="species")

       This will automatically detect the name of the primary key on the species  table  and  use
       that (and its type) for the new column.

       You can explicitly specify the column you wish to reference using fk_col:

          db["dogs"].add_column("species_id", fk="species", fk_col="ref")

       You can set a NOT NULL DEFAULT 'x' constraint on the new column using not_null_default:

          db["dogs"].add_column("friends_count", int, not_null_default=0)

   Adding columns automatically on insert/update
       You  can  insert or update data that includes new columns and have the table automatically
       altered to fit the new schema using the alter=True argument. This can  be  passed  to  all
       four  of  .insert(),  .upsert(),  .insert_all()  and .upsert_all(), or it can be passed to
       db.table(table_name, alter=True) to enable it by default for all method calls against that
       table instance.

          db["new_table"].insert({"name": "Gareth"})
          # This will throw an exception:
          db["new_table"].insert({"name": "Gareth", "age": 32})
          # This will succeed and add a new "age" integer column:
          db["new_table"].insert({"name": "Gareth", "age": 32}, alter=True)
          # You can see confirm the new column like so:
          print(db["new_table"].columns_dict)
          # Outputs this:
          # {'name': <class 'str'>, 'age': <class 'int'>}

          # This works too:
          new_table = db.table("new_table", alter=True)
          new_table.insert({"name": "Gareth", "age": 32, "shoe_size": 11})

   Adding foreign key constraints
       The SQLite ALTER TABLE statement doesn't have the ability to add foreign key references to
       an existing column.

       It's possible to add these  references  through  very  careful  manipulation  of  SQLite's
       sqlite_master table, using PRAGMA writable_schema.

       sqlite-utils can do this for you, though there is a significant risk of data corruption if
       something goes wrong so it is advisable to create a  fresh  copy  of  your  database  file
       before attempting this.

       Here's an example of this mechanism in action:

          db["authors"].insert_all([
              {"id": 1, "name": "Sally"},
              {"id": 2, "name": "Asheesh"}
          ], pk="id")
          db["books"].insert_all([
              {"title": "Hedgehogs of the world", "author_id": 1},
              {"title": "How to train your wolf", "author_id": 2},
          ])
          db["books"].add_foreign_key("author_id", "authors", "id")

       The  table.add_foreign_key(column, other_table, other_column) method takes the name of the
       column, the table that is being referenced and the key column within that other table.  If
       you  omit  the  other_column  argument  the  primary  key  from  that  table  will be used
       automatically. If you omit the other_table argument the table will  be  guessed  based  on
       some simple rules:

       • If the column is of format author_id, look for tables called author or authors

       • If  the  column  does not end in _id, try looking for a table with the exact name of the
         column or that name with an added s

       This method first checks that the specified foreign key references tables and columns that
       exist   and   does   not   clash   with   an   existing  foreign  key.  It  will  raise  a
       sqlite_utils.db.AlterError exception if these checks fail.

       To ignore the case where the key already exists, use ignore=True:

          db["books"].add_foreign_key("author_id", "authors", "id", ignore=True)

   Adding multiple foreign key constraints at once
       The final step in adding a new foreign key to a SQLite  database  is  to  run  VACUUM,  to
       ensure the new foreign key is available in future introspection queries.

       VACUUM  against a large (multi-GB) database can take several minutes or longer. If you are
       adding multiple foreign keys using table.add_foreign_key(...) these can quickly add up.

       Instead, you can use db.add_foreign_keys(...) to add multiple foreign keys within a single
       transaction. This method takes a list of four-tuples, each one specifying a table, column,
       other_table and other_column.

       Here's an example adding two foreign keys at once:

          db.add_foreign_keys([
              ("dogs", "breed_id", "breeds", "id"),
              ("dogs", "home_town_id", "towns", "id")
          ])

       This   method   runs   the   same   checks   as   .add_foreign_keys()   and   will   raise
       sqlite_utils.db.AlterError if those checks fail.

   Adding indexes for all foreign keys
       If  you  want to ensure that every foreign key column in your database has a corresponding
       index, you can do so like this:

          db.index_foreign_keys()

   Dropping a table or view
       You can drop a table or view using the .drop() method:

          db["my_table"].drop()

       Pass ignore=True if you want to ignore the error caused by the table or view not existing.

          db["my_table"].drop(ignore=True)

   Transforming a table
       The SQLite ALTER TABLE statement is limited. It  can  add  and  drop  columns  and  rename
       tables,  but  it  cannot change column types, change NOT NULL status or change the primary
       key for a table.

       The table.transform() method can do all of these  things,  by  implementing  a  multi-step
       pattern described in the SQLite documentation:

       1. Start a transaction

       2. CREATE TABLE tablename_new_x123 with the required changes

       3. Copy the old data into the new table using INSERT INTO tablename_new_x123 SELECT * FROM
          tablename;

       4. DROP TABLE tablename;

       5. ALTER TABLE tablename_new_x123 RENAME TO tablename;

       6. Commit the transaction

       The .transform() method takes a number of parameters, all of which are optional.

   Altering column types
       To alter the type of a column, use the types= argument:

          # Convert the 'age' column to an integer, and 'weight' to a float
          table.transform(types={"age": int, "weight": float})

       See Adding columns for a list of available types.

   Renaming columns
       The rename= parameter can rename columns:

          # Rename 'age' to 'initial_age':
          table.transform(rename={"age": "initial_age"})

   Dropping columns
       To drop columns, pass them in the drop= set:

          # Drop the 'age' column:
          table.transform(drop={"age"})

   Changing primary keys
       To change the primary key for a table, use pk=. This can be passed a single column  for  a
       regular  primary  key,  or  a  tuple  of columns to create a compound primary key. Passing
       pk=None will remove the primary key and convert the table into a rowid table.

          # Make `user_id` the new primary key
          table.transform(pk="user_id")

   Changing not null status
       You can change the NOT NULL status of columns by using not_null=. You can pass this a  set
       of columns to make those columns NOT NULL:

          # Make the 'age' and 'weight' columns NOT NULL
          table.transform(not_null={"age", "weight"})

       If  you  want  to take existing NOT NULL columns and change them to allow null values, you
       can do so by passing a dictionary of true/false values instead:

          # 'age' is NOT NULL but we want to allow NULL:
          table.transform(not_null={"age": False})

          # Make age allow NULL and switch weight to being NOT NULL:
          table.transform(not_null={"age": False, "weight": True})

   Altering column defaults
       The defaults= parameter can be used to set or change the defaults for different columns:

          # Set default age to 1:
          table.transform(defaults={"age": 1})

          # Now remove the default from that column:
          table.transform(defaults={"age": None})

   Changing column order
       The column_order= parameter can be used to change the order of the columns.  If  you  pass
       the  names  of  a  subset  of the columns those will go first and columns you omitted will
       appear in their existing order after them.

          # Change column order
          table.transform(column_order=("name", "age", "id")

   Dropping foreign key constraints
       You can use .transform() to remove foreign key constraints from a table.

       This example drops two foreign keys - the one from places.country to  country.id  and  the
       one from places.continent to continent.id:

          db["places"].transform(
              drop_foreign_keys=("country", "continent")
          )

   Custom transformations with .transform_sql()
       The  .transform()  method  can  handle  most  cases, but it does not automatically upgrade
       indexes, views or triggers associated with the table that is being transformed.

       If you want to do something more  advanced,  you  can  call  the  table.transform_sql(...)
       method with the same arguments that you would have passed to table.transform(...).

       This  method will return a list of SQL statements that should be executed to implement the
       change. You can then make modifications to that SQL - or add additional SQL  statements  -
       before executing it yourself.

   Extracting columns into a separate table
       The table.extract() method can be used to extract specified columns into a separate table.

       Imagine a Trees table that looks like this:

                                     ┌───┬──────────────┬─────────┐
                                     │id │ TreeAddress  │ Species │
                                     ├───┼──────────────┼─────────┤
                                     │1  │ 52 Vine St   │ Palm    │
                                     ├───┼──────────────┼─────────┤
                                     │2  │ 12 Draft St  │ Oak     │
                                     ├───┼──────────────┼─────────┤
                                     │3  │ 51 Dark Ave  │ Palm    │
                                     ├───┼──────────────┼─────────┤
                                     │4  │ 1252 Left St │ Palm    │
                                     └───┴──────────────┴─────────┘

       The  Species  column  contains  duplicate  values.  This  database  could  be  improved by
       extracting that column out into a separate Species  table  and  pointing  to  it  using  a
       foreign key column.

       The schema of the above table is:

          CREATE TABLE [Trees] (
              [id] INTEGER PRIMARY KEY,
              [TreeAddress] TEXT,
              [Species] TEXT
          )

       Here's how to extract the Species column using .extract():

          db["Trees"].extract("Species")

       After running this code the table schema now looks like this:

          CREATE TABLE "Trees" (
              [id] INTEGER PRIMARY KEY,
              [TreeAddress] TEXT,
              [Species_id] INTEGER,
              FOREIGN KEY(Species_id) REFERENCES Species(id)
          )

       A new Species table will have been created with the following schema:

          CREATE TABLE [Species] (
              [id] INTEGER PRIMARY KEY,
              [Species] TEXT
          )

       The  .extract()  method defaults to creating a table with the same name as the column that
       was extracted, and adding a foreign key column called tablename_id.

       You can specify a custom table name using table=, and a  custom  foreign  key  name  using
       fk_column=.  This  example  creates  a  table called tree_species and a foreign key column
       called tree_species_id:

          db["Trees"].extract("Species", table="tree_species", fk_column="tree_species_id")

       The resulting schema looks like this:

          CREATE TABLE "Trees" (
              [id] INTEGER PRIMARY KEY,
              [TreeAddress] TEXT,
              [tree_species_id] INTEGER,
              FOREIGN KEY(tree_species_id) REFERENCES tree_species(id)
          )

          CREATE TABLE [tree_species] (
              [id] INTEGER PRIMARY KEY,
              [Species] TEXT
          )

       You can also extract multiple columns into the same external table. Say  for  example  you
       have a table like this:

                              ┌───┬──────────────┬────────────┬───────────┐
                              │id │ TreeAddress  │ CommonName │ LatinName │
                              ├───┼──────────────┼────────────┼───────────┤
                              │1  │ 52 Vine St   │ Palm       │ Arecaceae │
                              ├───┼──────────────┼────────────┼───────────┤
                              │2  │ 12 Draft St  │ Oak        │ Quercus   │
                              └───┴──────────────┴────────────┴───────────┘

                              │3  │ 51 Dark Ave  │ Palm       │ Arecaceae │
                              ├───┼──────────────┼────────────┼───────────┤
                              │4  │ 1252 Left St │ Palm       │ Arecaceae │
                              └───┴──────────────┴────────────┴───────────┘

       You can pass ["CommonName", "LatinName"] to .extract() to extract both of those columns:

          db["Trees"].extract(["CommonName", "LatinName"])

       This produces the following schema:

          CREATE TABLE "Trees" (
              [id] INTEGER PRIMARY KEY,
              [TreeAddress] TEXT,
              [CommonName_LatinName_id] INTEGER,
              FOREIGN KEY(CommonName_LatinName_id) REFERENCES CommonName_LatinName(id)
          )
          CREATE TABLE [CommonName_LatinName] (
              [id] INTEGER PRIMARY KEY,
              [CommonName] TEXT,
              [LatinName] TEXT
          )

       The  table  name  CommonName_LatinName  is  derived  from the extract columns. You can use
       table= and fk_column= to specify custom names like this:

          db["Trees"].extract(["CommonName", "LatinName"], table="Species", fk_column="species_id")

       This produces the following schema:

          CREATE TABLE "Trees" (
              [id] INTEGER PRIMARY KEY,
              [TreeAddress] TEXT,
              [species_id] INTEGER,
              FOREIGN KEY(species_id) REFERENCES Species(id)
          )
          CREATE TABLE [Species] (
              [id] INTEGER PRIMARY KEY,
              [CommonName] TEXT,
              [LatinName] TEXT
          )

       You can use the rename= argument to rename columns  in  the  lookup  table.  To  create  a
       Species table with columns called name and latin you can do this:

          db["Trees"].extract(
              ["CommonName", "LatinName"],
              table="Species",
              fk_column="species_id",
              rename={"CommonName": "name", "LatinName": "latin"}
          )

       This produces a lookup table like so:

          CREATE TABLE [Species] (
              [id] INTEGER PRIMARY KEY,
              [name] TEXT,
              [latin] TEXT
          )

   Setting an ID based on the hash of the row contents
       Sometimes  you  will  find  yourself working with a dataset that includes rows that do not
       have a provided obvious ID, but where you would like to assign one so that you  can  later
       upsert into that table without creating duplicate records.

       In  these  cases, a useful technique is to create an ID that is derived from the sha1 hash
       of the row contents.

       sqlite-utils can do this for you using the hash_id= option. For example:

          db = sqlite_utils.Database("dogs.db")
          db["dogs"].upsert({"name": "Cleo", "twitter": "cleopaws"}, hash_id="id")
          print(list(db["dogs]))

       Outputs:

          [{'id': 'f501265970505d9825d8d9f590bfab3519fb20b1', 'name': 'Cleo', 'twitter': 'cleopaws'}]

       If you are going to use that ID straight away, you can access it using last_pk:

          dog_id = db["dogs"].upsert({
              "name": "Cleo",
              "twitter": "cleopaws"
          }, hash_id="id").last_pk
          # dog_id is now "f501265970505d9825d8d9f590bfab3519fb20b1"

       The hash will be created using all of the column values. To create a hash using  a  subset
       of the columns, pass the hash_id_columns= parameter:

          db["dogs"].upsert(
              {"name": "Cleo", "twitter": "cleopaws", "age": 7},
              hash_id_columns=("name", "twitter")
          )

       The  hash_id=  parameter  is optional if you specify hash_id_columns= - it will default to
       putting the hash in a column called id.

       You can manually calculate these hashes using the  hash_record(record,  keys=...)  utility
       function.

   Creating views
       The .create_view() method on the database class can be used to create a view:

          db.create_view("good_dogs", """
              select * from dogs where is_good_dog = 1
          """)

       This  will  raise  a  sqlite_utils.utils.OperationalError if a view with that name already
       exists.

       You can pass  ignore=True  to  silently  ignore  an  existing  view  and  do  nothing,  or
       replace=True  to  replace  an existing view with a new definition if your select statement
       differs from the current view:

          db.create_view("good_dogs", """
              select * from dogs where is_good_dog = 1
          """, replace=True)

   Storing JSON
       SQLite has excellent JSON support, and sqlite-utils can help you take advantage  of  this:
       if  you  attempt  to  insert a value that can be represented as a JSON list or dictionary,
       sqlite-utils will create TEXT column and store your data as serialized  JSON.  This  means
       you  can  quickly  store  even complex data structures in SQLite and query them using JSON
       features.

       For example:

          db["niche_museums"].insert({
              "name": "The Bigfoot Discovery Museum",
              "url": "http://bigfootdiscoveryproject.com/"
              "hours": {
                  "Monday": [11, 18],
                  "Wednesday": [11, 18],
                  "Thursday": [11, 18],
                  "Friday": [11, 18],
                  "Saturday": [11, 18],
                  "Sunday": [11, 18]
              },
              "address": {
                  "streetAddress": "5497 Highway 9",
                  "addressLocality": "Felton, CA",
                  "postalCode": "95018"
              }
          })
          db.execute("""
              select json_extract(address, '$.addressLocality')
              from niche_museums
          """).fetchall()
          # Returns [('Felton, CA',)]

   Converting column values using SQL functions
       Sometimes it can be useful to run values through a SQL function prior to inserting them. A
       simple example might be converting a value to upper case while it is being inserted.

       The  conversions={...} parameter can be used to specify custom SQL to be used as part of a
       INSERT or UPDATE SQL statement.

       You can specify an upper case conversion for a specific column like so:

          db["example"].insert({
              "name": "The Bigfoot Discovery Museum"
          }, conversions={"name": "upper(?)"})

          # list(db["example"].rows) now returns:
          # [{'name': 'THE BIGFOOT DISCOVERY MUSEUM'}]

       The dictionary key is the column name to be converted. The value is the  SQL  fragment  to
       use, with a ? placeholder for the original value.

       A more useful example: if you are working with SpatiaLite you may find yourself wanting to
       create geometry values from a WKT value. Code to do that could look like this:

          import sqlite3
          import sqlite_utils
          from shapely.geometry import shape
          import httpx

          db = sqlite_utils.Database("places.db")
          # Initialize SpatiaLite
          db.init_spatialite()
          # Use sqlite-utils to create a places table
          places = db["places"].create({"id": int, "name": str})

          # Add a SpatiaLite 'geometry' column
          places.add_geometry_column("geometry", "MULTIPOLYGON")

          # Fetch some GeoJSON from Who's On First:
          geojson = httpx.get(
              "https://raw.githubusercontent.com/whosonfirst-data/"
              "whosonfirst-data-admin-gb/master/data/404/227/475/404227475.geojson"
          ).json()

          # Convert to "Well Known Text" format using shapely
          wkt = shape(geojson["geometry"]).wkt

          # Insert the record, converting the WKT to a SpatiaLite geometry:
          db["places"].insert(
              {"name": "Wales", "geometry": wkt},
              conversions={"geometry": "GeomFromText(?, 4326)"},
          )

       This example uses gographical data from  [Who's  On  First](https://whosonfirst.org/)  and
       depends   on   the   [Shapely](https://shapely.readthedocs.io/en/stable/manual.html)   and
       [HTTPX](https://www.python-httpx.org/) Python libraries.

   Checking the SQLite version
       The db.sqlite_version property returns a tuple of integers  representing  the  version  of
       SQLite used for that database object:

          >>> db.sqlite_version
          (3, 36, 0)

   Introspecting tables and views
       If  you  have loaded an existing table or view, you can use introspection to find out more
       about it:

          >>> db["PlantType"]
          <Table PlantType (id, value)>

   .exists()
       The .exists() method can be used to find out if a table exists or not:

          >>> db["PlantType"].exists()
          True
          >>> db["PlantType2"].exists()
          False

   .count
       The .count property shows the current number of rows (select count(*) from table):

          >>> db["PlantType"].count
          3
          >>> db["Street_Tree_List"].count
          189144

       This  property  will  take  advantage  of  Cached  table  counts  using  triggers  if  the
       use_counts_table property is set on the database. You can avoid that optimization entirely
       by calling table.count_where() instead of accessing the property.

   .columns
       The .columns property shows the columns in the  table  or  view.  It  returns  a  list  of
       Column(cid, name, type, notnull, default_value, is_pk) named tuples.

          >>> db["PlantType"].columns
          [Column(cid=0, name='id', type='INTEGER', notnull=0, default_value=None, is_pk=1),
           Column(cid=1, name='value', type='TEXT', notnull=0, default_value=None, is_pk=0)]

   .columns_dict
       The .columns_dict property returns a dictionary version of the columns with just the names
       and Python types:

          >>> db["PlantType"].columns_dict
          {'id': <class 'int'>, 'value': <class 'str'>}

   .pks
       The .pks property returns a list of strings naming the primary key columns for the table:

          >>> db["PlantType"].pks
          ['id']

       If a table has no primary keys but is a rowid table, this property will return ['rowid'].

   .use_rowid
       Almost all SQLite tables have a rowid column, but  a  table  with  no  explicitly  defined
       primary  keys  must use that rowid as the primary key for identifying individual rows. The
       .use_rowid property checks to see if a table needs to use the  rowid  in  this  way  -  it
       returns True if the table has no explicitly defined primary keys and False otherwise.

       >>> db["PlantType"].use_rowid
       False

   .foreign_keys
       The  .foreign_keys property returns any foreign key relationships for the table, as a list
       of ForeignKey(table, column, other_table, other_column) named tuples. It is not  available
       on views.

          >>> db["Street_Tree_List"].foreign_keys
          [ForeignKey(table='Street_Tree_List', column='qLegalStatus', other_table='qLegalStatus', other_column='id'),
           ForeignKey(table='Street_Tree_List', column='qCareAssistant', other_table='qCareAssistant', other_column='id'),
           ForeignKey(table='Street_Tree_List', column='qSiteInfo', other_table='qSiteInfo', other_column='id'),
           ForeignKey(table='Street_Tree_List', column='qSpecies', other_table='qSpecies', other_column='id'),
           ForeignKey(table='Street_Tree_List', column='qCaretaker', other_table='qCaretaker', other_column='id'),
           ForeignKey(table='Street_Tree_List', column='PlantType', other_table='PlantType', other_column='id')]

   .schema
       The .schema property outputs the table's schema as a SQL string:

          >>> print(db["Street_Tree_List"].schema)
          CREATE TABLE "Street_Tree_List" (
          "TreeID" INTEGER,
            "qLegalStatus" INTEGER,
            "qSpecies" INTEGER,
            "qAddress" TEXT,
            "SiteOrder" INTEGER,
            "qSiteInfo" INTEGER,
            "PlantType" INTEGER,
            "qCaretaker" INTEGER,
            "qCareAssistant" INTEGER,
            "PlantDate" TEXT,
            "DBH" INTEGER,
            "PlotSize" TEXT,
            "PermitNotes" TEXT,
            "XCoord" REAL,
            "YCoord" REAL,
            "Latitude" REAL,
            "Longitude" REAL,
            "Location" TEXT
          ,
          FOREIGN KEY ("PlantType") REFERENCES [PlantType](id),
              FOREIGN KEY ("qCaretaker") REFERENCES [qCaretaker](id),
              FOREIGN KEY ("qSpecies") REFERENCES [qSpecies](id),
              FOREIGN KEY ("qSiteInfo") REFERENCES [qSiteInfo](id),
              FOREIGN KEY ("qCareAssistant") REFERENCES [qCareAssistant](id),
              FOREIGN KEY ("qLegalStatus") REFERENCES [qLegalStatus](id))

   .strict
       The .strict property identifies if the table is a SQLite STRICT table.

          >>> db["ny_times_us_counties"].strict
          False

   .indexes
       The  .indexes  property  returns  all indexes created for a table, as a list of Index(seq,
       name, unique, origin, partial, columns) named tuples. It is not available on views.

          >>> db["Street_Tree_List"].indexes
          [Index(seq=0, name='"Street_Tree_List_qLegalStatus"', unique=0, origin='c', partial=0, columns=['qLegalStatus']),
           Index(seq=1, name='"Street_Tree_List_qCareAssistant"', unique=0, origin='c', partial=0, columns=['qCareAssistant']),
           Index(seq=2, name='"Street_Tree_List_qSiteInfo"', unique=0, origin='c', partial=0, columns=['qSiteInfo']),
           Index(seq=3, name='"Street_Tree_List_qSpecies"', unique=0, origin='c', partial=0, columns=['qSpecies']),
           Index(seq=4, name='"Street_Tree_List_qCaretaker"', unique=0, origin='c', partial=0, columns=['qCaretaker']),
           Index(seq=5, name='"Street_Tree_List_PlantType"', unique=0, origin='c', partial=0, columns=['PlantType'])]

   .xindexes
       The .xindexes property returns more detailed information about the indexes on  the  table,
       using  the  SQLite  PRAGMA  index_xinfo()  mechanism.  It  returns  a list of XIndex(name,
       columns) named tuples, where columns is a list of  XIndexColumn(seqno,  cid,  name,  desc,
       coll, key) named tuples.

          >>> db["ny_times_us_counties"].xindexes
          [
              XIndex(
                  name='idx_ny_times_us_counties_date',
                  columns=[
                      XIndexColumn(seqno=0, cid=0, name='date', desc=1, coll='BINARY', key=1),
                      XIndexColumn(seqno=1, cid=-1, name=None, desc=0, coll='BINARY', key=0)
                  ]
              ),
              XIndex(
                  name='idx_ny_times_us_counties_fips',
                  columns=[
                      XIndexColumn(seqno=0, cid=3, name='fips', desc=0, coll='BINARY', key=1),
                      XIndexColumn(seqno=1, cid=-1, name=None, desc=0, coll='BINARY', key=0)
                  ]
              )
          ]

   .triggers
       The  .triggers property lists database triggers. It can be used on both database and table
       objects. It returns a list of Trigger(name, table, sql) named tuples.

          >>> db["authors"].triggers
          [Trigger(name='authors_ai', table='authors', sql='CREATE TRIGGER [authors_ai] AFTER INSERT...'),
           Trigger(name='authors_ad', table='authors', sql="CREATE TRIGGER [authors_ad] AFTER DELETE..."),
           Trigger(name='authors_au', table='authors', sql="CREATE TRIGGER [authors_au] AFTER UPDATE")]
          >>> db.triggers
          ... similar output to db["authors"].triggers

   .triggers_dict
       The .triggers_dict property returns the triggers for that table as  a  dictionary  mapping
       their names to their SQL definitions.

          >>> db["authors"].triggers_dict
          {'authors_ai': 'CREATE TRIGGER [authors_ai] AFTER INSERT...',
           'authors_ad': 'CREATE TRIGGER [authors_ad] AFTER DELETE...',
           'authors_au': 'CREATE TRIGGER [authors_au] AFTER UPDATE'}

       The same property exists on the database, and will return all triggers across all tables:

          >>> db.triggers_dict
          {'authors_ai': 'CREATE TRIGGER [authors_ai] AFTER INSERT...',
           'authors_ad': 'CREATE TRIGGER [authors_ad] AFTER DELETE...',
           'authors_au': 'CREATE TRIGGER [authors_au] AFTER UPDATE'}

   .detect_fts()
       The  detect_fts()  method  returns the associated SQLite FTS table name, if one exists for
       this table. If the table has not been configured for full-text search it returns None.

          >>> db["authors"].detect_fts()
          "authors_fts"

   .virtual_table_using
       The .virtual_table_using property reveals if a table is a virtual table. It  returns  None
       for  regular tables and the upper case version of the type of virtual table otherwise. For
       example:

          >>> db["authors"].enable_fts(["name"])
          >>> db["authors_fts"].virtual_table_using
          "FTS5"

   .has_counts_triggers
       The .has_counts_triggers property shows if a table has been configured with  triggers  for
       updating a _counts table, as described in Cached table counts using triggers.

          >>> db["authors"].has_counts_triggers
          False
          >>> db["authors"].enable_counts()
          >>> db["authors"].has_counts_triggers
          True

   Full-text search
       SQLite includes bundled extensions that implement powerful full-text search.

   Enabling full-text search for a table
       You can enable full-text search on a table using .enable_fts(columns):

          db["dogs"].enable_fts(["name", "twitter"])

       You can then run searches using the .search() method:

          rows = list(db["dogs"].search("cleo"))

       This  method returns a generator that can be looped over to get dictionaries for each row,
       similar to Listing rows.

       If you insert additional records into the table you will need to refresh the search  index
       using populate_fts():

          db["dogs"].insert({
              "id": 2,
              "name": "Marnie",
              "twitter": "MarnieTheDog",
              "age": 16,
              "is_good_dog": True,
          }, pk="id")
          db["dogs"].populate_fts(["name", "twitter"])

       A  better  solution  is  to  use  database  triggers.  You can set up database triggers to
       automatically update the full-text index using create_triggers=True:

          db["dogs"].enable_fts(["name", "twitter"], create_triggers=True)

       .enable_fts() defaults to using FTS5. If you wish to use FTS4 instead, use the following:

          db["dogs"].enable_fts(["name", "twitter"], fts_version="FTS4")

       You can customize the tokenizer configured for the table using  the  tokenize=  parameter.
       For  example,  to  enable  Porter  stemming, where English words like "running" will match
       stemmed alternatives such as "run", use tokenize="porter":

          db["articles"].enable_fts(["headline", "body"], tokenize="porter")

       The SQLite documentation has more on FTS5 tokenizers and  FTS4  tokenizers.  porter  is  a
       valid option for both.

       If   you   attempt   to   configure   a   FTS   table   where   one   already   exists,  a
       sqlite3.OperationalError exception will be raised.

       You can replace the existing table with a new configuration using replace=True:

          db["articles"].enable_fts(["headline"], tokenize="porter", replace=True)

       This will have no effect if the FTS table already  exists,  otherwise  it  will  drop  and
       recreate  the  table with the new settings. This takes into consideration the columns, the
       tokenizer, the FTS version used and whether or not the table has triggers.

       To remove the FTS tables and triggers you created, use the disable_fts() table method:

          db["dogs"].disable_fts()

   Quoting characters for use in search
       SQLite supports advanced search query syntax. In some situations you may wish  to  disable
       this,  since  characters  such  as  .  may  have  special  meaning that causes errors when
       searching for strings provided by your users.

       The db.quote_fts(query) method returns the query  with  SQLite  full-text  search  quoting
       applied such that the query should be safe to use in a search:

          db.quote_fts("Search term.")
          # Returns: '"Search" "term."'

   Searching with table.search()
       The  table.search(q) method returns a generator over Python dictionaries representing rows
       that match the search phrase q, ordered by relevance with the most relevant results first.

          for article in db["articles"].search("jquery"):
              print(article)

       The .search() method also accepts the following optional parameters:

       order_by string
              The column to sort by. Defaults to relevance score. Can optionally include a  desc,
              e.g. rowid desc.

       columns array of strings
              Columns to return. Defaults to all columns.

       limit integer
              Number of results to return. Defaults to all results.

       offset integer
              Offset to use along side the limit parameter.

       quote bool
              Apply  FTS  quoting rules to the search query, disabling advanced query syntax in a
              way that avoids surprising errors.

       To return just the title and published columns for three  matches  for  "dog"  ordered  by
       published with the most recent first, use the following:

          for article in db["articles"].search(
              "dog",
              order_by="published desc",
              limit=3,
              columns=["title", "published"]
          ):
              print(article)

   Building SQL queries with table.search_sql()
       You   can   generate   the   SQL  query  that  would  be  used  for  a  search  using  the
       table.search_sql() method.  It  takes  the  same  arguments  as  table.search()  with  the
       exception of the search query itself, since the returned SQL includes a parameter that can
       be used for the search.

          print(db["articles"].search_sql(columns=["title", "author"]))

       Outputs:

          with original as (
              select
                  rowid,
                  [title],
                  [author]
              from [articles]
          )
          select
              [original].[title],
              [original].[author]
          from
              [original]
              join [articles_fts] on [original].rowid = [articles_fts].rowid
          where
              [articles_fts] match :query
          order by
              [articles_fts].rank

       This method detects if a SQLite table uses FTS4 or FTS5, and outputs the correct  SQL  for
       ordering by relevance depending on the search type.

       The FTS4 output looks something like this:

          with original as (
              select
                  rowid,
                  [title],
                  [author]
              from [articles]
          )
          select
              [original].[title],
              [original].[author]
          from
              [original]
              join [articles_fts] on [original].rowid = [articles_fts].rowid
          where
              [articles_fts] match :query
          order by
              rank_bm25(matchinfo([articles_fts], 'pcnalx'))

       This  uses  the  rank_bm25()  custom  SQL function from sqlite-fts4. You can register that
       custom function against a Database connection using this method:

          db.register_fts4_bm25()

   Rebuilding a full-text search table
       You can rebuild a table using the table.rebuild_fts() method. This is useful  for  if  the
       table configuration changes or the indexed data has become corrupted in some way.

          db["dogs"].rebuild_fts()

       This  method can be called on a table that has been configured for full-text search - dogs
       in this instance -  or directly on a _fts table:

          db["dogs_fts"].rebuild_fts()

       This runs the following SQL:

          INSERT INTO dogs_fts (dogs_fts) VALUES ("rebuild");

   Optimizing a full-text search table
       Once you have populated a FTS table you can optimize it to dramatically  reduce  its  size
       like so:

          db["dogs"].optimize()

       This runs the following SQL:

          INSERT INTO dogs_fts (dogs_fts) VALUES ("optimize");

   Cached table counts using triggers
       The select count(*) query in SQLite requires a full scan of the primary key index, and can
       take an increasingly long time as the table grows larger.

       The table.enable_counts() method can be used to configure triggers to continuously  update
       a  record in a _counts table. This value can then be used to quickly retrieve the count of
       rows in the associated table.

          db["dogs"].enable_counts()

       This will create the _counts table if it  does  not  already  exist,  with  the  following
       schema:

          CREATE TABLE [_counts] (
             [table] TEXT PRIMARY KEY,
             [count] INTEGER DEFAULT 0
          )

       You  can enable cached counts for every table in a database (except for virtual tables and
       the _counts table itself) using the database enable_counts() method:

          db.enable_counts()

       Once enabled, table counts will be stored in the _counts table. The count records will  be
       automatically kept up-to-date by the triggers when rows are added or deleted to the table.

       To  access  these  counts  you  can  query  the  _counts table directly or you can use the
       db.cached_counts() method. This method  returns  a  dictionary  mapping  tables  to  their
       counts:

          >>> db.cached_counts()
          {'global-power-plants': 33643,
           'global-power-plants_fts_data': 136,
           'global-power-plants_fts_idx': 199,
           'global-power-plants_fts_docsize': 33643,
           'global-power-plants_fts_config': 1}

       You can pass a list of table names to this method to retrieve just those counts:

          >>> db.cached_counts(["global-power-plants"])
          {'global-power-plants': 33643}

       The  table.count  property  executes  a  select  count(*)  query  by  default,  unless the
       db.use_counts_table property is set to True.

       You can set use_counts_table to True when you instantiate the database object:

          db = Database("global-power-plants.db", use_counts_table=True)

       If the property is True any calls to the table.count property will first attempt  to  find
       the  cached  count in the _counts table, and fall back on a count(*) query if the value is
       not available or the table is missing.

       Calling  the  .enable_counts()  method  on  a  database   or   table   object   will   set
       use_counts_table to True for the lifetime of that database object.

       If  the _counts table ever becomes out-of-sync with the actual table counts you can repair
       it using the .reset_counts() method:

          db.reset_counts()

   Creating indexes
       You can create an index on a table using the  .create_index(columns)  method.  The  method
       takes a list of columns:

          db["dogs"].create_index(["is_good_dog"])

       By   default   the   index   will   be   named  idx_{table-name}_{columns}.  If  you  pass
       find_unique_name=True and the automatically derived name already exists, an available name
       will be found by incrementing a suffix number, for example idx_items_title_2.

       You can customize the name of the created index by passing the index_name parameter:

          db["dogs"].create_index(
              ["is_good_dog", "age"],
              index_name="good_dogs_by_age"
          )

       To  create  an  index  in  descending  order  for  a  column,  wrap  the  column  name  in
       db.DescIndex() like this:

          from sqlite_utils.db import DescIndex

          db["dogs"].create_index(
              ["is_good_dog", DescIndex("age")],
              index_name="good_dogs_by_age"
          )

       You can create a unique index by passing unique=True:

          db["dogs"].create_index(["name"], unique=True)

       Use if_not_exists=True to do nothing if an index with that name already exists.

       Pass analyze=True to run ANALYZE against the new index after creating it.

   Optimizing index usage with ANALYZE
       The SQLite ANALYZE command builds a table of statistics which the query planner can use to
       make better decisions about which indexes to use for a given query.

       You  should  run  ANALYZE  if your database is large and you do not think your indexes are
       being efficiently used.

       To run ANALYZE against every index in a database, use this:

          db.analyze()

       To run it just against a specific named index, pass the name of the index to that method:

          db.analyze("idx_countries_country_name")

       To run against all indexes attached to a specific table, you can  either  pass  the  table
       name to db.analyze(...) or you can call the method directly on the table, like this:

          db["dogs"].analyze()

   Vacuum
       You can optimize your database by running VACUUM against it like so:

          Database("my_database.db").vacuum()

   WAL mode
       You can enable Write-Ahead Logging for a database with .enable_wal():

          Database("my_database.db").enable_wal()

       You can disable WAL mode using .disable_wal():

          Database("my_database.db").disable_wal()

       You can check the current journal mode for a database using the journal_mode property:

          journal_mode = Database("my_database.db").journal_mode

       This  will usually be wal or delete (meaning WAL is disabled), but can have other values -
       see the PRAGMA journal_mode documentation.

   Suggesting column types
       When you create a new table for a list of inserted or upserted Python dictionaries,  those
       methods detect the correct types for the database columns based on the data you pass in.

       In  some  situations  you  may need to intervene in this process, to customize the columns
       that are being created in some way - see Explicitly creating a table.

       That table .create() method takes a dictionary mapping column names  to  the  Python  type
       they should store:

          db["cats"].create({
              "id": int,
              "name": str,
              "weight": float,
          })

       You  can  use  the suggest_column_types() helper function to derive a dictionary of column
       names and types from a list of records, suitable to be passed to table.create().

       For example:

          from sqlite_utils import Database, suggest_column_types

          cats = [{
              "id": 1,
              "name": "Snowflake"
          }, {
              "id": 2,
              "name": "Crabtree",
              "age": 4
          }]
          types = suggest_column_types(cats)
          # types now looks like this:
          # {"id": <class 'int'>,
          #  "name": <class 'str'>,
          #  "age": <class 'int'>}

          # Manually add an extra field:
          types["thumbnail"] = bytes
          # types now looks like this:
          # {"id": <class 'int'>,
          #  "name": <class 'str'>,
          #  "age": <class 'int'>,
          #  "thumbnail": <class 'bytes'>}

          # Create the table
          db = Database("cats.db")
          db["cats"].create(types, pk="id")
          # Insert the records
          db["cats"].insert_all(cats)

          # list(db["cats"].rows) now returns:
          # [{"id": 1, "name": "Snowflake", "age": None, "thumbnail": None}
          #  {"id": 2, "name": "Crabtree", "age": 4, "thumbnail": None}]

          # The table schema looks like this:
          # print(db["cats"].schema)
          # CREATE TABLE [cats] (
          #    [id] INTEGER PRIMARY KEY,
          #    [name] TEXT,
          #    [age] INTEGER,
          #    [thumbnail] BLOB
          # )

   Registering custom SQL functions
       SQLite   supports   registering   custom   SQL   functions   written   in   Python.    The
       db.register_function()  method  lets  you  register  these  functions,  and keeps track of
       functions that have already been registered.

       If you use it as a method it will automatically detect the name and  number  of  arguments
       needed by the function:

          from sqlite_utils import Database

          db = Database(memory=True)

          def reverse_string(s):
              return "".join(reversed(list(s)))

          db.register_function(reverse_string)
          print(db.execute('select reverse_string("hello")').fetchone()[0])
          # This prints "olleh"

       You can also use the method as a function decorator like so:

          @db.register_function
          def reverse_string(s):
              return "".join(reversed(list(s)))

          print(db.execute('select reverse_string("hello")').fetchone()[0])

       Python  3.8  added the ability to register deterministic SQLite functions, allowing you to
       indicate that a function will return the exact same result for any given inputs and  hence
       allowing  SQLite  to  apply  some  performance  optimizations.  You can mark a function as
       deterministic using deterministic=True, like this:

          @db.register_function(deterministic=True)
          def reverse_string(s):
              return "".join(reversed(list(s)))

       If you run this on a version of Python prior to 3.8 your code will  still  work,  but  the
       deterministic=True parameter will be ignored.

       By  default registering a function with the same name and number of arguments will have no
       effect - the Database instance keeps track of functions that have already been  registered
       and skips registering them if @db.register_function is called a second time.

       If you want to deliberately replace the registered function with a new implementation, use
       the replace=True argument:

          @db.register_function(deterministic=True, replace=True)
          def reverse_string(s):
              return s[::-1]

       Exceptions that occur inside a user-defined function default to  returning  the  following
       error:

          Unexpected error: user-defined function raised exception

       You  can  cause  sqlite3  to  return  more useful errors, including the traceback from the
       custom function, by executing the following before your custom functions are executed:

          from sqlite_utils.utils import sqlite3

          sqlite3.enable_callback_tracebacks(True)

   Quoting strings for use in SQL
       In almost all cases you should  pass  values  to  your  SQL  queries  using  the  optional
       parameters argument to db.query(), as described in Passing parameters.

       If  that  option  isn't  relevant  to your use-case you can to quote a string for use with
       SQLite using the db.quote() method, like so:

          >>> db = Database(memory=True)
          >>> db.quote("hello")
          "'hello'"
          >>> db.quote("hello'this'has'quotes")
          "'hello''this''has''quotes'"

   SpatiaLite helpers
       SpatiaLite is a geographic extension to SQLite (similar to PostgreSQL  +  PostGIS).  Using
       requires  finding,  loading  and  initializing  the  extension, adding geometry columns to
       existing  tables  and  optionally  creating  spatial  indexes.  The  utilities  here  help
       streamline that setup.

   Initialize SpatiaLite
   Finding SpatiaLite
   Adding geometry columns
   Creating a spatial index
   API referencesqlite_utils.db.Databasesqlite_utils.db.Queryablesqlite_utils.db.Tablesqlite_utils.db.ViewOthersqlite_utils.db.Columnsqlite_utils.db.ColumnDetailssqlite_utils.utilssqlite_utils.utils.hash_record

   sqlite_utils.db.Database
   sqlite_utils.db.Queryable
       Table  and  View  are   both  subclasses  of  Queryable, providing access to the following
       methods:

   sqlite_utils.db.Table
   sqlite_utils.db.View
   Other
   sqlite_utils.db.Column
   sqlite_utils.db.ColumnDetails
   sqlite_utils.utils
   sqlite_utils.utils.hash_record
   CLI reference
       This page lists the --help for every sqlite-utils CLI sub-command.

       • querymemoryinsertupsertbulksearchtransformextractschemainsert-filesanalyze-tablesconverttablesviewsrowstriggersindexescreate-databasecreate-tablecreate-indexenable-ftspopulate-ftsrebuild-ftsdisable-ftsoptimizeanalyzevacuumdumpadd-columnadd-foreign-keyadd-foreign-keysindex-foreign-keysenable-waldisable-walenable-countsreset-countsdrop-tablecreate-viewdrop-viewadd-geometry-columncreate-spatial-index

   query
       See Running SQL queries.

          Usage: sqlite-utils query [OPTIONS] PATH SQL

            Execute SQL query and return the results as JSON

            Example:

                sqlite-utils data.db \
                    "select * from chickens where age > :age" \
                    -p age 1

          Options:
            --attach <TEXT FILE>...     Additional databases to attach - specify alias and
                                        filepath
            --nl                        Output newline-delimited JSON
            --arrays                    Output rows as arrays instead of objects
            --csv                       Output CSV
            --tsv                       Output TSV
            --no-headers                Omit CSV headers
            -t, --table                 Output as a formatted table
            --fmt TEXT                  Table format - one of fancy_grid, fancy_outline,
                                        github, grid, html, jira, latex, latex_booktabs,
                                        latex_longtable, latex_raw, mediawiki, moinmoin,
                                        orgtbl, pipe, plain, presto, pretty, psql, rst,
                                        simple, textile, tsv, unsafehtml, youtrack
            --json-cols                 Detect JSON cols and output them as JSON, not
                                        escaped strings
            -r, --raw                   Raw output, first column of first row
            -p, --param <TEXT TEXT>...  Named :parameters for SQL query
            --load-extension TEXT       SQLite extensions to load
            -h, --help                  Show this message and exit.

   memory
       See Querying data directly using an in-memory database.

          Usage: sqlite-utils memory [OPTIONS] [PATHS]... SQL

            Execute SQL query against an in-memory database, optionally populated by
            imported data

            To import data from CSV, TSV or JSON files pass them on the command-line:

                sqlite-utils memory one.csv two.json \
                    "select * from one join two on one.two_id = two.id"

            For data piped into the tool from standard input, use "-" or "stdin":

                cat animals.csv | sqlite-utils memory - \
                    "select * from stdin where species = 'dog'"

            The format of the data will be automatically detected. You can specify the
            format explicitly using :json, :csv, :tsv or :nl (for newline-delimited JSON)
            - for example:

                cat animals.csv | sqlite-utils memory stdin:csv places.dat:nl \
                    "select * from stdin where place_id in (select id from places)"

            Use --schema to view the SQL schema of any imported files:

                sqlite-utils memory animals.csv --schema

          Options:
            --attach <TEXT FILE>...     Additional databases to attach - specify alias and
                                        filepath
            --flatten                   Flatten nested JSON objects, so {"foo": {"bar":
                                        1}} becomes {"foo_bar": 1}
            --nl                        Output newline-delimited JSON
            --arrays                    Output rows as arrays instead of objects
            --csv                       Output CSV
            --tsv                       Output TSV
            --no-headers                Omit CSV headers
            -t, --table                 Output as a formatted table
            --fmt TEXT                  Table format - one of fancy_grid, fancy_outline,
                                        github, grid, html, jira, latex, latex_booktabs,
                                        latex_longtable, latex_raw, mediawiki, moinmoin,
                                        orgtbl, pipe, plain, presto, pretty, psql, rst,
                                        simple, textile, tsv, unsafehtml, youtrack
            --json-cols                 Detect JSON cols and output them as JSON, not
                                        escaped strings
            -r, --raw                   Raw output, first column of first row
            -p, --param <TEXT TEXT>...  Named :parameters for SQL query
            --encoding TEXT             Character encoding for CSV input, defaults to
                                        utf-8
            -n, --no-detect-types       Treat all CSV/TSV columns as TEXT
            --schema                    Show SQL schema for in-memory database
            --dump                      Dump SQL for in-memory database
            --save FILE                 Save in-memory database to this file
            --analyze                   Analyze resulting tables and output results
            --load-extension TEXT       SQLite extensions to load
            -h, --help                  Show this message and exit.

   insert
       See Inserting JSON data, Inserting CSV or  TSV  data,  Inserting  unstructured  data  with
       --lines and --text, Applying conversions while inserting data.

          Usage: sqlite-utils insert [OPTIONS] PATH TABLE FILE

            Insert records from FILE into a table, creating the table if it does not
            already exist.

            Example:

                echo '{"name": "Lila"}' | sqlite-utils insert data.db chickens -

            By default the input is expected to be a JSON object or array of objects.

            - Use --nl for newline-delimited JSON objects
            - Use --csv or --tsv for comma-separated or tab-separated input
            - Use --lines to write each incoming line to a column called "line"
            - Use --text to write the entire input to a column called "text"

            You can also use --convert to pass a fragment of Python code that will be used
            to convert each input.

            Your Python code will be passed a "row" variable representing the imported
            row, and can return a modified row.

            This example uses just the name, latitude and longitude columns from a CSV
            file, converting name to upper case and latitude and longitude to floating
            point numbers:

                sqlite-utils insert plants.db plants plants.csv --csv --convert '
                  return {
                    "name": row["name"].upper(),
                    "latitude": float(row["latitude"]),
                    "longitude": float(row["longitude"]),
                  }'

            If you are using --lines your code will be passed a "line" variable, and for
            --text a "text" variable.

            When using --text your function can return an iterator of rows to insert. This
            example inserts one record per word in the input:

                echo 'A bunch of words' | sqlite-utils insert words.db words - \
                  --text --convert '({"word": w} for w in text.split())'

          Options:
            --pk TEXT                 Columns to use as the primary key, e.g. id
            --flatten                 Flatten nested JSON objects, so {"a": {"b": 1}}
                                      becomes {"a_b": 1}
            --nl                      Expect newline-delimited JSON
            -c, --csv                 Expect CSV input
            --tsv                     Expect TSV input
            --lines                   Treat each line as a single value called 'line'
            --text                    Treat input as a single value called 'text'
            --convert TEXT            Python code to convert each item
            --import TEXT             Python modules to import
            --delimiter TEXT          Delimiter to use for CSV files
            --quotechar TEXT          Quote character to use for CSV/TSV
            --sniff                   Detect delimiter and quote character
            --no-headers              CSV file has no header row
            --encoding TEXT           Character encoding for input, defaults to utf-8
            --batch-size INTEGER      Commit every X records
            --alter                   Alter existing table to add any missing columns
            --not-null TEXT           Columns that should be created as NOT NULL
            --default <TEXT TEXT>...  Default value that should be set for a column
            -d, --detect-types        Detect types for columns in CSV/TSV data
            --analyze                 Run ANALYZE at the end of this operation
            --load-extension TEXT     SQLite extensions to load
            --silent                  Do not show progress bar
            --ignore                  Ignore records if pk already exists
            --replace                 Replace records if pk already exists
            --truncate                Truncate table before inserting records, if table
                                      already exists
            -h, --help                Show this message and exit.

   upsert
       See Upserting data.

          Usage: sqlite-utils upsert [OPTIONS] PATH TABLE FILE

            Upsert records based on their primary key. Works like 'insert' but if an
            incoming record has a primary key that matches an existing record the existing
            record will be updated.

            Example:

                echo '[
                    {"id": 1, "name": "Lila"},
                    {"id": 2, "name": "Suna"}
                ]' | sqlite-utils upsert data.db chickens - --pk id

          Options:
            --pk TEXT                 Columns to use as the primary key, e.g. id
                                      [required]
            --flatten                 Flatten nested JSON objects, so {"a": {"b": 1}}
                                      becomes {"a_b": 1}
            --nl                      Expect newline-delimited JSON
            -c, --csv                 Expect CSV input
            --tsv                     Expect TSV input
            --lines                   Treat each line as a single value called 'line'
            --text                    Treat input as a single value called 'text'
            --convert TEXT            Python code to convert each item
            --import TEXT             Python modules to import
            --delimiter TEXT          Delimiter to use for CSV files
            --quotechar TEXT          Quote character to use for CSV/TSV
            --sniff                   Detect delimiter and quote character
            --no-headers              CSV file has no header row
            --encoding TEXT           Character encoding for input, defaults to utf-8
            --batch-size INTEGER      Commit every X records
            --alter                   Alter existing table to add any missing columns
            --not-null TEXT           Columns that should be created as NOT NULL
            --default <TEXT TEXT>...  Default value that should be set for a column
            -d, --detect-types        Detect types for columns in CSV/TSV data
            --analyze                 Run ANALYZE at the end of this operation
            --load-extension TEXT     SQLite extensions to load
            --silent                  Do not show progress bar
            -h, --help                Show this message and exit.

   bulk
       See Executing SQL in bulk.

          Usage: sqlite-utils bulk [OPTIONS] PATH SQL FILE

            Execute parameterized SQL against the provided list of documents.

            Example:

                echo '[
                    {"id": 1, "name": "Lila2"},
                    {"id": 2, "name": "Suna2"}
                ]' | sqlite-utils bulk data.db '
                    update chickens set name = :name where id = :id
                ' -

          Options:
            --batch-size INTEGER   Commit every X records
            --flatten              Flatten nested JSON objects, so {"a": {"b": 1}} becomes
                                   {"a_b": 1}
            --nl                   Expect newline-delimited JSON
            -c, --csv              Expect CSV input
            --tsv                  Expect TSV input
            --lines                Treat each line as a single value called 'line'
            --text                 Treat input as a single value called 'text'
            --convert TEXT         Python code to convert each item
            --import TEXT          Python modules to import
            --delimiter TEXT       Delimiter to use for CSV files
            --quotechar TEXT       Quote character to use for CSV/TSV
            --sniff                Detect delimiter and quote character
            --no-headers           CSV file has no header row
            --encoding TEXT        Character encoding for input, defaults to utf-8
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   search
       See Executing searches.

          Usage: sqlite-utils search [OPTIONS] PATH DBTABLE Q

            Execute a full-text search against this table

            Example:

                sqlite-utils search data.db chickens lila

          Options:
            -o, --order TEXT       Order by ('column' or 'column desc')
            -c, --column TEXT      Columns to return
            --limit INTEGER        Number of rows to return - defaults to everything
            --sql                  Show SQL query that would be run
            --quote                Apply FTS quoting rules to search term
            --nl                   Output newline-delimited JSON
            --arrays               Output rows as arrays instead of objects
            --csv                  Output CSV
            --tsv                  Output TSV
            --no-headers           Omit CSV headers
            -t, --table            Output as a formatted table
            --fmt TEXT             Table format - one of fancy_grid, fancy_outline,
                                   github, grid, html, jira, latex, latex_booktabs,
                                   latex_longtable, latex_raw, mediawiki, moinmoin,
                                   orgtbl, pipe, plain, presto, pretty, psql, rst, simple,
                                   textile, tsv, unsafehtml, youtrack
            --json-cols            Detect JSON cols and output them as JSON, not escaped
                                   strings
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   transform
       See Transforming tables.

          Usage: sqlite-utils transform [OPTIONS] PATH TABLE

            Transform a table beyond the capabilities of ALTER TABLE

            Example:

                sqlite-utils transform mydb.db mytable \
                    --drop column1 \
                    --rename column2 column_renamed

          Options:
            --type <TEXT CHOICE>...   Change column type to INTEGER, TEXT, FLOAT or BLOB
            --drop TEXT               Drop this column
            --rename <TEXT TEXT>...   Rename this column to X
            -o, --column-order TEXT   Reorder columns
            --not-null TEXT           Set this column to NOT NULL
            --not-null-false TEXT     Remove NOT NULL from this column
            --pk TEXT                 Make this column the primary key
            --pk-none                 Remove primary key (convert to rowid table)
            --default <TEXT TEXT>...  Set default value for this column
            --default-none TEXT       Remove default from this column
            --drop-foreign-key TEXT   Drop foreign key constraint for this column
            --sql                     Output SQL without executing it
            --load-extension TEXT     SQLite extensions to load
            -h, --help                Show this message and exit.

   extract
       See Extracting columns into a separate table.

          Usage: sqlite-utils extract [OPTIONS] PATH TABLE COLUMNS...

            Extract one or more columns into a separate table

            Example:

                sqlite-utils extract trees.db Street_Trees species

          Options:
            --table TEXT             Name of the other table to extract columns to
            --fk-column TEXT         Name of the foreign key column to add to the table
            --rename <TEXT TEXT>...  Rename this column in extracted table
            --load-extension TEXT    SQLite extensions to load
            -h, --help               Show this message and exit.

   schema
       See Showing the schema.

          Usage: sqlite-utils schema [OPTIONS] PATH [TABLES]...

            Show full schema for this database or for specified tables

            Example:

                sqlite-utils schema trees.db

          Options:
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   insert-files
       See Inserting data from files.

          Usage: sqlite-utils insert-files [OPTIONS] PATH TABLE FILE_OR_DIR...

            Insert one or more files using BLOB columns in the specified table

            Example:

                sqlite-utils insert-files pics.db images *.gif \
                    -c name:name \
                    -c content:content \
                    -c content_hash:sha256 \
                    -c created:ctime_iso \
                    -c modified:mtime_iso \
                    -c size:size \
                    --pk name

          Options:
            -c, --column TEXT      Column definitions for the table
            --pk TEXT              Column to use as primary key
            --alter                Alter table to add missing columns
            --replace              Replace files with matching primary key
            --upsert               Upsert files with matching primary key
            --name TEXT            File name to use
            --text                 Store file content as TEXT, not BLOB
            --encoding TEXT        Character encoding for input, defaults to utf-8
            -s, --silent           Don't show a progress bar
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   analyze-tables
       See Analyzing tables.

          Usage: sqlite-utils analyze-tables [OPTIONS] PATH [TABLES]...

            Analyze the columns in one or more tables

            Example:

                sqlite-utils analyze-tables data.db trees

          Options:
            -c, --column TEXT      Specific columns to analyze
            --save                 Save results to _analyze_tables table
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   convert
       See Converting data in columns.

          Usage: sqlite-utils convert [OPTIONS] DB_PATH TABLE COLUMNS... CODE

            Convert columns using Python code you supply. For example:

                sqlite-utils convert my.db mytable mycolumn \
                    '"\n".join(textwrap.wrap(value, 10))' \
                    --import=textwrap

            "value" is a variable with the column value to be converted.

            Use "-" for CODE to read Python code from standard input.

            The following common operations are available as recipe functions:

            r.jsonsplit(value, delimiter=',', type=<class 'str'>)

                Convert a string like a,b,c into a JSON array ["a", "b", "c"]

            r.parsedate(value, dayfirst=False, yearfirst=False, errors=None)

                Parse a date and convert it to ISO date format: yyyy-mm-dd

                - dayfirst=True: treat xx as the day in xx/yy/zz
                - yearfirst=True: treat xx as the year in xx/yy/zz
                - errors=r.IGNORE to ignore values that cannot be parsed
                - errors=r.SET_NULL to set values that cannot be parsed to null

            r.parsedatetime(value, dayfirst=False, yearfirst=False, errors=None)

                Parse a datetime and convert it to ISO datetime format: yyyy-mm-ddTHH:MM:SS

                - dayfirst=True: treat xx as the day in xx/yy/zz
                - yearfirst=True: treat xx as the year in xx/yy/zz
                - errors=r.IGNORE to ignore values that cannot be parsed
                - errors=r.SET_NULL to set values that cannot be parsed to null

            You can use these recipes like so:

                sqlite-utils convert my.db mytable mycolumn \
                    'r.jsonsplit(value, delimiter=":")'

          Options:
            --import TEXT                   Python modules to import
            --dry-run                       Show results of running this against first 10
                                            rows
            --multi                         Populate columns for keys in returned
                                            dictionary
            --where TEXT                    Optional where clause
            -p, --param <TEXT TEXT>...      Named :parameters for where clause
            --output TEXT                   Optional separate column to populate with the
                                            output
            --output-type [integer|float|blob|text]
                                            Column type to use for the output column
            --drop                          Drop original column afterwards
            -s, --silent                    Don't show a progress bar
            -h, --help                      Show this message and exit.

   tables
       See Listing tables.

          Usage: sqlite-utils tables [OPTIONS] PATH

            List the tables in the database

            Example:

                sqlite-utils tables trees.db

          Options:
            --fts4                 Just show FTS4 enabled tables
            --fts5                 Just show FTS5 enabled tables
            --counts               Include row counts per table
            --nl                   Output newline-delimited JSON
            --arrays               Output rows as arrays instead of objects
            --csv                  Output CSV
            --tsv                  Output TSV
            --no-headers           Omit CSV headers
            -t, --table            Output as a formatted table
            --fmt TEXT             Table format - one of fancy_grid, fancy_outline,
                                   github, grid, html, jira, latex, latex_booktabs,
                                   latex_longtable, latex_raw, mediawiki, moinmoin,
                                   orgtbl, pipe, plain, presto, pretty, psql, rst, simple,
                                   textile, tsv, unsafehtml, youtrack
            --json-cols            Detect JSON cols and output them as JSON, not escaped
                                   strings
            --columns              Include list of columns for each table
            --schema               Include schema for each table
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   views
       See Listing views.

          Usage: sqlite-utils views [OPTIONS] PATH

            List the views in the database

            Example:

                sqlite-utils views trees.db

          Options:
            --counts               Include row counts per view
            --nl                   Output newline-delimited JSON
            --arrays               Output rows as arrays instead of objects
            --csv                  Output CSV
            --tsv                  Output TSV
            --no-headers           Omit CSV headers
            -t, --table            Output as a formatted table
            --fmt TEXT             Table format - one of fancy_grid, fancy_outline,
                                   github, grid, html, jira, latex, latex_booktabs,
                                   latex_longtable, latex_raw, mediawiki, moinmoin,
                                   orgtbl, pipe, plain, presto, pretty, psql, rst, simple,
                                   textile, tsv, unsafehtml, youtrack
            --json-cols            Detect JSON cols and output them as JSON, not escaped
                                   strings
            --columns              Include list of columns for each view
            --schema               Include schema for each view
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   rows
       See Returning all rows in a table.

          Usage: sqlite-utils rows [OPTIONS] PATH DBTABLE

            Output all rows in the specified table

            Example:

                sqlite-utils rows trees.db Trees

          Options:
            -c, --column TEXT           Columns to return
            --where TEXT                Optional where clause
            -p, --param <TEXT TEXT>...  Named :parameters for where clause
            --limit INTEGER             Number of rows to return - defaults to everything
            --offset INTEGER            SQL offset to use
            --nl                        Output newline-delimited JSON
            --arrays                    Output rows as arrays instead of objects
            --csv                       Output CSV
            --tsv                       Output TSV
            --no-headers                Omit CSV headers
            -t, --table                 Output as a formatted table
            --fmt TEXT                  Table format - one of fancy_grid, fancy_outline,
                                        github, grid, html, jira, latex, latex_booktabs,
                                        latex_longtable, latex_raw, mediawiki, moinmoin,
                                        orgtbl, pipe, plain, presto, pretty, psql, rst,
                                        simple, textile, tsv, unsafehtml, youtrack
            --json-cols                 Detect JSON cols and output them as JSON, not
                                        escaped strings
            --load-extension TEXT       SQLite extensions to load
            -h, --help                  Show this message and exit.

   triggers
       See Listing triggers.

          Usage: sqlite-utils triggers [OPTIONS] PATH [TABLES]...

            Show triggers configured in this database

            Example:

                sqlite-utils triggers trees.db

          Options:
            --nl                   Output newline-delimited JSON
            --arrays               Output rows as arrays instead of objects
            --csv                  Output CSV
            --tsv                  Output TSV
            --no-headers           Omit CSV headers
            -t, --table            Output as a formatted table
            --fmt TEXT             Table format - one of fancy_grid, fancy_outline,
                                   github, grid, html, jira, latex, latex_booktabs,
                                   latex_longtable, latex_raw, mediawiki, moinmoin,
                                   orgtbl, pipe, plain, presto, pretty, psql, rst, simple,
                                   textile, tsv, unsafehtml, youtrack
            --json-cols            Detect JSON cols and output them as JSON, not escaped
                                   strings
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   indexes
       See Listing indexes.

          Usage: sqlite-utils indexes [OPTIONS] PATH [TABLES]...

            Show indexes for the whole database or specific tables

            Example:

                sqlite-utils indexes trees.db Trees

          Options:
            --aux                  Include auxiliary columns
            --nl                   Output newline-delimited JSON
            --arrays               Output rows as arrays instead of objects
            --csv                  Output CSV
            --tsv                  Output TSV
            --no-headers           Omit CSV headers
            -t, --table            Output as a formatted table
            --fmt TEXT             Table format - one of fancy_grid, fancy_outline,
                                   github, grid, html, jira, latex, latex_booktabs,
                                   latex_longtable, latex_raw, mediawiki, moinmoin,
                                   orgtbl, pipe, plain, presto, pretty, psql, rst, simple,
                                   textile, tsv, unsafehtml, youtrack
            --json-cols            Detect JSON cols and output them as JSON, not escaped
                                   strings
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   create-database
       See Creating an empty database.

          Usage: sqlite-utils create-database [OPTIONS] PATH

            Create a new empty database file

            Example:

                sqlite-utils create-database trees.db

          Options:
            --enable-wal           Enable WAL mode on the created database
            --init-spatialite      Enable SpatiaLite on the created database
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   create-table
       See Creating tables.

          Usage: sqlite-utils create-table [OPTIONS] PATH TABLE COLUMNS...

            Add a table with the specified columns. Columns should be specified using
            name, type pairs, for example:

                sqlite-utils create-table my.db people \
                    id integer \
                    name text \
                    height float \
                    photo blob --pk id

          Options:
            --pk TEXT                 Column to use as primary key
            --not-null TEXT           Columns that should be created as NOT NULL
            --default <TEXT TEXT>...  Default value that should be set for a column
            --fk <TEXT TEXT TEXT>...  Column, other table, other column to set as a
                                      foreign key
            --ignore                  If table already exists, do nothing
            --replace                 If table already exists, replace it
            --load-extension TEXT     SQLite extensions to load
            -h, --help                Show this message and exit.

   create-index
       See Creating indexes.

          Usage: sqlite-utils create-index [OPTIONS] PATH TABLE COLUMN...

            Add an index to the specified table for the specified columns

            Example:

                sqlite-utils create-index chickens.db chickens name

            To create an index in descending order:

                sqlite-utils create-index chickens.db chickens -- -name

          Options:
            --name TEXT            Explicit name for the new index
            --unique               Make this a unique index
            --if-not-exists        Ignore if index already exists
            --analyze              Run ANALYZE after creating the index
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   enable-fts
       See Configuring full-text search.

          Usage: sqlite-utils enable-fts [OPTIONS] PATH TABLE COLUMN...

            Enable full-text search for specific table and columns"

            Example:

                sqlite-utils enable-fts chickens.db chickens name

          Options:
            --fts4                 Use FTS4
            --fts5                 Use FTS5
            --tokenize TEXT        Tokenizer to use, e.g. porter
            --create-triggers      Create triggers to update the FTS tables when the
                                   parent table changes.
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   populate-fts
          Usage: sqlite-utils populate-fts [OPTIONS] PATH TABLE COLUMN...

            Re-populate full-text search for specific table and columns

            Example:

                sqlite-utils populate-fts chickens.db chickens name

          Options:
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   rebuild-fts
          Usage: sqlite-utils rebuild-fts [OPTIONS] PATH [TABLES]...

            Rebuild all or specific full-text search tables

            Example:

                sqlite-utils rebuild-fts chickens.db chickens

          Options:
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   disable-fts
          Usage: sqlite-utils disable-fts [OPTIONS] PATH TABLE

            Disable full-text search for specific table

            Example:

                sqlite-utils disable-fts chickens.db chickens

          Options:
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   optimize
       See Optimize.

          Usage: sqlite-utils optimize [OPTIONS] PATH [TABLES]...

            Optimize all full-text search tables and then run VACUUM - should shrink the
            database file

            Example:

                sqlite-utils optimize chickens.db

          Options:
            --no-vacuum            Don't run VACUUM
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   analyze
       See Optimizing index usage with ANALYZE.

          Usage: sqlite-utils analyze [OPTIONS] PATH [NAMES]...

            Run ANALYZE against the whole database, or against specific named indexes and
            tables

            Example:

                sqlite-utils analyze chickens.db

          Options:
            -h, --help  Show this message and exit.

   vacuum
       See Vacuum.

          Usage: sqlite-utils vacuum [OPTIONS] PATH

            Run VACUUM against the database

            Example:

                sqlite-utils vacuum chickens.db

          Options:
            -h, --help  Show this message and exit.

   dump
       See Dumping the database to SQL.

          Usage: sqlite-utils dump [OPTIONS] PATH

            Output a SQL dump of the schema and full contents of the database

            Example:

                sqlite-utils dump chickens.db

          Options:
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   add-column
       See Adding columns.

          Usage: sqlite-utils add-column [OPTIONS] PATH TABLE COL_NAME
                                [[integer|float|blob|text|INTEGER|FLOAT|BLOB|TEXT]]

            Add a column to the specified table

            Example:

                sqlite-utils add-column chickens.db chickens weight float

          Options:
            --fk TEXT                Table to reference as a foreign key
            --fk-col TEXT            Referenced column on that foreign key table - if
                                     omitted will automatically use the primary key
            --not-null-default TEXT  Add NOT NULL DEFAULT 'TEXT' constraint
            --load-extension TEXT    SQLite extensions to load
            -h, --help               Show this message and exit.

   add-foreign-key
       See Adding foreign key constraints.

          Usage: sqlite-utils add-foreign-key [OPTIONS] PATH TABLE COLUMN [OTHER_TABLE]
                                     [OTHER_COLUMN]

            Add a new foreign key constraint to an existing table

            Example:

                sqlite-utils add-foreign-key my.db books author_id authors id

            WARNING: Could corrupt your database! Back up your database file first.

          Options:
            --ignore               If foreign key already exists, do nothing
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   add-foreign-keys
       See Adding multiple foreign keys at once.

          Usage: sqlite-utils add-foreign-keys [OPTIONS] PATH [FOREIGN_KEY]...

            Add multiple new foreign key constraints to a database

            Example:

                sqlite-utils add-foreign-keys my.db \
                    books author_id authors id \
                    authors country_id countries id

          Options:
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   index-foreign-keys
       See Adding indexes for all foreign keys.

          Usage: sqlite-utils index-foreign-keys [OPTIONS] PATH

            Ensure every foreign key column has an index on it

            Example:

                sqlite-utils index-foreign-keys chickens.db

          Options:
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   enable-wal
       See WAL mode.

          Usage: sqlite-utils enable-wal [OPTIONS] PATH...

            Enable WAL for database files

            Example:

                sqlite-utils enable-wal chickens.db

          Options:
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   disable-wal
          Usage: sqlite-utils disable-wal [OPTIONS] PATH...

            Disable WAL for database files

            Example:

                sqlite-utils disable-wal chickens.db

          Options:
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   enable-counts
       See Enabling cached counts.

          Usage: sqlite-utils enable-counts [OPTIONS] PATH [TABLES]...

            Configure triggers to update a _counts table with row counts

            Example:

                sqlite-utils enable-counts chickens.db

          Options:
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   reset-counts
          Usage: sqlite-utils reset-counts [OPTIONS] PATH

            Reset calculated counts in the _counts table

            Example:

                sqlite-utils reset-counts chickens.db

          Options:
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   drop-table
       See Dropping tables.

          Usage: sqlite-utils drop-table [OPTIONS] PATH TABLE

            Drop the specified table

            Example:

                sqlite-utils drop-table chickens.db chickens

          Options:
            --ignore
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   create-view
       See Creating views.

          Usage: sqlite-utils create-view [OPTIONS] PATH VIEW SELECT

            Create a view for the provided SELECT query

            Example:

                sqlite-utils create-view chickens.db heavy_chickens \
                  'select * from chickens where weight > 3'

          Options:
            --ignore               If view already exists, do nothing
            --replace              If view already exists, replace it
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   drop-view
       See Dropping views.

          Usage: sqlite-utils drop-view [OPTIONS] PATH VIEW

            Drop the specified view

            Example:

                sqlite-utils drop-view chickens.db heavy_chickens

          Options:
            --ignore
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   add-geometry-column
       See SpatiaLite helpers.

          Usage: sqlite-utils add-geometry-column [OPTIONS] DB_PATH TABLE COLUMN_NAME

            Add a SpatiaLite geometry column to an existing table. Requires SpatiaLite
            extension.

            By default, this command will try to load the SpatiaLite extension from usual
            paths. To load it from a specific path, use --load-extension.

          Options:
            -t, --type [POINT|LINESTRING|POLYGON|MULTIPOINT|MULTILINESTRING|MULTIPOLYGON|GEOMETRYCOLLECTION|GEOMETRY]
                                            Specify a geometry type for this column.
                                            [default: GEOMETRY]
            --srid INTEGER                  Spatial Reference ID. See
                                            https://spatialreference.org for details on
                                            specific projections.  [default: 4326]
            --dimensions TEXT               Coordinate dimensions. Use XYZ for three-
                                            dimensional geometries.
            --not-null                      Add a NOT NULL constraint.
            --load-extension TEXT           SQLite extensions to load
            -h, --help                      Show this message and exit.

   create-spatial-index
       See Adding spatial indexes.

          Usage: sqlite-utils create-spatial-index [OPTIONS] DB_PATH TABLE COLUMN_NAME

            Create a spatial index on a SpatiaLite geometry column. The table and geometry
            column must already exist before trying to add a spatial index.

            By default, this command will try to load the SpatiaLite extension from usual
            paths. To load it from a specific path, use --load-extension.

          Options:
            --load-extension TEXT  SQLite extensions to load
            -h, --help             Show this message and exit.

   Contributing
       Development of sqlite-utils takes place in the sqlite-utils GitHub repository.

       All  improvements  to  the software should start with an issue. Read How I build a feature
       for a  detailed  description  of  the  recommended  process  for  building  bug  fixes  or
       enhancements.

   Obtaining the code
       To  work  on  this  library  locally,  first  checkout the code. Then create a new virtual
       environment:

          git clone git@github.com:simonw/sqlite-utils
          cd sqlite-utils
          python3 -mvenv venv
          source venv/bin/activate

       Or if you are using pipenv:

          pipenv shell

       Within the virtual environment running  sqlite-utils  should  run  your  locally  editable
       version  of  the  tool. You can use which sqlite-utils to confirm that you are running the
       version that lives in your virtual environment.

   Running the tests
       To install the dependencies and test dependencies:

          pip install -e '.[test]'

       To run the tests:

          pytest

   Building the documentation
       To build the documentation, first install the documentation dependencies:

          pip install -e '.[docs]'

       Then run make livehtml from the docs/ directory to start a server on port 8000  that  will
       serve the documentation and live-reload any time you make an edit to a .rst file:

          cd docs
          make livehtml

       The cog tool is used to maintain portions of the documentation. You can run it like so:

          cog -r docs/*.rst

   Linting and formatting
       sqlite-utils  uses  Black  for  code  formatting, and flake8 and mypy for linting and type
       checking.

       Black is installed as part of pip install -e '.[test]' - you can then format your code  by
       running it in the root of the project:

          black .

       To install mypy and flake8 run the following:

          pip install -e '.[flake8,mypy]'

       Both commands can then be run in the root of the project like this:

          flake8
          mypy sqlite_utils

       All  three  of  these  tools  are  run  by  our CI mechanism against every commit and pull
       request.

   Changelog
   3.26.1 (2022-05-02)
       • Now depends on click-default-group-wheel, a pure Python wheel package.  This  means  you
         can  install  and  use  this package with Pyodide, which can run Python entirely in your
         browser using WebAssembly. (#429)

         Try that out using the Pyodide REPL:

            >>> import micropip
            >>> await micropip.install("sqlite-utils")
            >>> import sqlite_utils
            >>> db = sqlite_utils.Database(memory=True)
            >>> list(db.query("select 3 * 5"))
            [{'3 * 5': 15}]

   3.26 (2022-04-13)
       • New errors=r.IGNORE/r.SET_NULL parameter for  the  r.parsedatetime()  and  r.parsedate()
         convert recipes. (#416)

       • Fixed  a  bug  where  --multi  could  not  be used in combination with --dry-run for the
         convert command. (#415)

       • New documentation: Using a convert() function to execute initialization. (#420)

       • More robust detection for whether or not deterministic=True is supported. (#425)

   3.25.1 (2022-03-11)
       • Improved display of type information and parameters in the API reference  documentation.
         (#413)

   3.25 (2022-03-01)
       • New  hash_id_columns=  parameter for creating a primary key that's a hash of the content
         of specific columns - see Setting an ID based on  the  hash  of  the  row  contents  for
         details. (#343)

       • New  db.sqlite_version  property, returning a tuple of integers representing the version
         of SQLite, for example (3, 38, 0).

       • Fixed a bug where register_function(deterministic=True) caused  errors  on  versions  of
         SQLite prior to 3.8.3. (#408)

       • New documented hash_record(record, keys=...) function.

   3.24 (2022-02-15)
       • SpatiaLite helpers for the sqlite-utils command-line tool - thanks, Chris Amico. (#398)

         • sqlite-utils create-database --init-spatialite option for initializing SpatiaLite on a
           newly created database.

         • sqlite-utils add-geometry-column command for adding geometry columns.

         • sqlite-utils create-spatial-index command for adding spatial indexes.

       • db[table].create(..., if_not_exists=True) option for creating a table only  if  it  does
         not already exist. (#397)

       • Database(memory_name="my_shared_database")  parameter  for  creating  a  named in-memory
         database that can be shared between multiple connections. (#405)

       • Documentation now describes how to add a primary key to a rowid table using sqlite-utils
         transform. (#403)

   3.23 (2022-02-03)
       This  release  introduces  four  new  utility methods for working with SpatiaLite. Thanks,
       Chris Amico. (#385)

       • sqlite_utils.utils.find_spatialite() finds the location  of  the  SpatiaLite  module  on
         disk.

       • db.init_spatialite() initializes SpatiaLite for the given database.

       • table.add_geometry_column(...) adds a geometry column to an existing table.

       • table.create_spatial_index(...) creates a spatial index for a column.

       • sqlite-utils batch now accepts a --batch-size option. (#392)

   3.22.1 (2022-01-25)
       • All commands now include example usage in their --help - see CLI reference. (#384)

       • Python library documentation has a new Getting started section. (#387)

       • Documentation now uses Plausible analytics. (#389)

   3.22 (2022-01-11)
       • New  CLI reference documentation page, listing the output of --help for every one of the
         CLI commands. (#383)

       • sqlite-utils rows now has --limit and --offset options for paginating through  data.  (‐
         #381)

       • sqlite-utils  rows  now has --where and -p options for filtering the table using a WHERE
         query, see Returning all rows in a table. (#382)

   3.21 (2022-01-10)
       CLI and Python library  improvements  to  help  run  ANALYZE  after  creating  indexes  or
       inserting  rows,  to  gain  better  performance from the SQLite query planner when it runs
       against indexes.

       Three new CLI commands: create-database, analyze and bulk.

       More details and examples can be found in the annotated release notes.

       • New sqlite-utils create-database command for creating new empty database files. (#348)

       • New Python methods for running ANALYZE against a database, table or index:  db.analyze()
         and table.analyze(), see Optimizing index usage with ANALYZE. (#366)

       • New sqlite-utils analyze command for running ANALYZE using the CLI. (#379)

       • The create-index, insert and upsert commands now have a new --analyze option for running
         ANALYZE after the command has completed. (#379)

       • New sqlite-utils bulk command which can import records in the same way  as  sqlite-utils
         insert (from JSON, CSV or TSV) and use them to bulk execute a parametrized SQL query. (‐
         #375)

       • The CLI tool can now also be run using python -m sqlite_utils. (#368)

       • Using --fmt now implies --table, so you don't need to pass both options. (#374)

       • The --convert function applied to rows can now modify the row in place. (#371)

       • The insert-files command supports two new columns: stem and suffix. (#372)

       • The --nl import option now ignores blank lines in the input. (#376)

       • Fixed bug where streaming input to the insert command with --batch-size 1  would  appear
         to only commit after several rows had been ingested, due to unnecessary input buffering.
         (#364)

   3.20 (2022-01-05)sqlite-utils insert ... --lines to insert the lines from a file  into  a  table  with  a
         single line column, see Inserting unstructured data with --lines and --text.

       • sqlite-utils  insert  ...  --text to insert the contents of the file into a table with a
         single text column and a single row.

       • sqlite-utils insert ... --convert allows a Python function to be provided that  will  be
         used  to  convert  each  row  that  is  being  inserted  into the database. See Applying
         conversions while inserting data, including details on special  behavior  when  combined
         with --lines and --text. (#356)

       • sqlite-utils  convert now accepts a code value of - to read code from standard input. (‐
         #353)

       • sqlite-utils convert also now accepts code that defines a named convert(value) function,
         see Converting data in columns.

       • db.supports_strict  property  showing  if the database connection supports SQLite strict
         tables.

       • table.strict property (see .strict) indicating if the table uses strict mode. (#344)

       • Fixed bug where  sqlite-utils  upsert  ...  --detect-types  ignored  the  --detect-types
         option. (#362)

   3.19 (2021-11-20)
       • The  table.lookup()  method  now  accepts  keyword  arguments  that  match  those on the
         underlying table.insert() method: foreign_keys=,  column_order=,  not_null=,  defaults=,
         extracts=,  conversions=  and columns=. You can also now pass pk= to specify a different
         column name to use for the primary key. (#342)

   3.18 (2021-11-14)
       • The table.lookup() method now has an optional second  argument  which  can  be  used  to
         populate  columns  only  the  first  time the record is created, see Working with lookup
         tables. (#339)

       • sqlite-utils memory now has a --flatten option for flattening nested JSON  objects  into
         separate columns, consistent with sqlite-utils insert. (#332)

       • table.create_index(...,  find_unique_name=True) parameter, which finds an available name
         for the created index even if the default name has already been taken. This  means  that
         index-foreign-keys  will work even if one of the indexes it tries to create clashes with
         an existing index name. (#335)

       • Added py.typed to the module, so mypy should now correctly pick up the type annotations.
         Thanks, Andreas Longo. (#331)

       • Now  depends on python-dateutil instead of depending on dateutils. Thanks, Denys Pavlov.
         (#324)

       • table.create() (see Explicitly creating a table) now handles dict, list and tuple types,
         mapping  them  to  TEXT columns in SQLite so that they can be stored encoded as JSON. (‐
         #338)

       • Inserted data with square braces in the column names (for example a CSV file  containing
         a  item[price])  column  now  have  the  braces  converted  to underscores: item_price_.
         Previously such columns would be rejected with an error. (#329)

       • Now also tested against Python 3.10. (#330)

   3.17.1 (2021-09-22)sqlite-utils memory now works if files passed to it share the same file name. (#325)

       • sqlite-utils query now returns [] in JSON mode if no rows are returned. (#328)

   3.17 (2021-08-24)
       • The sqlite-utils memory command has a new --analyze option, which runs the equivalent of
         the  analyze-tables  command  directly  against  the in-memory database created from the
         incoming CSV or JSON data. (#320)

       • sqlite-utils insert-files now has the ability to insert file contents in to TEXT columns
         in  addition to the default BLOB. Pass the --text option or use content_text as a column
         specifier. (#319)

   3.16 (2021-08-18)
       • Type  signatures  added  to   more  methods,   including   table.resolve_foreign_keys(),
         db.create_table_sql(), db.create_table() and table.create(). (#314)

       • New  db.quote_fts(value) method, see Quoting characters for use in search - thanks, Mark
         Neumann. (#246)

       • table.search() now accepts an optional quote=True parameter. (#296)

       • CLI command sqlite-utils search now accepts a --quote option. (#296)

       • Fixed bug where --no-headers and --tsv options to sqlite-utils insert could not be  used
         together. (#295)

       • Various small improvements to API reference documentation.

   3.15.1 (2021-08-10)
       • Python library now includes type annotations on almost all of the methods, plus detailed
         docstrings describing each one. (#311)

       • New API reference documentation page, powered by those docstrings.

       • Fixed bug where .add_foreign_keys() failed to raise an error if called against  a  View.
         (#313)

       • Fixed  bug  where  .delete_where()  returned  a  []  instead of returning self if called
         against a non-existent table. (#315)

   3.15 (2021-08-09)sqlite-utils insert --flatten option for flattening nested JSON objects to create tables
         with column names like topkey_nestedkey. (#310)

       • Fixed several spelling mistakes in the documentation, spotted using codespell.

       • Errors that occur while using the sqlite-utils CLI tool now show the responsible SQL and
         query parameters, if possible. (#309)

   3.14 (2021-08-02)
       This release introduces the new sqlite-utils  convert  command  (#251)  and  corresponding
       table.convert(...)  Python  method  (#302).  These  tools  can  be  used to apply a Python
       conversion function to one or more columns of a table, either updating the column in place
       or using transformed data from that column to populate one or more other columns.

       This  command-line  example  uses  the Python standard library textwrap module to wrap the
       content of the content column in the articles table to 100 characters:

          $ sqlite-utils convert content.db articles content \
              '"\n".join(textwrap.wrap(value, 100))' \
              --import=textwrap

       The same operation in Python code looks like this:

          import sqlite_utils, textwrap

          db = sqlite_utils.Database("content.db")
          db["articles"].convert("content", lambda v: "\n".join(textwrap.wrap(v, 100)))

       See the full documentation for the sqlite-utils convert command and the table.convert(...)
       Python method for more details.

       Also in this release:

       • The  new  table.count_where(...)  method,  for  counting  rows  in  a table that match a
         specific SQL WHERE clause. (#305)

       • New --silent option for the sqlite-utils  insert-files  command  to  hide  the  terminal
         progress bar, consistent with the --silent option for sqlite-utils convert. (#301)

   3.13 (2021-07-24)sqlite-utils schema my.db table1 table2 command now accepts optional table names. (#299)

       • sqlite-utils memory --help now describes the --schema option.

   3.12 (2021-06-25)
       • New  db.query(sql, params) method, which executes a SQL query and returns the results as
         an iterator over Python dictionaries. (#290)

       • This project now uses flake8 and has started to use mypy. (#291)

       • New documentation on contributing to this project. (#292)

   3.11 (2021-06-20)
       • New sqlite-utils memory data.csv --schema option,  for  outputting  the  schema  of  the
         in-memory database generated from one or more files. See --schema, --analyze, --dump and
         --save. (#288)

       • Added installation instructions. (#286)

   3.10 (2021-06-19)
       This release introduces the sqlite-utils memory command, which can be used to load CSV  or
       JSON  data into a temporary in-memory database and run SQL queries (including joins across
       multiple files) directly against that data.

       Also new: sqlite-utils insert --detect-types, sqlite-utils dump, table.use_rowid plus some
       smaller fixes.

   sqlite-utils memory
       This   example  of  sqlite-utils  memory  retrieves  information  about  the  all  of  the
       repositories in the Dogsheep organization on GitHub using this JSON  API,  sorts  them  by
       their number of stars and outputs a table of the top five (using -t):

          $ curl -s 'https://api.github.com/users/dogsheep/repos' \
            | sqlite-utils memory - '
                select full_name, forks_count, stargazers_count
                from stdin order by stargazers_count desc limit 5
              ' -t
          full_name                            forks_count    stargazers_count
          ---------------------------------  -------------  ------------------
          dogsheep/twitter-to-sqlite                    12                 225
          dogsheep/github-to-sqlite                     14                 139
          dogsheep/dogsheep-photos                       5                 116
          dogsheep/dogsheep.github.io                    7                  90
          dogsheep/healthkit-to-sqlite                   4                  85

       The tool works against files on disk as well. This example joins data from two CSV files:

          $ cat creatures.csv
          species_id,name
          1,Cleo
          2,Bants
          2,Dori
          2,Azi
          $ cat species.csv
          id,species_name
          1,Dog
          2,Chicken
          $ sqlite-utils memory species.csv creatures.csv '
            select * from creatures join species on creatures.species_id = species.id
          '
          [{"species_id": 1, "name": "Cleo", "id": 1, "species_name": "Dog"},
           {"species_id": 2, "name": "Bants", "id": 2, "species_name": "Chicken"},
           {"species_id": 2, "name": "Dori", "id": 2, "species_name": "Chicken"},
           {"species_id": 2, "name": "Azi", "id": 2, "species_name": "Chicken"}]

       Here  the  species.csv  file becomes the species table, the creatures.csv file becomes the
       creatures table and the output is JSON, the default output format.

       You can also use the --attach option to attach  existing  SQLite  database  files  to  the
       in-memory  database, in order to join data from CSV or JSON directly against your existing
       tables.

       Full documentation of this new feature is available in Querying  data  directly  using  an
       in-memory database. (#272)

   sqlite-utils insert --detect-types
       The  sqlite-utils  insert  command  can be used to insert data from JSON, CSV or TSV files
       into a SQLite database file. The new --detect-types option (shortcut  -d),  when  used  in
       conjunction with a CSV or TSV import, will automatically detect if columns in the file are
       integers or floating point numbers as opposed to treating everything as a text column  and
       create  the  new  table  with  the corresponding schema. See Inserting CSV or TSV data for
       details. (#282)

   Other changesBug fix: table.transform(), when run against a  table  without  explicit  primary  keys,
         would  incorrectly create a new version of the table with an explicit primary key column
         called rowid. (#284)

       • New table.use_rowid introspection property, see .use_rowid. (#285)

       • The new sqlite-utils dump file.db command outputs  a  SQL  dump  that  can  be  used  to
         recreate a database. (#274)

       • -h now works as a shortcut for --help, thanks Loren McIntyre. (#276)

       • Now using pytest-cov and Codecov to track test coverage - currently at 96%. (#275)

       • SQL errors that occur when using sqlite-utils query are now displayed as CLI errors.

   3.9.1 (2021-06-12)
       • Fixed bug when using table.upsert_all() to create a table with only a single column that
         is treated as the primary key. (#271)

   3.9 (2021-06-11)
       • New sqlite-utils schema command showing the full SQL schema for a database, see  Showing
         the schema (CLI). (#268)

       • db.schema  introspection  property  exposing the same feature to the Python library, see
         Showing the schema (Python library).

   3.8 (2021-06-02)
       • New sqlite-utils indexes command to list indexes in a database, see Listing indexes.  (‐
         #263)

       • table.xindexes introspection property returning more details about that table's indexes,
         see .xindexes. (#261)

   3.7 (2021-05-28)
       • New table.pks_and_rows_where() method returning (primary_key, row_dictionary)  tuples  -
         see Listing rows with their primary keys. (#240)

       • Fixed bug with table.add_foreign_key() against columns containing spaces. (#238)

       • table_or_view.drop(ignore=True) option for avoiding errors if the table or view does not
         exist. (#237)

       • sqlite-utils drop-view --ignore and sqlite-utils drop-table --ignore options. (#237)

       • Fixed a bug with inserts of nested JSON containing non-ascii strings - thanks, Dylan Wu.
         (#257)

       • Suggest --alter if an error occurs caused by a missing column. (#259)

       • Support creating indexes with columns in descending order, see API documentation and CLI
         documentation. (#260)

       • Correctly handle CSV files that start with a UTF-8 BOM. (#250)

   3.6 (2021-02-18)
       This release adds the ability to execute queries joining data from more than one  database
       file - similar to the cross database querying feature introduced in Datasette 0.55.

       • The  db.attach(alias,  filepath)  Python method can be used to attach extra databases to
         the same connection, see db.attach() in the Python API documentation. (#113)

       • The --attach option attaches extra aliased databases to run SQL queries against directly
         on the command-line, see attaching additional databases in the CLI documentation. (#236)

   3.5 (2021-02-14)sqlite-utils  insert --sniff option for detecting the delimiter and quote character used
         by a CSV file, see Alternative delimiters and quote characters. (#230)

       • The table.rows_where(), table.search()  and  table.search_sql()  methods  all  now  take
         optional offset= and limit= arguments. (#231)

       • New  --no-headers  option  for  sqlite-utils  insert  --csv to handle CSV files that are
         missing the header row, see CSV files without a header row. (#228)

       • Fixed bug where inserting data with extra columns in subsequent chunks  would  throw  an
         error. Thanks @nieuwenhoven for the fix. (#234)

       • Fixed bug importing CSV files with columns containing more than 128KB of data. (#229)

       • Test  suite  now  runs in CI against Ubuntu, macOS and Windows. Thanks @nieuwenhoven for
         the Windows test fixes. (#232)

   3.4.1 (2021-02-05)
       • Fixed a code import bug that slipped in to 3.4. (#226)

   3.4 (2021-02-05)sqlite-utils insert --csv now accepts optional --delimiter and --quotechar options.  See
         Alternative delimiters and quote characters. (#223)

   3.3 (2021-01-17)
       • The  table.m2m()  method now accepts an optional alter=True argument to specify that any
         missing columns should be added to the referenced table. See Working  with  many-to-many
         relationships. (#222)

   3.2.1 (2021-01-12)
       • Fixed  a  bug  where .add_missing_columns() failed to take case insensitive column names
         into account. (#221)

   3.2 (2021-01-03)
       This release introduces a new mechanism for speeding  up  count(*)  queries  using  cached
       table  counts,  stored  in  a  _counts  table  and  updated by triggers. This mechanism is
       described in Cached table counts using triggers, and  can  be  enabled  using  Python  API
       methods or the new enable-counts CLI command. (#212)

       • table.enable_counts() method for enabling these triggers on a specific table.

       • db.enable_counts() method for enabling triggers on every table in the database. (#213)

       • New  sqlite-utils  enable-counts  my.db  command  for enabling counts on all or specific
         tables, see Enabling cached counts. (#214)

       • New sqlite-utils triggers command for listing the triggers defined  for  a  database  or
         specific tables, see Listing triggers. (#218)

       • New  db.use_counts_table  property  which,  if True, causes table.count to read from the
         _counts table. (#215)

       • table.has_counts_triggers property revealing if a table has been configured with the new
         _counts database triggers.

       • db.reset_counts()  method and sqlite-utils reset-counts command for resetting the values
         in the _counts table. (#219)

       • The previously undocumented db.escape() method has been renamed to db.quote() and is now
         covered by the documentation: Quoting strings for use in SQL. (#217)

       • New table.triggers_dict and db.triggers_dict introspection properties. (#211, #216)

       • sqlite-utils insert now shows a more useful error message for invalid JSON. (#206)

   3.1.1 (2021-01-01)
       • Fixed failing test caused by optimize sometimes creating larger database files. (#209)

       • Documentation now lives on https://sqlite-utils.datasette.io/

       • README now includes brew install sqlite-utils installation method.

   3.1 (2020-12-12)
       • New  command:  sqlite-utils  analyze-tables  my.db  outputs useful information about the
         table columns in the database, such as the number of distinct values and how  many  rows
         are null. See Analyzing tables for documentation. (#207)

       • New  table.analyze_column(column) Python method used by the analyze-tables command - see
         Analyzing a column.

       • The table.update() method now correctly handles values that should be  stored  as  JSON.
         Thanks, Andreas Madsack. (#204)

   3.0 (2020-11-08)
       This  release  introduces  a  new  sqlite-utils  search  command for searching tables, see
       Executing searches. (#192)

       The table.search() method has been redesigned, see Searching with table.search(). (#197)

       The release includes minor backwards-incompatible changes, hence the version bump to  3.0.
       Those changes, which should not affect most users, are:

       • The  -c shortcut option for outputting CSV is no longer available. The full --csv option
         is required instead.

       • The -f shortcut for --fmt has also been removed - use --fmt.

       • The table.search() method now defaults to sorting by relevance, not sorting by rowid. (‐
         #198)

       • The table.search() method now returns a generator over a list of Python dictionaries. It
         previously returned a list of tuples.

       Also in this release:

       • The query, tables, rows and search CLI commands now accept  a  new  --tsv  option  which
         outputs the results in TSV. (#193)

       • A  new  table.virtual_table_using  property  reveals  if a table is a virtual table, and
         returns the upper case type of virtual table (e.g. FTS4 or FTS5) if it  is.  It  returns
         None if the table is not a virtual table. (#196)

       • The  new  table.search_sql()  method returns the SQL for searching a table, see Building
         SQL queries with table.search_sql().

       • sqlite-utils rows now accepts multiple optional -c parameters specifying the columns  to
         return. (#200)

       Changes since the 3.0a0 alpha release:

       • The sqlite-utils search command now defaults to returning every result, unless you add a
         --limit 20 option.

       • The sqlite-utils search -c and table.search(columns=[]) options are now fully respected.
         (#201)

   2.23 (2020-10-28)table.m2m(other_table, records) method now takes any iterable, not just a list or tuple.
         Thanks, Adam Wolf. (#189)

       • sqlite-utils insert now displays a progress bar for CSV or TSV imports. (#173)

       • New  @db.register_function(deterministic=True)  option  for  registering   deterministic
         SQLite functions in Python 3.8 or higher. (#191)

   2.22 (2020-10-16)
       • New  --encoding  option  for processing CSV and TSV files that use a non-utf-8 encoding,
         for both the insert and update commands. (#182)

       • The --load-extension option is now available to many more commands. (#137)

       • --load-extension=spatialite can be used to  load  SpatiaLite  from  common  installation
         locations, if it is available. (#136)

       • Tests now also run against Python 3.9. (#184)

       • Passing pk=["id"] now has the same effect as passing pk="id". (#181)

   2.21 (2020-09-24)table.extract()  and  sqlite-utils  extract  now  apply  much, much faster - one example
         operation reduced from twelve minutes to just four seconds! (#172)

       • sqlite-utils extract no longer shows a progress bar, because it's  fast  enough  not  to
         need one.

       • New  column_order=  option for table.transform() which can be used to alter the order of
         columns in a table. (#175)

       • sqlite-utils transform --column-order= option (with a -o shortcut) for  changing  column
         order. (#176)

       • The   table.transform(drop_foreign_keys=)   parameter  and  the  sqlite-utils  transform
         --drop-foreign-key option have changed. They now accept just  the  name  of  the  column
         rather  than  requiring  all  three of the column, other table and other column. This is
         technically a backwards-incompatible change but I chose not to bump  the  major  version
         number because the transform feature is so new. (#177)

       • The    table    .disable_fts(),    .rebuild_fts(),    .delete(),   .delete_where()   and
         .add_missing_columns() methods all now return self, which  means  they  can  be  chained
         together with other table operations.

   2.20 (2020-09-22)
       This release introduces two key new capabilities: transform (#114) and extract (#42).

   Transform
       SQLite's  ALTER  TABLE  has  several  documented limitations. The table.transform() Python
       method and sqlite-utils transform CLI  command  work  around  these  limitations  using  a
       pattern where a new table with the desired structure is created, data is copied over to it
       and the old table is then dropped and replaced by the new one.

       You can use these tools to change column types, rename  columns,  drop  columns,  add  and
       remove  NOT  NULL  and  defaults,  remove  foreign  key  constraints  and  more.  See  the
       transforming tables (CLI) and transforming tables (Python library) documentation for  full
       details of how to use them.

   Extract
       Sometimes  a  database  table  -  especially  one  imported from a CSV file - will contain
       duplicate data. A Trees table may include a Species column with only a  few  dozen  unique
       values, when the table itself contains thousands of rows.

       The  table.extract()  method  and  sqlite-utils extract commands can extract a column - or
       multiple columns - out into a separate lookup table, and set up a foreign key relationship
       from the original table.

       The  Python  library extract() documentation describes how extraction works in detail, and
       Extracting columns into a separate table in the  CLI  documentation  includes  a  detailed
       example.

   Other changes
       • The  @db.register_function decorator can be used to quickly register Python functions as
         custom SQL functions, see Registering custom SQL functions. (#162)

       • The table.rows_where() method now accepts an optional select=  argument  for  specifying
         which columns should be selected, see Listing rows.

   2.19 (2020-09-20)
       • New  sqlite-utils  add-foreign-keys command for Adding multiple foreign keys at once. (‐
         #157)

       • New table.enable_fts(..., replace=True) argument for replacing  an  existing  FTS  table
         with a new configuration. (#160)

       • New  table.add_foreign_key(...,  ignore=True)  argument for ignoring a foreign key if it
         already exists. (#112)

   2.18 (2020-09-08)table.rebuild_fts() method for rebuilding a FTS index, see Rebuilding a full-text search
         table. (#155)

       • sqlite-utils  rebuild-fts  data.db command for rebuilding FTS indexes across all tables,
         or just specific tables. (#155)

       • table.optimize() method no longer deletes junk rows from the *_fts_docsize  table.  This
         was  added  in 2.17 but it turns out running table.rebuild_fts() is a better solution to
         this problem.

       • Fixed a bug where rows with additional columns that are inserted after the  first  batch
         of  records  could cause an error due to breaking SQLite's maximum number of parameters.
         Thanks, Simon Wiles. (#145)

   2.17 (2020-09-07)
       This release handles a bug where replacing rows in FTS  tables  could  result  in  growing
       numbers of unnecessary rows in the associated *_fts_docsize table. (#149)

       • PRAGMA  recursive_triggers=on  by  default for all connections. You can turn it off with
         Database(recursive_triggers=False). (#152)

       • table.optimize() method now deletes unnecessary rows from the  *_fts_docsize  table.  (‐
         #153)

       • New tracer method for tracking underlying SQL queries, see Tracing queries. (#150)

       • Neater indentation for schema SQL. (#148)

       • Documentation for sqlite_utils.AlterError exception thrown by in add_foreign_keys().

   2.16.1 (2020-08-28)insert_all(...,  alter=True)  now  works  for  columns  introduced  after  the first 100
         records. Thanks, Simon Wiles! (#139)

       • Continuous Integration is now powered by GitHub Actions. (#143)

   2.16 (2020-08-21)--load-extension option for sqlite-utils query for loading SQLite extensions. (#134)

       • New sqlite_utils.utils.find_spatialite()  function  for  finding  SpatiaLite  in  common
         locations. (#135)

   2.15.1 (2020-08-12)
       • Now available as a sdist package on PyPI in addition to a wheel. (#133)

   2.15 (2020-08-10)
       • New  db.enable_wal() and db.disable_wal() methods for enabling and disabling Write-Ahead
         Logging for a database file - see WAL mode in the Python API documentation.

       • Also sqlite-utils enable-wal file.db and sqlite-utils disable-wal file.db  commands  for
         doing the same thing on the command-line, see WAL mode (CLI). (#132)

   2.14.1 (2020-08-05)
       • Documentation improvements.

   2.14 (2020-08-01)
       • The  insert-files  command  can now read from standard input: cat dog.jpg | sqlite-utils
         insert-files dogs.db pics - --name=dog.jpg. (#127)

       • You can now specify a full-text search tokenizer using the new  tokenize=  parameter  to
         enable_fts().  This  means  you  can  enable  Porter  stemming  on  a  table  by running
         db["articles"].enable_fts(["headline", "body"], tokenize="porter"). (#130)

       • You can also set a custom tokenizer using the sqlite-utils enable-fts CLI  command,  via
         the new --tokenize option.

   2.13 (2020-07-29)memoryview  and  uuid.UUID  objects are now supported. memoryview objects will be stored
         using BLOB and uuid.UUID objects will be stored using TEXT. (#128)

   2.12 (2020-07-27)
       The theme of this  release  is  better  tools  for  working  with  binary  data.  The  new
       insert-files  command  can  be used to insert binary files directly into a database table,
       and other commands have been improved with better support for BLOB columns.

       • sqlite-utils insert-files my.db gifs *.gif can now insert the contents of files  into  a
         specified  table. The columns in the table can be customized to include different pieces
         of metadata derived from the files. See Inserting data from files. (#122)

       • --raw option to sqlite-utils query - for outputting just a single raw column value - see
         Returning raw data, such as binary content. (#123)

       • JSON  output  now encodes BLOB values as special base64 objects - see Returning JSON. (‐
         #125)

       • The same format of JSON base64 objects can now be used  to  insert  binary  data  -  see
         Inserting JSON data. (#126)

       • The  sqlite-utils  query  command  can  now  accept  named parameters, e.g. sqlite-utils
         :memory: "select :num * :num2" -p num 5 -p num2 6 - see Returning JSON. (#124)

   2.11 (2020-07-08)
       • New  --truncate  option  to  sqlite-utils  insert,   and   truncate=True   argument   to
         .insert_all(). Thanks, Thomas Sibley. (#118)

       • The sqlite-utils query command now runs updates in a transaction. Thanks, Thomas Sibley.
         (#120)

   2.10.1 (2020-06-23)
       • Added documentation for the table.pks introspection property. (#116)

   2.10 (2020-06-12)
       • The sqlite-utils command now supports UPDATE/INSERT/DELETE in addition to SELECT. (#115)

   2.9.1 (2020-05-11)
       • Added custom project links to the PyPI listing.

   2.9 (2020-05-10)
       • New sqlite-utils drop-table command, see Dropping tables. (#111)

       • New sqlite-utils drop-view command, see Dropping views.

       • Python decimal.Decimal objects are now stored as FLOAT. (#110)

   2.8 (2020-05-03)
       • New sqlite-utils create-table command, see Creating tables. (#27)

       • New sqlite-utils create-view command, see Creating views. (#107)

   2.7.2 (2020-05-02)db.create_view(...) now has  additional  parameters  ignore=True  or  replace=True,  see
         Creating views. (#106)

   2.7.1 (2020-05-01)
       • New sqlite-utils views my.db command for listing views in a database, see Listing views.
         (#105)

       • sqlite-utils tables (and views) has a new --schema option which outputs  the  table/view
         schema, see Listing tables. (#104)

       • Nested  structures  containing  invalid  JSON  values  (e.g. Python bytestrings) are now
         serialized using repr() instead of throwing an error. (#102)

   2.7 (2020-04-17)
       • New columns= argument for the  .insert(),  .insert_all(),  .upsert()  and  .upsert_all()
         methods,  for  over-riding the auto-detected types for columns and specifying additional
         columns that should be added when the table is created.  See  Custom  column  order  and
         column types. (#100)

   2.6 (2020-04-15)
       • New table.rows_where(..., order_by="age desc") argument, see Listing rows. (#76)

   2.5 (2020-04-12)
       • Panda's Timestamp is now stored as a SQLite TEXT column. Thanks, b0b5h4rp13! (#96)

       • table.last_pk is now only available for inserts or upserts of a single record. (#98)

       • New   Database(filepath,  recreate=True)  parameter  for  deleting  and  recreating  the
         database. (#97)

   2.4.4 (2020-03-23)
       • Fixed bug where columns with only null values were not correctly created. (#95)

   2.4.3 (2020-03-23)
       • Column type suggestion code is no longer confused by null values. (#94)

   2.4.2 (2020-03-14)table.column_dicts now works with all column types - previously it would throw errors on
         types other than TEXT, BLOB, INTEGER or FLOAT. (#92)

       • Documentation  for  NotFoundError  thrown  by  table.get(pk) - see Retrieving a specific
         record.

   2.4.1 (2020-03-01)table.enable_fts() now works with columns that contain spaces. (#90)

   2.4 (2020-02-26)table.disable_fts() can now be used to remove FTS tables and triggers that were  created
         using table.enable_fts(...). (#88)

       • The  sqlite-utils disable-fts command can be used to remove FTS tables and triggers from
         the command-line. (#88)

       • Trying to create table columns with square braces ([ or ]) in the  name  now  raises  an
         error. (#86)

       • Subclasses of dict, list and tuple are now detected as needing a JSON column. (#87)

   2.3.1 (2020-02-10)
       table.create_index() now works for columns that contain spaces. (#85)

   2.3 (2020-02-08)
       table.exists()  is now a method, not a property. This was not a documented part of the API
       before so I'm considering this a non-breaking change. (#83)

   2.2.1 (2020-02-06)
       Fixed a bug where .upsert(..., hash_id="pk") threw an error (#84).

   2.2 (2020-02-01)
       New feature: sqlite_utils.suggest_column_types([records])  returns  the  suggested  column
       types for a list of records. See Suggesting column types. (#81).

       This replaces the undocumented table.detect_column_types() method.

   2.1 (2020-01-30)
       New  feature:  conversions={...}  can  be  passed  to the .insert() family of functions to
       specify SQL conversions that should be applied  to  values  that  are  being  inserted  or
       updated. See Converting column values using SQL functions . (#77).

   2.0.1 (2020-01-05)
       The  .upsert()  and  .upsert_all()  methods now raise a sqlite_utils.db.PrimaryKeyRequired
       exception if you call them without specifying the primary key column using pk= (#73).

   2.0 (2019-12-29)
       This release changes the behaviour of upsert. It's a breaking change, hence 2.0.

       The upsert command-line utility and the .upsert() and  .upsert_all()  Python  API  methods
       have  had  their  behaviour altered. They used to completely replace the affected records:
       now, they update the  specified  values  on  existing  records  but  leave  other  columns
       unaffected.

       See Upserting data using the Python API and Upserting data using the CLI for full details.

       If  you  want  the  old behaviour - where records were completely replaced - you can use $
       sqlite-utils insert ... --replace on the command-line and .insert(...,  replace=True)  and
       .insert_all(...,  replace=True)  in  the  Python  API. See Insert-replacing data using the
       Python API and Insert-replacing data using the CLI for more.

       For full background on this change, see issue #66.

   1.12.1 (2019-11-06)
       • Fixed error thrown when .insert_all() and .upsert_all() were called with empty lists  (‐
         #52)

   1.12 (2019-11-04)
       Python library utilities for deleting records (#62)

       • db["tablename"].delete(4) to delete by primary key, see Deleting a specific recorddb["tablename"].delete_where("id  >  ?",  [3]) to delete by a where clause, see Deleting
         multiple records

   1.11 (2019-09-02)
       Option to create triggers to automatically keep FTS tables up-to-date with newly inserted,
       updated and deleted records. Thanks, Amjith Ramanujam! (#57)

       • sqlite-utils  enable-fts  ... --create-triggers - see Configuring full-text search using
         the CLIdb["tablename"].enable_fts(..., create_triggers=True) - see Configuring full-text search
         using the Python library

       • Support  for  introspecting  triggers for a database or table - see Introspecting tables
         and views (#59)

   1.10 (2019-08-23)
       Ability to introspect and run queries against views (#54)

       • db.view_names() method and and db.views property

       • Separate View and Table classes, both subclassing new Queryable class

       • view.drop() method

       See Listing views.

   1.9 (2019-08-04)table.m2m(...) method for creating many-to-many relationships: Working with many-to-many
         relationships (#23)

   1.8 (2019-07-28)table.update(pk, values) method: Updating a specific record (#35)

   1.7.1 (2019-07-28)
       • Fixed  bug  where  inserting  records with 11 columns in a batch of 100 triggered a "too
         many SQL variables" error (#50)

       • Documentation and tests for table.drop() method: Dropping a table or view

   1.7 (2019-07-24)
       Support for lookup tables.

       • New table.lookup({...}) utility method for building and querying  lookup  tables  -  see
         Working with lookup tables (#44)

       • New  extracts=  table  configuration  option, see Populating lookup tables automatically
         during insert/upsert (#46)

       • Use pysqlite3 if it is available, otherwise use sqlite3 from the standard library

       • Table options can now be passed to the new db.table(name, **options) factory function in
         addition  to  being  passed  to  insert_all(records,  **options) and friends - see Table
         configuration options

       • In-memory databases can now be created using db = Database(memory=True)

   1.6 (2019-07-18)sqlite-utils insert can now accept TSV data via the new --tsv option (#41)

   1.5 (2019-07-14)
       • Support for compound primary keys (#36)

         • Configure these using the CLI tool by passing --pk multiple times

         • In Python, pass a tuple of columns to the pk=(...,  ...)  argument:  Compound  primary
           keys

       • New table.get() method for retrieving a record by its primary key: Retrieving a specific
         record (#39)

   1.4.1 (2019-07-14)
       • Assorted minor documentation fixes: changes since 1.4

   1.4 (2019-06-30)
       • Added sqlite-utils index-foreign-keys command (docs) and db.index_foreign_keys()  method
         (docs) (#33)

   1.3 (2019-06-28)
       • New mechanism for adding multiple foreign key constraints at once: db.add_foreign_keys()
         documentation (#31)

   1.2.2 (2019-06-25)
       • Fixed bug where datetime.time was not being handled correctly

   1.2.1 (2019-06-20)
       • Check the column exists before attempting to add a foreign key (#29)

   1.2 (2019-06-12)
       • Improved foreign key definitions: you no longer need to specify the column,  other_table
         AND  other_column  to define a foreign key - if you omit the other_table or other_column
         the script will attempt to guess the correct values by introspecting the  database.  See
         Adding foreign key constraints for details. (#25)

       • Ability  to  set  NOT  NULL  constraints  and DEFAULT values when creating tables (#24).
         Documentation: Setting defaults and not null constraints (Python API), Setting  defaults
         and not null constraints (CLI)

       • Support  for  not_null_default=X / --not-null-default for setting a NOT NULL DEFAULT 'x'
         when adding a new column. Documentation: Adding columns  (Python  API),  Adding  columns
         (CLI)

   1.1 (2019-05-28)
       • Support  for  ignore=True  /  --ignore  for ignoring inserted records if the primary key
         already exists (#21) - documentation: Inserting data (Python API), Inserting data (CLI)

       • Ability to add a column that is a foreign key reference using  fk=...  /  --fk  (#16)  -
         documentation: Adding columns (Python API), Adding columns (CLI)

   1.0.1 (2019-05-27)sqlite-utils rows data.db table --json-cols - fixed bug where --json-cols was not obeyed

   1.0 (2019-05-24)Option  to  automatically  add  new columns if you attempt to insert or upsert data with
         extra fields:
                sqlite-utils insert ... --alter -  see  Adding  columns  automatically  with  the
                sqlite-utils CLI

                db["tablename"].insert(record,  alter=True)  -  see  Adding columns automatically
                using the Python API

       • New --json-cols option for outputting nested JSON, see Nested JSON values

   0.14 (2019-02-24)
       • Ability to create unique indexes: db["mytable"].create_index(["name"], unique=True)db["mytable"].create_index(["name"], if_not_exists=True)$ sqlite-utils create-index mydb.db mytable col1 [col2...], see Creating indexestable.add_column(name, type) method, see Adding columns$ sqlite-utils add-column mydb.db mytable nameofcolumn, see Adding columns (CLI)

       • db["books"].add_foreign_key("author_id",  "authors",  "id"),  see  Adding  foreign   key
         constraints$  sqlite-utils  add-foreign-key books.db books author_id authors id, see Adding foreign
         key constraints (CLI)

       • Improved (but backwards-incompatible) foreign_keys= argument  to  various  methods,  see
         Specifying foreign keys

   0.13 (2019-02-23)
       • New --table and --fmt options can be used to output query results in a variety of visual
         table formats, see Table-formatted output

       • New hash_id= argument can now be used for Setting an ID based on the  hash  of  the  row
         contents

       • Can now derive correct column types for numpy int, uint and float values

       • table.last_id has been renamed to table.last_rowidtable.last_pk now contains the last inserted primary key, if pk= was specified

       • Prettier indentation in the CREATE TABLE generated schemas

   0.12 (2019-02-22)
       • Added db[table].rows iterator - see Listing rows

       • Replaced  sqlite-utils  json  and  sqlite-utils csv with a new default subcommand called
         sqlite-utils query which defaults to JSON and takes formatting options --nl,  --csv  and
         --no-headers - see Returning JSON and Returning CSV or TSV

       • New sqlite-utils rows data.db name-of-table command, see Returning all rows in a tablesqlite-utils  table  command  now takes options --counts and --columns plus the standard
         output format options, see Listing tables

   0.11 (2019-02-07)
       New commands for enabling FTS against a table and columns:

          sqlite-utils enable-fts db.db mytable col1 col2

       See Configuring full-text search.

   0.10 (2019-02-06)
       Handle datetime.date and datetime.time values.

       New option for efficiently inserting rows from a CSV:

          sqlite-utils insert db.db foo - --csv

   0.9 (2019-01-27)
       Improved support for newline-delimited JSON.

       sqlite-utils insert has two new command-line options:

       • --nl means "expect newline-delimited JSON".  This  is  an  extremely  efficient  way  of
         loading in large amounts of data, especially if you pipe it into standard input.

       • --batch-size=1000  lets  you  increase the batch size (default is 100). A commit will be
         issued every X records. This also control how many initial records are  considered  when
         detecting the desired SQL table schema for the data.

       In  the Python API, the table.insert_all(...) method can now accept a generator as well as
       a list of objects. This will be efficiently used to populate the table no matter how  many
       records are produced by the generator.

       The Database() constructor can now accept a pathlib.Path object in addition to a string or
       an existing SQLite connection object.

   0.8 (2019-01-25)
       Two new commands: sqlite-utils csv and sqlite-utils json

       These commands execute a SQL query and return the results as CSV or  JSON.  See  Returning
       CSV or TSV and Returning JSON for more details.

          $ sqlite-utils json --help
          Usage: sqlite-utils json [OPTIONS] PATH SQL

            Execute SQL query and return the results as JSON

          Options:
            --nl      Output newline-delimited JSON
            --arrays  Output rows as arrays instead of objects
            --help    Show this message and exit.

          $ sqlite-utils csv --help
          Usage: sqlite-utils csv [OPTIONS] PATH SQL

            Execute SQL query and return the results as CSV

          Options:
            --no-headers  Exclude headers from CSV output
            --help        Show this message and exit.

   0.7 (2019-01-24)
       This  release  implements  the  sqlite-utils  command-line  tool  with  a number of useful
       subcommands.

       • sqlite-utils tables demo.db lists the tables in the database

       • sqlite-utils tables demo.db --fts4 shows just the FTS4 tables

       • sqlite-utils tables demo.db --fts5 shows just the FTS5 tables

       • sqlite-utils vacuum demo.db runs VACUUM against the database

       • sqlite-utils optimize demo.db runs OPTIMIZE against all FTS tables, then VACUUM

       • sqlite-utils optimize demo.db --no-vacuum runs OPTIMIZE but skips VACUUM

       The two most useful subcommands are upsert and insert, which  allow  you  to  ingest  JSON
       files  with one or more records in them, creating the corresponding table with the correct
       columns if it does not already exist. See Inserting JSON data for more details.

       • sqlite-utils insert demo.db dogs dogs.json --pk=id inserts new  records  from  dogs.json
         into the dogs table

       • sqlite-utils  upsert  demo.db  dogs  dogs.json  --pk=id  upserts  records, replacing any
         records with duplicate primary keys

       One backwards incompatible change: the db["table"].table_names property is now a method:

       • db["table"].table_names() returns a list of table names

       • db["table"].table_names(fts4=True) returns a list of just the FTS4 tables

       • db["table"].table_names(fts5=True) returns a list of just the FTS5 tables

       A few other changes:

       • Plenty of updated documentation, including full coverage of the new command-line tool

       • Allow column names to be reserved words (use correct SQL escaping)

       • Added automatic column support for bytes and datetime.datetime

   0.6 (2018-08-12).enable_fts() now takes optional argument fts_version, defaults to FTS5. Use FTS4 if the
         version of SQLite bundled with your Python does not support FTS5

       • New  optional column_order= argument to .insert() and friends for providing a partial or
         full desired order of the columns when a database table is created

       • New documentation for .insert_all() and .upsert() and .upsert_all()

   0.5 (2018-08-05)db.tables and db.table_names introspection properties

       • db.indexes property for introspecting indexes

       • table.create_index(columns, index_name) method

       • db.create_view(name, sql) method

       • Table methods can now be chained,  plus  added  table.last_id  for  accessing  the  last
         inserted row ID

   0.4 (2018-07-31)enable_fts(), populate_fts() and search() table methods

AUTHOR

       Simon Willison

COPYRIGHT

       2018-2022, Simon Willison

                                           May 26, 2022                           SQLITE-UTILS(1)