Provided by: grass-doc_8.2.0-1build1_all
NAME
t.rast.aggregate.ds - Aggregates data of an existing space time raster dataset using the time intervals of a second space time dataset.
KEYWORDS
temporal, aggregation, raster, time
SYNOPSIS
t.rast.aggregate.ds t.rast.aggregate.ds --help t.rast.aggregate.ds [-n] input=name sample=name [type=name] output=name basename=string [suffix=string] method=string [offset=integer] [nprocs=integer] [sampling=name[,name,...]] [where=sql_query] [--overwrite] [--help] [--verbose] [--quiet] [--ui] Flags: -n Register Null maps --overwrite Allow output files to overwrite existing files --help Print usage summary --verbose Verbose module output --quiet Quiet module output --ui Force launching GUI dialog Parameters: input=name [required] Name of the input space time raster dataset sample=name [required] Time intervals from this space time dataset (raster, vector or raster3d) are used for aggregation computation type=name Type of the space time dataset from which aggregation will be copied Options: strds, stvds, str3ds Default: strds output=name [required] Name of the output space time raster dataset basename=string [required] Basename of the new generated output maps A numerical suffix separated by an underscore will be attached to create a unique identifier suffix=string Suffix to add at basename: set ’gran’ for granularity, ’time’ for the full time format, ’num’ for numerical suffix with a specific number of digits (default %05) Default: gran method=string [required] Aggregate operation to be performed on the raster maps Options: average, count, median, mode, minimum, min_raster, maximum, max_raster, stddev, range, sum, variance, diversity, slope, offset, detcoeff, quart1, quart3, perc90, quantile, skewness, kurtosis Default: average offset=integer Offset that is used to create the output map ids, output map id is generated as: basename_ (count + offset) Default: 0 nprocs=integer Number of r.mapcalc processes to run in parallel Default: 1 sampling=name[,name,...] The method to be used for sampling the input dataset Options: equal, overlaps, overlapped, starts, started, finishes, finished, during, contains Default: contains where=sql_query WHERE conditions of SQL statement without ’where’ keyword used in the temporal GIS framework Example: start_time > ’2001-01-01 12:30:00’
DESCRIPTION
t.rast.aggregate.ds works like t.rast.aggregate but instead of defining a fixed granularity for temporal aggregation the time intervals of all maps registered in a second space time dataset (can be STRDS, STR3DS or STVDS) are used to aggregate the maps of the input space time raster dataset.
NOTES
The sampling method must be specified from the sampler dataset point of view. It defines the temporal relationships between intervals of the sampling dataset and the input space time raster dataset.
EXAMPLES
Precipitation aggregation In this example we create 7 raster maps that will be registered in a single space time raster dataset named precipitation_daily using a daily temporal granularity. The names of the raster maps are stored in a text file that is used for raster map registration. A space time vector dataset is created out of two vector maps with different temporal resolution. The maps are created using v.random. The first map has a granule of 3 days the second a granule of 4 days. The space time raster dataset precipitation_daily with daily temporal granularity will be aggregated using the space time vector dataset resulting in the output space time raster dataset precipitation_agg. The aggregation method is set to sum to accumulate the precipitation values of all intervals in the space time vector dataset. The sampling option assures that only raster maps that are temporally during the time intervals of the space time vector dataset are considered for computation. Hence the option is set to contains (time stamped vector map layers temporally contain the raster map layers): MAPS="map_1 map_2 map_3 map_4 map_5 map_6 map_7" for map in ${MAPS} ; do r.mapcalc expression="${map} = 1" echo ${map} >> map_list.txt done t.create type=strds temporaltype=absolute \ output=precipitation_daily \ title="Daily precipitation" \ description="Test dataset with daily precipitation" t.register -i type=raster input=precipitation_daily \ file=map_list.txt start="2012-08-20" increment="1 days" t.info type=strds input=precipitation_daily +-------------------- Space Time Raster Dataset -----------------------------+ | | +-------------------- Basic information -------------------------------------+ | Id: ........................ precipitation_daily@PERMANENT | Name: ...................... precipitation_daily | Mapset: .................... PERMANENT | Creator: ................... soeren | Temporal type: ............. absolute | Creation time: ............. 2014-11-23 16:48:17.686979 | Modification time:.......... 2014-11-23 16:48:18.302978 | Semantic type:.............. mean +-------------------- Absolute time -----------------------------------------+ | Start time:................. 2012-09-10 00:00:00 | End time:................... 2012-09-17 00:00:00 | Granularity:................ 1 day | Temporal type of maps:...... interval +-------------------- Spatial extent ----------------------------------------+ | North:...................... 80.0 | South:...................... 0.0 | East:.. .................... 120.0 | West:....................... 0.0 | Top:........................ 0.0 | Bottom:..................... 0.0 +-------------------- Metadata information ----------------------------------+ | Raster register table:...... raster_map_register_3225725979b14b5db343a00835b882c7 | North-South resolution min:. 10.0 | North-South resolution max:. 10.0 | East-west resolution min:... 10.0 | East-west resolution max:... 10.0 | Minimum value min:.......... 1.0 | Minimum value max:.......... 1.0 | Maximum value min:.......... 1.0 | Maximum value max:.......... 1.0 | Aggregation type:........... None | Number of registered maps:.. 7 | | Title: | Daily precipitation | Description: | Test dataset with daily precipitation | Command history: | # 2014-11-23 16:48:17 | t.create type="strds" temporaltype="absolute" | output="precipitation_daily" title="Daily precipitation" | description="Test dataset with daily precipitation" | # 2014-11-23 16:48:18 | t.register -i type="rast" input="precipitation_daily" | file="map_list.txt" start="2012-08-20" increment="1 days" | +----------------------------------------------------------------------------+ v.random output=points_1 n=20 v.random output=points_2 n=20 t.create type=stvds temporaltype=absolute \ output=points \ title="Points" \ description="Points for aggregation" t.register -i type=vector input=points \ map=points_1 start="2012-08-20" increment="3 days" t.register -i type=vector input=points \ map=points_2 start="2012-08-23" increment="4 days" t.info type=stvds input=points +-------------------- Space Time Vector Dataset -----------------------------+ | | +-------------------- Basic information -------------------------------------+ | Id: ........................ points@PERMANENT | Name: ...................... points | Mapset: .................... PERMANENT | Creator: ................... soeren | Temporal type: ............. absolute | Creation time: ............. 2014-11-23 16:48:49.193903 | Modification time:.......... 2014-11-23 16:48:50.185671 | Semantic type:.............. mean +-------------------- Absolute time -----------------------------------------+ | Start time:................. 2012-08-20 00:00:00 | End time:................... 2012-08-27 00:00:00 | Granularity:................ 1 day | Temporal type of maps:...... interval +-------------------- Spatial extent ----------------------------------------+ | North:...................... 79.283411 | South:...................... 5.724954 | East:.. .................... 118.881168 | West:....................... 0.016755 | Top:........................ 0.0 | Bottom:..................... 0.0 +-------------------- Metadata information ----------------------------------+ | Vector register table:...... vector_map_register_6f02d33e0ee243d1a521aaaca39ecb31 | Number of points ........... 40 | Number of lines ............ 0 | Number of boundaries ....... 0 | Number of centroids ........ 0 | Number of faces ............ 0 | Number of kernels .......... 0 | Number of primitives ....... 40 | Number of nodes ............ 0 | Number of areas ............ 0 | Number of islands .......... 0 | Number of holes ............ 0 | Number of volumes .......... 0 | Number of registered maps:.. 2 | | Title: | Points | Description: | Points for aggregation | Command history: | # 2014-11-23 16:48:49 | t.create type="stvds" temporaltype="absolute" | output="points" title="Points" description="Points for aggregation" | # 2014-11-23 16:48:49 | t.register -i type="vect" input="points" | map="points_1" start="2012-08-20" increment="3 days" | # 2014-11-23 16:48:50 | t.register -i type="vect" input="points" | map="points_2" start="2012-08-23" increment="4 days" | +----------------------------------------------------------------------------+ t.rast.aggregate.ds input=precipitation_daily \ output=precipitation_agg \ sample=points type=stvds \ basename=prec_agg \ method=sum sampling=contains t.support input=precipitation_agg \ title="Aggregated precipitation" \ description="Aggregated precipitation dataset" t.info type=strds input=precipitation_agg +-------------------- Space Time Raster Dataset -----------------------------+ | | +-------------------- Basic information -------------------------------------+ | Id: ........................ precipitation_agg@PERMANENT | Name: ...................... precipitation_agg | Mapset: .................... PERMANENT | Creator: ................... soeren | Temporal type: ............. absolute | Creation time: ............. 2014-11-23 16:53:23.488799 | Modification time:.......... 2014-11-23 16:53:28.714886 | Semantic type:.............. mean +-------------------- Absolute time -----------------------------------------+ | Start time:................. 2012-08-20 00:00:00 | End time:................... 2012-08-27 00:00:00 | Granularity:................ 1 day | Temporal type of maps:...... interval +-------------------- Spatial extent ----------------------------------------+ | North:...................... 80.0 | South:...................... 0.0 | East:.. .................... 120.0 | West:....................... 0.0 | Top:........................ 0.0 | Bottom:..................... 0.0 +-------------------- Metadata information ----------------------------------+ | Raster register table:...... raster_map_register_7b025eb7431747c98c5c1ad971e8c282 | North-South resolution min:. 10.0 | North-South resolution max:. 10.0 | East-west resolution min:... 10.0 | East-west resolution max:... 10.0 | Minimum value min:.......... 3.0 | Minimum value max:.......... 4.0 | Maximum value min:.......... 3.0 | Maximum value max:.......... 4.0 | Aggregation type:........... sum | Number of registered maps:.. 2 | | Title: | Aggregated precipitation | Description: | Aggregated precipitation dataset | Command history: | # 2014-11-23 16:53:23 | t.rast.aggregate.ds input="precipitation_daily" | output="precipitation_agg" sample="points" type="stvds" basename="prec_agg" | method="sum" sampling="contains" | # 2014-11-23 16:53:28 | t.support input="precipitation_agg" | title="Aggregated precipitation" | description="Aggregated precipitation dataset" | +----------------------------------------------------------------------------+ MODIS satellite sensor daily data aggregation to 8 days In this example the aggregation from daily data to eight days is shown. This "eight-day week" is used in some MODIS satellite sensor products. # NOTE: the example is written in shell language # create maps every 8 days as seed maps for year in `seq 2000 2001` ; do for doy in `seq -w 1 8 365` ; do r.mapcalc -s expression="8day_${year}_${doy} = rand(0.0,40.0)" done done # From de name of each map, we take year and doy, and convert it # to a YYYY-MM-DD date for start and end, and create a file with # mapnames, start date and end date g.list type=raster pattern=8day_20??_* > names_list for NAME in `cat names_list` ; do # Parse YEAR=`echo $NAME | cut -d’_’ -f2` DOY=`echo $NAME | cut -d’_’ -f3` # convert YYYY_DOY to YYYY-MM-DD DOY=`echo "$DOY" | sed ’s/^0*//’` doy_end=0 if [ $DOY -le "353" ] ; then doy_end=$(( $DOY + 8 )) elif [ $DOY -eq "361" ] ; then if [ $[$YEAR % 4] -eq 0 ] && [ $[$YEAR % 100] -ne 0 ] || [ $[$YEAR % 400] -eq 0 ] ; then doy_end=$(( $DOY + 6 )) else doy_end=$(( $DOY + 5 )) fi fi DATE_START=`date -d "${YEAR}-01-01 +$(( ${DOY} - 1 ))days" +%Y-%m-%d` DATE_END=`date -d "${YEAR}-01-01 +$(( ${doy_end} -1 ))days" +%Y-%m-%d` # text file with mapnames, start date and end date echo "$NAME|$DATE_START|$DATE_END" >> list_map_start_end_time.txt done # check the list created. cat list_map_start_end_time.txt 8day_2000_001|2000-01-01|2000-01-09 8day_2000_009|2000-01-09|2000-01-17 ... 8day_2000_353|2000-12-18|2000-12-26 8day_2000_361|2000-12-26|2001-01-01 8day_2001_001|2001-01-01|2001-01-09 8day_2001_009|2001-01-09|2001-01-17 ... 8day_2001_345|2001-12-11|2001-12-19 8day_2001_353|2001-12-19|2001-12-27 8day_2001_361|2001-12-27|2002-01-01 # all maps except for the last map in each year represent 8-days # intervals. But the aggregation starts all over again every # January 1st. # create 8-day MODIS-like strds t.create type=strds temporaltype=absolute \ output=8day_ts title="8 day time series" \ description="STRDS with MODIS like 8 day aggregation" # register maps t.register type=raster input=8day_ts \ file=list_map_start_end_time.txt # check t.info input=8day_ts t.rast.list input=8day_ts # finally, copy the aggregation to a daily time series t.rast.aggregate.ds input=daily_ts sample=8day_ts \ output=8day_agg basename=8day_agg method=average \ sampling=contains suffix=gran # add metadata t.support input=8day_agg \ title="8 day aggregated ts" \ description="8 day MODIS-like aggregated dataset" # check map list in newly created aggregated strds t.rast.list input=8day_agg name|mapset|start_time|end_time 8day_agg_2000_01_01|modis|2000-01-01 00:00:00|2000-01-09 00:00:00 8day_agg_2000_01_09|modis|2000-01-09 00:00:00|2000-01-17 00:00:00 8day_agg_2000_01_17|modis|2000-01-17 00:00:00|2000-01-25 00:00:00 ... 8day_agg_2000_12_18|modis|2000-12-18 00:00:00|2000-12-26 00:00:00 8day_agg_2000_12_26|modis|2000-12-26 00:00:00|2001-01-01 00:00:00 8day_agg_2001_01_01|modis|2001-01-01 00:00:00|2001-01-09 00:00:00 ... 8day_agg_2001_12_11|modis|2001-12-11 00:00:00|2001-12-19 00:00:00 8day_agg_2001_12_19|modis|2001-12-19 00:00:00|2001-12-27 00:00:00 8day_agg_2001_12_27|modis|2001-12-27 00:00:00|2002-01-01 00:00:00
SEE ALSO
t.rast.aggregate, t.create, t.info
AUTHOR
Sören Gebbert, Thünen Institute of Climate-Smart Agriculture
SOURCE CODE
Available at: t.rast.aggregate.ds source code (history) Accessed: Mon Jun 13 15:11:05 2022 Main index | Temporal index | Topics index | Keywords index | Graphical index | Full index © 2003-2022 GRASS Development Team, GRASS GIS 8.2.0 Reference Manual