Provided by: grass-doc_8.2.0-1build1_all bug

NAME

       t.rast.what  - Sample a space time raster dataset at specific vector point coordinates and
       write the output to stdout using different layouts

KEYWORDS

       temporal, sampling, raster, time

SYNOPSIS

       t.rast.what
       t.rast.what --help
       t.rast.what [-niv]  [points=name]    [coordinates=east,north]   strds=name   [output=name]
       [where=sql_query]                 [null_value=string]                [separator=character]
       [order=string[,string,...]]   [layout=string]   [nprocs=integer]   [--overwrite]  [--help]
       [--verbose]  [--quiet]  [--ui]

   Flags:
       -n
           Output header row

       -i
           Use stdin as input and ignore coordinates and point option

       -v
           Show the category for vector points map

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       points=name
           Name of input vector map
           Or data source for direct OGR access

       coordinates=east,north
           Comma separated list of coordinates

       strds=name [required]
           Name of the input space time raster dataset

       output=name
           Name for the output file or "-" in case stdout should be used
           Default: -

       where=sql_query
           WHERE  conditions  of  SQL  statement without ’where’ keyword used in the temporal GIS
           framework
           Example: start_time > ’2001-01-01 12:30:00’

       null_value=string
           String representing NULL value

       separator=character
           Field separator
           Special characters: pipe, comma, space, tab, newline
           Default: pipe

       order=string[,string,...]
           Sort the maps by category
           Options:   id,    name,    creator,    mapset,    creation_time,    modification_time,
           start_time,  end_time,  north,  south,  west,  east,  min,  max
           Default: start_time

       layout=string
           The  layout  of  the  output. One point per row (row), one point per column (col), all
           timsteps in one row (timerow)
           Options: row,  col,  timerow
           Default: row

       nprocs=integer
           Number of r.what processes to run in parallel
           Default: 1

DESCRIPTION

       t.rast.what is designed to sample space time raster datasets at specific point coordinates
       using  r.what internally. The output of r.what is transformed to different output layouts.
       The output layouts can be specified using the layout option.

       Three layouts can be specified:

           •   row - Row order, one vector sample point value per row

           •   col - Column order, create a column for each vector sample point of a single  time
               step/raster layer

           •   timerow  -  Time  order,  create  a  column  for each time step, this order is the
               original r.what output, except that the column names are the timestamps
       Please have a look at the example to see the supported layouts.

       This module is designed to run several instances of r.what to sample subsets  of  a  space
       time  raster dataset in parallel. Several intermediate text files will be created that are
       merged into a single file at the end of the processing.

       Coordinates can be provided as vector map using the points option or  as  comma  separated
       coordinate list with the coordinates option.

       An output file can be specified using the output option.  Stdout will be used if no output
       is specified or if the output option is set to "-".

EXAMPLES

   Data preparation
       In the following examples we sample a space time raster dataset that contains 4 raster map
       layers. First we create the STRDS that will be sampled with t.rast.what.
       g.region s=0 n=80 w=0 e=120 b=0 t=50 res=10
       # Generate data
       r.mapcalc expression="a_1 = 1" -s
       r.mapcalc expression="a_2 = 2" -s
       r.mapcalc expression="a_3 = 3" -s
       r.mapcalc expression="a_4 = 4" -s
       t.create type=strds output=A title="A test" descr="A test"
       t.register -i type=raster input=A maps=a_1,a_2,a_3,a_4 \
           start=’1990-01-01’ increment="1 month"

   Example 1
       The  first approach uses text coordinates as input and stdout as output, the layout is one
       coordinate(point per column:
       t.rast.what strds=A coordinates="115,36,79,45" layout=col -n
       start|end|115.0000000000;36.0000000000|79.0000000000;45.0000000000
       1990-01-01 00:00:00|1990-02-01 00:00:00|1|1
       1990-02-01 00:00:00|1990-03-01 00:00:00|2|2
       1990-03-01 00:00:00|1990-04-01 00:00:00|3|3
       1990-04-01 00:00:00|1990-05-01 00:00:00|4|4

   Example 2
       A vector map layer can be used as input to sample the STRDS. All three  available  layouts
       are demonstrated using the vector map for sampling.
       # First create the vector map layer based on random points
       v.random output=points n=3 seed=1
       # Row layout using a text file as output
       t.rast.what strds=A points=points output=result.txt layout=row -n
       cat result.txt
       115.0043586274|36.3593955783|1990-01-01 00:00:00|1990-02-01 00:00:00|1
       115.0043586274|36.3593955783|1990-02-01 00:00:00|1990-03-01 00:00:00|2
       115.0043586274|36.3593955783|1990-03-01 00:00:00|1990-04-01 00:00:00|3
       115.0043586274|36.3593955783|1990-04-01 00:00:00|1990-05-01 00:00:00|4
       79.6816763826|45.2391522853|1990-01-01 00:00:00|1990-02-01 00:00:00|1
       79.6816763826|45.2391522853|1990-02-01 00:00:00|1990-03-01 00:00:00|2
       79.6816763826|45.2391522853|1990-03-01 00:00:00|1990-04-01 00:00:00|3
       79.6816763826|45.2391522853|1990-04-01 00:00:00|1990-05-01 00:00:00|4
       97.4892579600|79.2347263950|1990-01-01 00:00:00|1990-02-01 00:00:00|1
       97.4892579600|79.2347263950|1990-02-01 00:00:00|1990-03-01 00:00:00|2
       97.4892579600|79.2347263950|1990-03-01 00:00:00|1990-04-01 00:00:00|3
       97.4892579600|79.2347263950|1990-04-01 00:00:00|1990-05-01 00:00:00|4
       # Column layout order using stdout as output
       t.rast.what strds=A points=points layout=col -n
       start|end|115.0043586274;36.3593955783|79.6816763826;45.2391522853|97.4892579600;79.2347263950
       1990-01-01 00:00:00|1990-02-01 00:00:00|1|1|1
       1990-02-01 00:00:00|1990-03-01 00:00:00|2|2|2
       1990-03-01 00:00:00|1990-04-01 00:00:00|3|3|3
       1990-04-01 00:00:00|1990-05-01 00:00:00|4|4|4
       # Timerow layout, one time series per row
       # using the where statement to select a subset of the STRDS
       # and stdout as output
       t.rast.what strds=A points=points \
           where="start_time >= ’1990-03-01’" layout=timerow -n
       x|y|1990-03-01 00:00:00;1990-04-01 00:00:00|1990-04-01 00:00:00;1990-05-01 00:00:00
       115.004358627375|36.3593955782903|3|4
       79.681676382576|45.2391522852909|3|4
       97.4892579600048|79.2347263950131|3|4

SEE ALSO

         g.region,  r.mask  r.neighbors,  r.what,  t.info,  t.rast.aggregate.ds,  t.rast.extract,
       v.what.strds

AUTHOR

       Sören Gebbert, Thünen Institute of Climate-Smart Agriculture

SOURCE CODE

       Available at: t.rast.what source code (history)

       Accessed: Mon Jun 13 15:11:05 2022

       Main index | Temporal index | Topics index | Keywords index | Graphical index | Full index

       © 2003-2022 GRASS Development Team, GRASS GIS 8.2.0 Reference Manual